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3. In one of the exercises in Chapter 3 you were asked to consider a study showing that back belts, 
widely used in industry to prevent injury, do not work. For present purposes, assume that the 
researchers gathered data on a large number of individual workers. Each worker was measured 
on a two-category independent variable, labeled "Back belt use." The independent variable's 
values are: Use belt/Do not use belt. Each worker also was measured on a dependent variable, 
labeled "Back injury reported." The dependent variable's values are: Reported injury/Did not 
report injury. 16 

A. Draw an empty cross-tabulation shell, putting the values of the independent variable on 
the columns and the values of the dependent variable on the rows. Inside the cross­
tabulation, write in fabricated percentages showing that back belt use is not related to back 
injuries. (Just fabricate percentages. You do not need to fabricate raw cell frequencies.) 

B. According to a report by the Associated Press (December 5, 2000), "The [back belt study's] 
findings were questioned by a spokesman for the International Mass Retail Association, an 
industry group whose members include 200 retail chains. The researchers did not directly 
compare workers doing the same jobs, the spokesman said." The spokesman is suggesting 
that the original research is flawed because it did not control for the different types of jobs 
that workers perform. Describe the values of a plausible two-category control variable, 
labeled "Job type," that measures the types of jobs that workers perform. 

C. The spokesman's claim presents a challenging methodological problem. He is saying that 
the zero-order relationship, which shows no relationship between back belt use and back 
injuries, masks a true causal relationship between back belt use and back injuries: Workers 
who use belts are less likely to report back injuries than workers who do not use belts. The 
spokesman claims that after controlling for job type, this causal relationship will become 
evident. (i) Is the spokesman saying that, controlling for job type, the back belt-back injury 
relationship is spurious? Or is he saying that the back belt-job type-back injury relation­
ships are additive? Or is he saying that interaction is occurring in the back belt-job 
type-back injury relationships? (ii) Explain how it is possible for the zero-order relation­
ship to show no relationship between belt use and back injuries while at least one of the 
controlled relationships shows that workers who use belts are less likely to be injured than 
are workers who do not use back belts. 

D. Draw two cross-tabulation shells, one for each value of job type. Just as you did in part A, 
put the independent variable on the columns and dependent variable on the rows. Inside 
the cross-tabulations, write in fabricated percentages that are consistent with your answers 
in part C. 

LEARNING OBJECTIVES 

In this chapter you will learn: 

Foundations of 
Statistical I nference 

• Why random sampling is of cardinal importance in political research 
• Why samples that seem small can yield accurate information about much larger groups 

• How to figure out the margin of error for the information in a sample 
• How to use the normal curve to make inferences about the information in a sample 

By this point in the book, you have become comfortable with the essential techniques 
of political analysis. You know how to think clearly and critically about concepts. You can 
measure variables, construct explanations, and set up cross-tabulations and mean compar­
isons. You can interpret complex relationships. As we saw in Chapter 5, however, real-world 
relationships can present interpretive challenges. For example, suppose that in one of our 
analyses of the American National Election Study we find that men give the Republican Party 
an average thermometer rating of 55, compared with a mean rating of 52 among women. Is 
this 3-point difference "big enough" to support the conclusion that males have higher regard 
for the Republican Party than do females? Or should we instead decide that the difference is 
"too small" to warrant that conclusion? Suppose we are investigating the electoral mobiliza­
tion of military veterans. One of our cross-tabulation analyses shows that 84 percent of veter­
ans reported voting in the presidential election, compared with 77 percent of nonveterans. 
Does a 7 percentage-point difference allow us to say that'veterans are more likely to vote than 

are nonveterans, or is the difference too fragile to support this implication? 
Inferential statistics wasinvented to help the investigator make the correct interpreta­

tions about empirical relationships. Inferential statistics refers to a set of procedures for 
deciding how closely a relationship we observe in a sample corresponds to the unobserved 
relationship in the population from which the sample was drawn. Inferential statistics can 
help us decide whether the 3-point feeling thermometer difference between men and women 
represents a real gender difference in the population or whether the difference occurred by 
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happenstance when the sample was taken. Inferential statistics will tell us how often a random 
sample will produce a 7 percentage-point difference between veterans and nonveterans if, in 
fact, no difference exists in the population. In this chapter we cover the essential foundations 
of inferential statistics. In Chapter 7 we apply these foundational skills to the analysis of 
empirical relationships. 

