Game theory 1

Lukáš Lehotský llehotsky@mail.muni.cz

Can suicide terrorism be rational?

Many criticisms against Rational choice

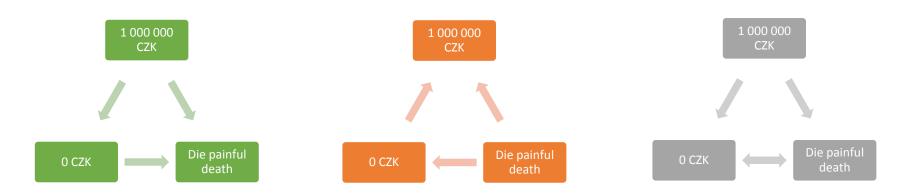
- Common criticism of rational choice people behave irrationally
- Many times incorrect
- Rationality ≠ Sensibility
- Ordering preferences
- I can mostly prefer taking over the world and least painful death, but equally prefer most painful death and least taking over the world

Rationality

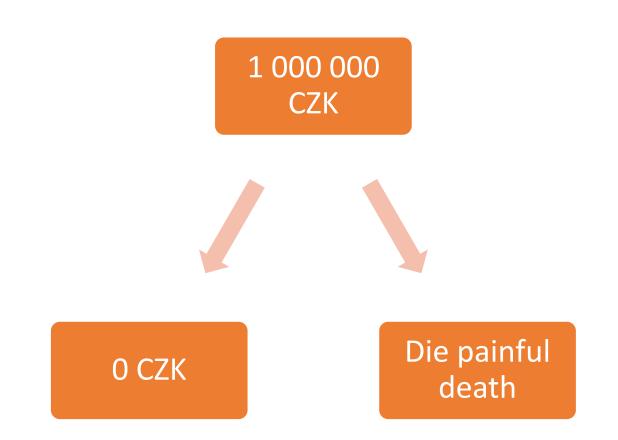
- Defined by two key premises
 - Completeness
 - Transitivity
- Indifferent to normative assessment of preferences and choices

Completeness

- Preference ordering complete if and only if for any two outcomes X and Y individual:
 - A) Prefers X to Y strong preference relation
 - B) Prefers Y to X strong preference relation
 - C) Is indifferent weak preference relation

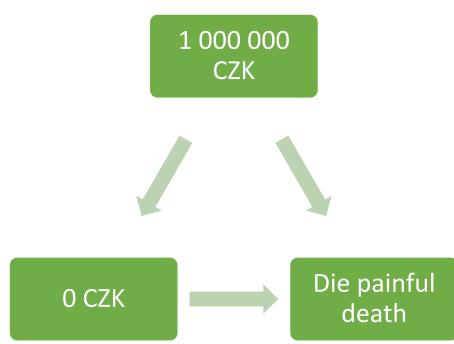


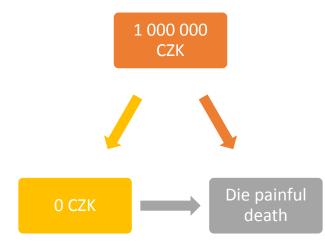
Incomplete preferences

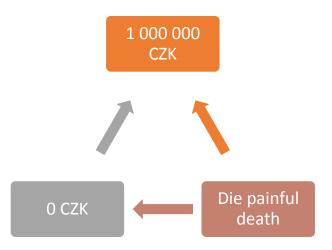


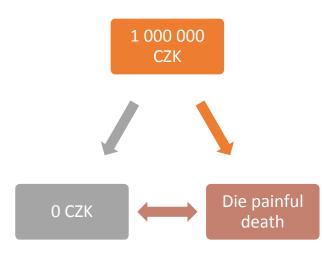
Transitivity

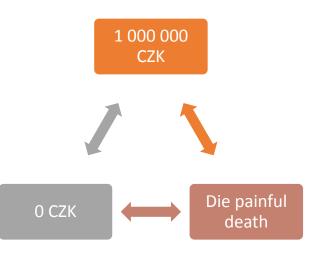
 For any three outcomes X, Y and Z, if X is preferred to Y and Y is preferred to Z, X must be preferred to Z





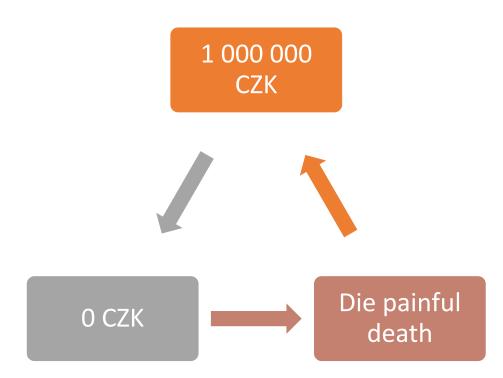






Intransitive preferences

- Prefer X to Y, Y to Z and Z to X
- Doesn't make sense



Other notions about preferences

- Preferences over outcomes are stable and do not change in the time of making decision – are fixed
- Preferences are ordinal they order actions but the difference between the two values has no meaning unless they state utility
- Compare two situations
 - $u(C_1) = 1, u(C_2) = 2, u(C_3) = 0$
 - $u(C_1) = 1$, $u(C_2) = 200$, $u(C_3) = -50$
- Both situations have same preference ordering
 - C₂ p C₁ p C₃

Other notions about rationality

- People do not calculate their actions the definition of rationality is narrower than common-sense one
- Rationality tells nothing about preferences over outcomes
- Rational actors may differ in choices in same situation
- Rational actors can err

Types of games

Types of games

- Games of perfect information
- Games of imperfect information
- Cooperative games
- Non-cooperative games
- Constant-sum game
- Positive-sum game

Games of perfect/imperfect information

Perfect information games

- All players know other players' strategies available to them
- All players know payoffs over actions
- All players know other players know

Imperfect information games

 Some information about other players' actions is not know to the player

Cooperative/non-cooperative games

Cooperative games

- Actors are allowed to make enforceable contracts
- Players do not need to cooperate, but cooperation is enfoceable by an outside party

Non-cooperative games

- Actors unable to make enforceable contracts outside of those specifically modeled in the game
- Players might cooperate, but any cooperation must be self-enforcing

Constant-sum/Positive-sum games

Constant sum games

- Sum of all players' payoffs is the same for any outcome
- Gain for one participant is always at the expense of another
- Special case of zero-sum game where all outcomes involve a sum of all player's payoffs of 0

Positive-sum games

- Combined payoffs of all players are not the same in every outcome of the game
- Positive-sum game implies that players may have interests in common, to achieve an outcome that maximizes total payoffs.

Introducing a game

What makes a game the game

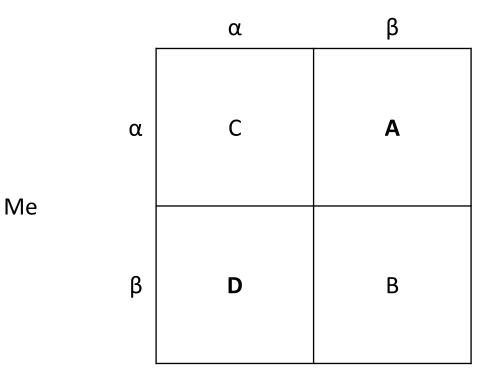
- Players
- Actions
- Strategies
- Outcomes
- Payoffs of player

Game of grades

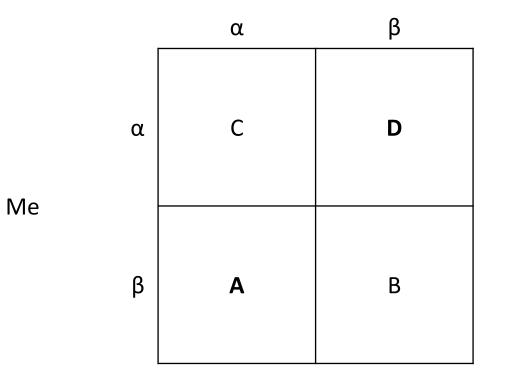
- Each pair can choose 2 actions: α or β
- If both choose α , both will receive C
- If both choose β , both will receive B
- If one chooses α and other β , one will receive A and other D applies to both players equally