POPULATION PARAMETERS AND SAMPLE STATISTICS 

Anyone who is interested in politics, society, or the economy wants to understand the atti­
t~des, beliefs, or behavior of very large groups. These large aggregations of units are popula­
tIons. A population may be generically defined as the universe of cases the researcher wants 
to describe. If I were studying the financial activity of political action committees (PACs) in 
the most recent congressional election, for example, my population would include all PAC 
contributions in the most recent election. Students analyzing vote choice in the most recent 
congressional elections, by contrast, would define their population as all voting-age adults. 
A characteristic of a population-the dollar amount of the average PAC contribution or the 
percent~ge of voting age adults who voted-is called a population parameter. Figuring out a 
populatiOn's charac~eristics, its parameters, is a main goal of the social science investigator. 
Researchers who enJoy complete access to their populations of interest-they can observe and 
measure every PAC, eligible voter, every member of Congress, Supreme Court decision, or 
whatever-are working with a census. A census allows the researcher to obtain measurements 
for alll~embers of a population. Thus, the researcher does not need to infer or estimate any 
populatiOn parameters when describing the cases. 1 

~ore often, however, researchers are unable to examine a population directly and must 
rely, ll1stead, on a sample. A sample is a number of cases or observations drawn from a 
population. Samples, like death and taxes, are fixtures of life in social research. Because 
P?pulation characteristics are frequently hidden from direct view, we turn to samples, which 
Yield observable sample statistics. A sample statistic is an estimate of a population parameter, 
based on a sample drawn from the population. Public opinion polls, for example, never 
survey every person in the population of interest (for example, all voting-age adults) . The 
po~ls~er takes a .sample, elicits an opinion, and then infers or estimates a population charac­
tenstIc from thiS sample statistic. Sometimes such samples-samples of 1,000 to 1,500 are 
typical-seem too small to faithfully represent their population parameters. Just how accu­
r.ately does a sample statistic estimate a population parameter? The answer to this question 
lIes at the heart of inferential statistics. 

In the ~ec.tions that follow we will discuss three factors that determine how closely a 
sample statIstIc reflects a population parameter. The first two factors have to do with the 
sample itself: the procedure that we use to choose the sample and the sample's size (the 
number of.cases in the sample). The third factor has to do with the population parameter we 
want to estimate: the amount of variation in the population characteristic. First we turn to a 
discussion of the nature and central importance of random sampling. We then consider how 
a sample statistic, ~o~p~ted from a random sample, is affected by the size of the sample and 
the amount of vanatiOn 111 the population. Finally, we show how the normal distribution 
comes into play in helping researchers determine the margin of error of a sample estimate 
and how this information is used for making inferences. 
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RANDOM SAMPLING 

The procedure we use in picking the sample is of cardinal importance. For a sample statistic 
to yield an accurate estimate of a population parameter, the researcher must use a random 
sample, that is, a sample that has been randomly drawn from the population. In taking a 
random sample, the researcher ensures that every member of the population has an equal 
chance of being chosen for the sample. To appreciate the importance of random sampling, 
consider a well-known sample that was taken during the 1936 presidential election campaign. 
Then-president Franklin Roosevelt, a Democrat whose policies were widely viewed as benefit­
ing the lower and working classes, was seeking reelection against Republican candidate Alf 
Landon, who represented policies more to the liking of higher-income individuals and busi­
ness interests. In a well-intentioned effort to predict the outcome (and boost circulation), the 
magazine Lite/my Digest conducted perhaps the largest poll ever undertaken in the history 
of electoral politics. Using lists of names and addresses obtained from phone records, automo­
bile registrations, and the ranks of its own subscribers, the Digest mailed out a staggering 
10 million sample ballots, over 2.4 million of which were filled out and returned. Basing its 
inferences on responses from this enormous sample, the Digest predicted a Landon landslide, 
estimating that 57 percent of the two-party vote would go to Landon and 43 percent to Roose­
velt. The election, indeed, produced a landslide-but not for Landon. Roosevelt ended up with 
more than 60 percent of the vote. (And the Litermy Digest ended up going out of business.) 

What went wrong? In what ways did the magazine's sampling procedure doom its predic­
tions? As you have no doubt surmised, people who owned cars and had telephones (and 
could afford magazine subscriptions) during the Great Depression may have been representa­
tive of Landon supporters, but they decidedly were not a valid reflection of the electorate at 
large. Certainly, the Digest wanted to make a valid inference about the population of likely 
voters. But it used the wrong sampling frame, the wrong method for defining the population 
it wanted to study. Poor sampling frames lead directly to selection bias, or sampling bias. 
Selection bias occurs when some members of the population are more likely to be included 
in the sample than are other members of the population. Because people without telephones 
or cars were systematically excluded from the sample, selection bias was at work. The poll also 
suffered from response bias, which occurs when some cases in the sample are more likely 
than others to be measured. Because only a portion of the Digest's sample returned their 
ballots, response bias was at work. People who are sufficiently motivated to fill out and return 
a sample ballot-or any sort of voluntary-response questionnaire-may hold opinions that 
are systematically different from the opinions of people who receive a ballot but fail to return 
it. 2 Samples drawn in this manner are guaranteed to produce sample statistics that are mean­
ingless. Garbage in. Garbage out. 