Game of grades – my grades

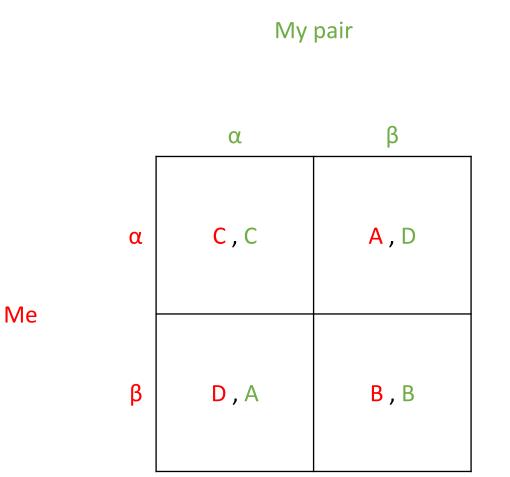
My pair



Game of grades – my pair's grades



Game of grades – normal form



Games in normal form

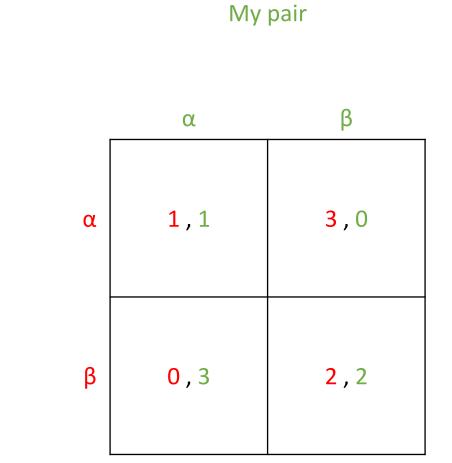
Normal form representation of a game

- Called also "strategic form" or "matrix form"
- Visualized as a matrix
- Represents a game as if agents were acting simultaneously

Utilities (Payoffs)

- Grades are not utilites
- Utilities for game:
 - EU(A) = 3
 - EU(B) = 2
 - EU(C) = 1
 - EU(D) = 0
- Preference over outcomes: A > B > C > D -> APBPCPD

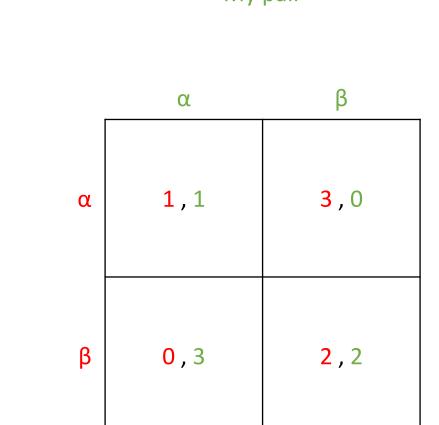
Game of grades with payoffs



Me

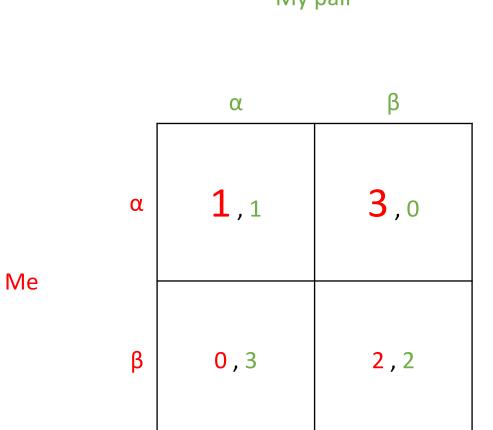
Solution concepts

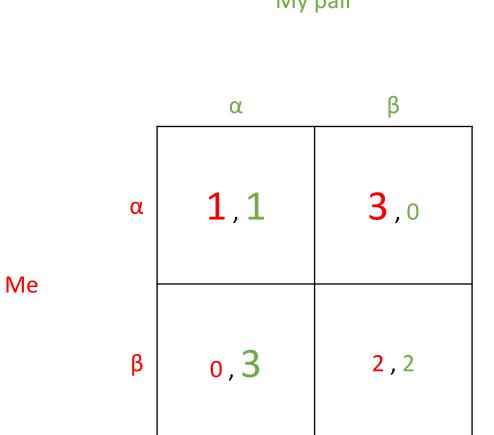
- Nash Equilibrium
 - Dominant Strategy Equilibrium
 - Pure Strategy Equilibrium
 - Mixed Strategy Equilibrium
- Subgame Perfect Equilibrium
- Bayesian Equilibrium
- Weak Perfect Bayesian Equilibrium



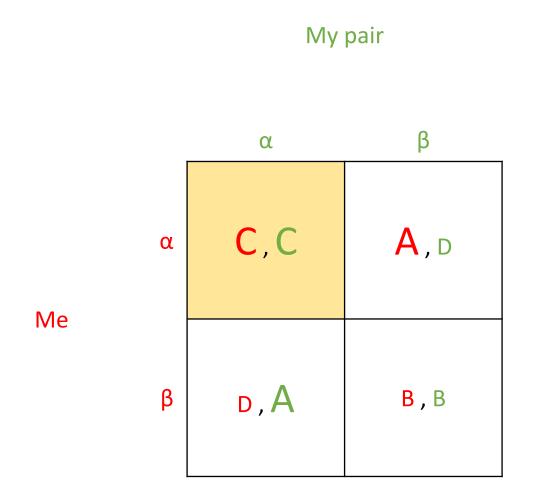
Me

My pair





My pair



Prisoner's dilemma

- Both players are tempted to defect, since cooperate is strictly dominated by defect
- The outcome of the game is that both players betray the other one and end up choosing $\boldsymbol{\alpha}$
- Both will end up with outcome that is less preferred than the optimal outcome β, β by seeking maximal gain from own action
- β, β is Pareto Efficient outcome brings best outcomes for all players – no one could be better-off without making someone worse-off

Dominance

Dominant Strategy Equilibrium

• Strategy might be dominant

Two types of dominance

- Strict (strong) dominance
- Weak dominance

Strict dominance

- Player i
- Payoff u_i
- Dominant strategy s_i
- Dominated strategy s_i'
- Strategy of all other players s_{-i}
- Player i's strategy si' is strictly dominated by player i's strategy si if and only if
- $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$ for **all** s_{-i}
- utility of playing s_i against others' strategies s_i is greater than utility of playing s_i' against others's strategies s_i for all others' strategies s_i

Game of grades – strict dominance

Me

 α
 β

 α
 1,1
 3,0

 β
 0,3
 2,2

My pair

Weak dominance

- Player i
- Payoff u_i
- Dominant strategy s_i
- Dominated strategy s_i'
- Strategy of all other players s_{-i}
- Player i's strategy si' is weakly dominated by player i's strategy si if
- $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$ for all s_{-i} and
- $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$ for **some** s_{-i}
- utility of playing s_i against others' strategies s_{-i} is greater or equal to utility of playing s_i' against others's strategies s_{-i} for all others' strategies s_{-i} and greater for some others' strategies s_{-i}

Game of grades – weak dominance

 α
 β

 α
 1,1
 3,0

 β
 0,3
 3,2

Me

My pair

Never play dominated strategies

- Dominated strategy brings lesser payoffs than dominant strategy
- Dominated strategy brings lesser payoffs no matter what strategy is selected by other player
- Can't control minds of others to force them not to play dominant strategy
- Event if could control minds of others and be sure they'll play dominated strategy, than rational to play dominant strategy anyway

Choosing numbers

- Choose integer between 1 100 incl.
- All numbers will be averaged
- Winner is the one who will be closest to the 2/3 of the group's average

Choosing numbers

- Average = 100
- 2/3 of average = ~ 66.66
- X > 67 is strictly dominated strategy
 - Even if everyone else selected 100
 - One selected 67
 - I selected 68
 - Outcome 68 is dominated by 67
- What is the rational choice for this game?

If all players were strictly rational, result is 1

I know you know

- I know
 - Numbers above 67 are never rational
- You know that I know
 - You'll never select number above 67, therefore numbers above 46 are never rational either
- I know You know that I know
 - I know that You'll never select above 46, hence I should never select number higher than 30
- You know that I know that You know that I know
 - You know that I won't select above 30, therefore I should never select number above 20

Get into opponent's shoes

Real life results

- 2012 Game theory online course
- 10 000 + players
- Mean 34
- Mode 50
- Median 33
- Winner 23
- Spikes: 50, 33, 20, 1

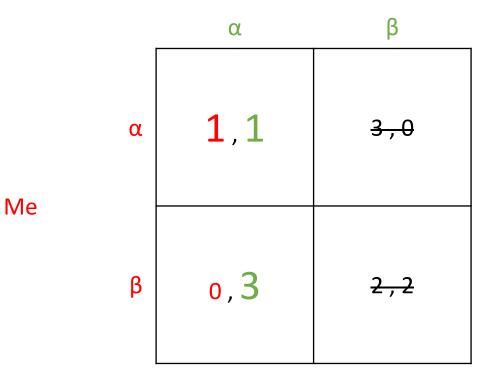
Iterated deletion of dominated strategies

Iterated deletion of dominated strategies

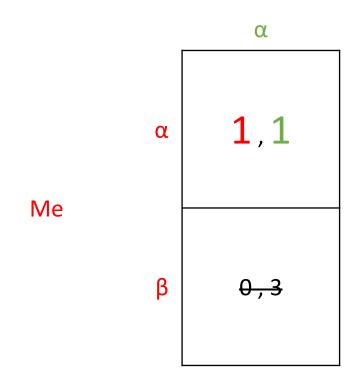
- Can delete dominated strategies as if they were not present in the game
- Game becomes simpler than the original one
- Can find equilibriums quickly games are dominance-solvable

Game of grades

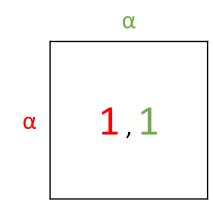
My pair



My pair

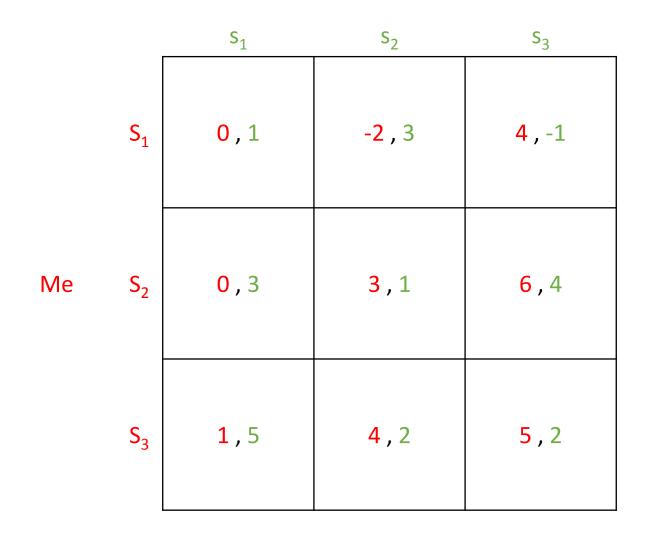


My pair



This game is dominance-solvable

Opponent



$S_1 vs S_2$

		S ₁	S ₂	s ₃
	S ₁	<mark>0</mark> ,1	<mark>-2</mark> ,3	<mark>4</mark> ,-1
Me	S ₂	<mark>0</mark> ,3	<mark>3</mark> ,1	<mark>6</mark> ,4
	S ₃	1,5	4,2	5,2

$S_1 vs S_3$

Opponent

		S ₁	S ₂	S ₃
Me	S ₁	<mark>0</mark> ,1	<mark>-2</mark> ,3	<mark>4</mark> ,-1
	S ₂	0,3	3,1	6,4
	S ₃	1 ,5	4,2	<mark>5</mark> ,2

$S_2 vs S_3$

		S ₁	S ₂	S ₃
	S ₁	0,1	-2,3	4,-1
Me	S ₂	<mark>0</mark> ,3	<mark>3</mark> ,1	<mark>6</mark> ,4
	S ₃	1 ,5	4 , 2	<mark>5</mark> ,2

 $\mathbf{S}_1 \ \mathbf{VS} \ \mathbf{S}_3$

		S ₁	S ₂	s ₃
Me	S ₁	o, 1	-2,3	4,-1
	S ₂	0,3	3,1	6 <i>,</i> 4
	S ₃	1, 5	4,2	5,2

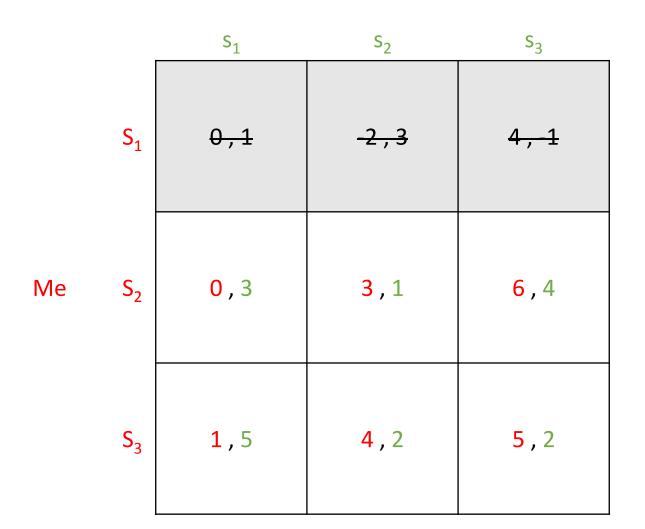
 $\mathbf{S}_1 \ \mathbf{VS} \ \mathbf{S}_2$

		S ₁	S ₂	s ₃
Me	S ₁	0,1	-2 , 3	4,-1
	S ₂	o, 3	3,1	6,4
	S ₃	1, 5	4,2	5,2

 $S_2 VS S_3$

Opponent

		S ₁	S ₂	S ₃
	S ₁	0,1	-2 , 3	4,-1
Me	S ₂	0,3	3,1	6 <i>,</i> 4
	S ₃	1,5	4 , 2	5 <i>,</i> 2



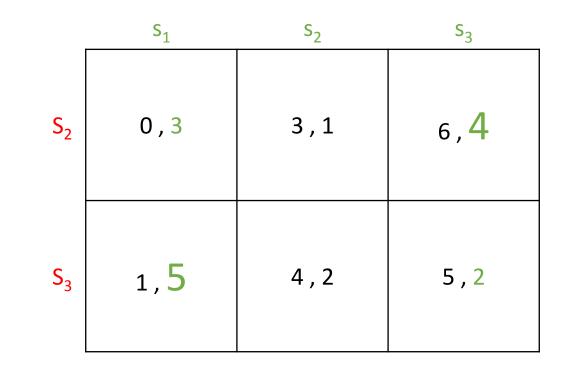
Opponent

Opponent

	S ₁	S ₂	S ₃
S ₂	<mark>0</mark> ,3	3,1	<mark>6,</mark> 4
S ₃	<mark>1,</mark> 5	4,2	5,2

s_1 vs s_3 after deletion

Opponent



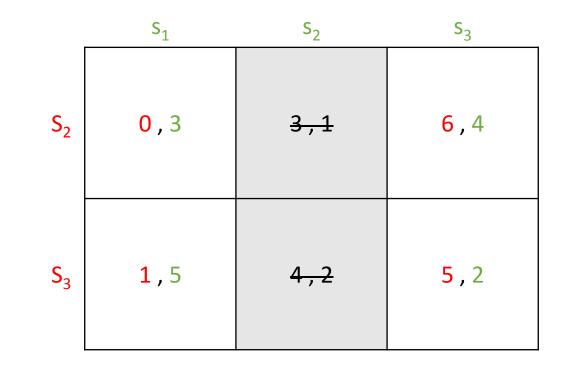
s_1 vs s_2 after deletion

Opponent



s_2 vs s_3 after deletion

Opponent



Me

Opponent

S_1 **S**₃ S₂ <mark>0</mark>,3 <mark>6</mark>,4 S₃ 5,2 1,5

Opponent

S_1 **S**₃ S₂ <mark>0</mark>,3 **6** , 4 S₃ <mark>5</mark>,2 **1** , 5

Me

Opponent

S_1 **S**₃ S₂ 0,3 6,**4** S₃ 5,<mark>2</mark> 1,5

Opponent

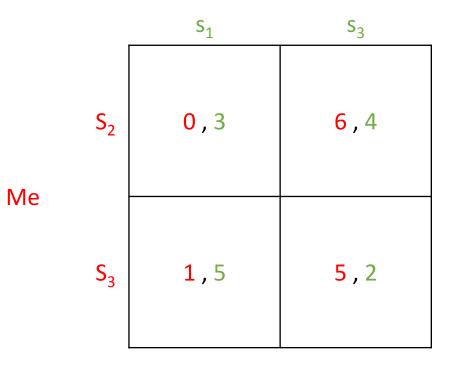
Sometimes not solvable, but simplified

Limits of iterated deletion of dominated strategies

- Strictly dominated strategies may be deleted in a random order
- Deleting weakly dominated strategies in some order might delete equilibriums
- This solution concept is not always applicable sometimes game simply don't have dominance

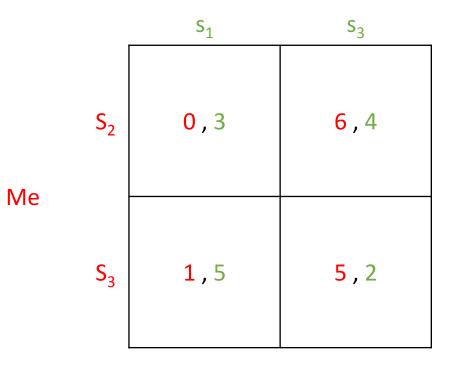
How to solve the game without dominance?

Opponent



How to solve the game without dominance?

Opponent

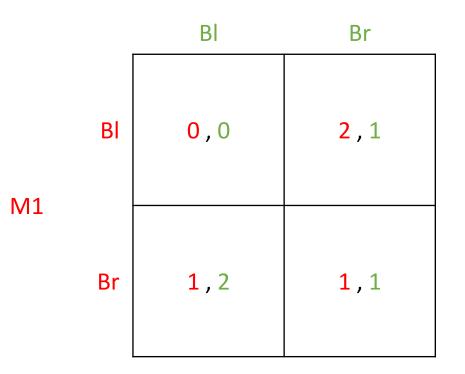


Nash Equilibrium

Nash Blonde Game

- 2 or more lusty males
- Several interested females
- At least one more female than male
- Just one female blonde
- Every male prefers blonde to brunette and brunette to no companion

Nash Blonde Game – normal form

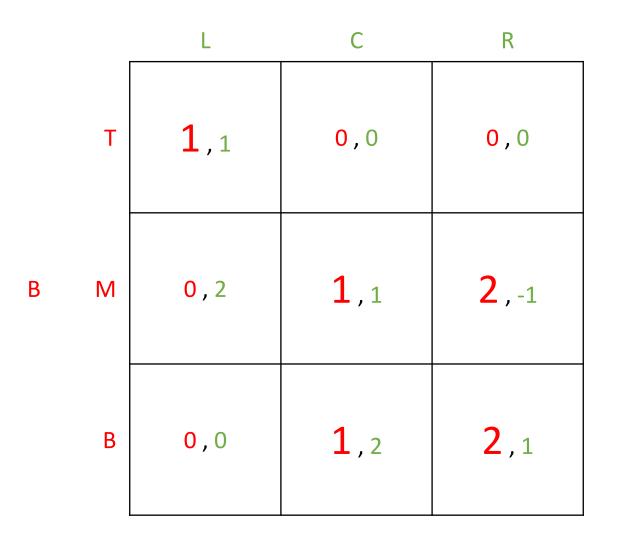


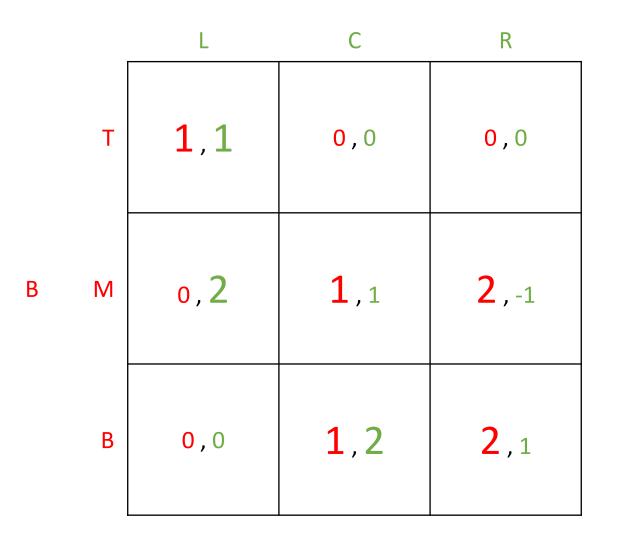
M2

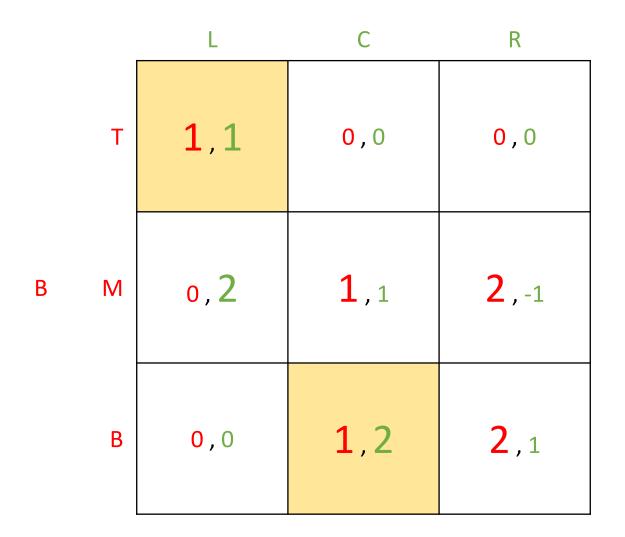
Nash Equilibrium

- Set of strategies, one for each player, such that no player has incentive to unilaterally change her action
- Players are in equilibrium if a change in strategies by any one of them would lead player to earn less (considering strategies of others') than if she remained with her current strategy
- Mutual best response to others' choices

		L	С	R
	т	1,1	<mark>0</mark> ,0	<mark>0</mark> ,0
В	Μ	0,2	1 ,1	<mark>2</mark> ,-1
	В	<mark>0</mark> ,0	<mark>1</mark> ,2	2 ,1







Games might have more NE

Pure strategy equilibrium

- Two equilibriums in this game
- (T , L)
 - u(A) = 1
 - u(B) = 1
- (<mark>C</mark> , B)
 - u(A) = 1
 - u(B) = 2
- These are **pure strategy equilibriums**