Fortunately, thanks in part to lessons learned from legendary mistakes like the Literary 

Digest poll, social science has figured out how to construct sampling frames that virtually 
eliminate selection bias and has devised sampling procedures that minimize response bias. 
A valid sample is based on random selection. Random selection occurs when every mem-
ber of the population has an equal chance of being included in the sample. So, if there are 
1,000 members of the population, then the probability that anyone member would be chosen 
is 1 out of 1,000. Thus, the Literary Digest should have defined the population they wanted to 
make inferences about-the entire voting-age population in 1936-and then taken a random 
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sample from this population. By using random selection, every eligible voter, not just those 
who owned cars or had telephones, would have had an equal chance of being included. But 
the Digest, probably believing that a huge sample size would do the trick, ignored the essential 
principle of random selection: If a sample is not randomly selected, then the size of the 
sample simply does not matter. 

Let's explore these points, using a plausible example. Suppose that a student organization 
wants to gauge a variety of student political opinions: how students rate the political parties 
and the institutions of government, whether they have ever volunteered in a political 
campaign, their ideological leanings, and so on. As a practical matter, the student researchers 
cannot survey all 20,000 students enrolled at the university, so they decide to take a sample of 
100 students. How might the student pollsters obtain a sample that avoids the infamous 

~itfalls o.f the Litera? Digest poll? The group would first define the sampling frame by assign­
mg a umque sequentIal number to each student in the population, from 00001 for the first 
student listed in administration records to 20000 for the last listed. No problem so far. But 
how do the pollsters guarantee that each student has exactly one chance in 20,000 of being 
sampled? A systematic approach, such as picking every two-hundredth student, would result 
in the desired sample size (since 20,000/200 = 100), but it would not produce a truly random 
sample. Why not? Because two students appearing next to each other in the sampling frame 
would not have an equal chance of being selected. 

To obtain a random sample, the researchers would need a list of five-digit random 
numbers, created by many computer programs. A random number has a certain chaotic 
beauty. The first digit is randomly generated from the numbers 0-9. The second is randomly 

ge~era~e~ ~rom 0-9 as well, and so its value is not connected in any way to the first digit. The 
t~ll'd dIgIt l~ completely independent of the first two, and so on, for each of the five digits. 
Smce there IS no rhyme or reason to these numbers, the pollsters can begin anywhere on the 
list, adding to their sample the student having the same number as the first random number 
using the second random number to identify the second student, and continuing until a ' 
sa~llple of. 100 students is reached. (Any random number higher than 20,000 can be safely 
skIpped, smce the list has no systematic pattern.) Variants of this basic procedure are used 
regularly by commercial polling firms, like Gallup, and academically oriented survey centers, 
such as the University of Michigan's Institute for Social Research. 3 

. The essential methodological goodness of random processes has been previously 
dIscussed. In Chapter 1 we saw that random error introduces haphazard static into the 
measurement process. To be sure, random measurement error is not a welcome sight, but it is 
a mere annoyance compared with the fundamental distortion introduced by systematic 
measurement error. In Chapter 4 we found that random assignment is the great neutralizer of 
selection bias in experimental research design. Random assignment ensures that the test 
group and the control group will not be systematically different in any way, known or 
unknown, that could affect the dependent variable. If human choice is allowed to enter the 
assignm~nt proc.e~s-the investigators 'choose one subject over another for the test group or a 
prospectIve partIClpant chooses the control group instead of the test-then selection bias is 
onboard. The rationale for random sampling in observational research is identical to its 
rationale in experimental design. Because the population is beyond empirical view, we take a 
~'andom sample, which ensures that each population m ember has an equal chance of being 
mcluded. Just as random assignment in experimental research eliminates biased differences 
between the test group and the control group, so does random sampling eliminate biased 
differences between the population and the sample. 
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It is important to point out, however, that in eliminating bias we do not eliminate error. 
In fact, in drawing a random sample, we are consciously introducing .random_~ampling error. 
Random sampling error is defined as the exte~! to which a sampl~ statistic differs, by chance, 

from a population parameter. Trading one kind of error for another may seem like a bad 
bargain, but random sampling error is vastly better because we know how it affects a sample 
statistic, and we fully understand how to estimate its magnitude. Assuming that we are work­
ing with a random sample, the population parameter will be equal to the statistic we obtain 
from the sample, plus any random error that was introduced by taking the sample: 

Population parameter = Sample statistic + Random sampling error. 

The student researchers want a sample statistic that provides an unbiased estimate of a 
true population parameter, a characteristic of all students at the university. They eliminate 
selection bias by taking a random sample. But they kIlow that random sampling error is 
affecting their estimate of the population parameter. Assume that the student researchers use 
a feeling thermometer scale to measure the sample's attitudes toward the Democratic Party. 
Having collected this information on each member of the sample, they calculate the mean 
rating of the Democratic Party. Because they are working with a random sample, the student 
pollsters know that the sample's mean Democratic rating is the same as the population's 
mean Democratic rating, plus the random error introduced by taking the sample. What 
makes random sampling error a "better" kind of error is that we have the statistical tools for 
figuring out how much a sample statistic is affected by random sampling error. 

The magnitude of random sampling error depends on two components: (1) the size of 
the sample and (2) the amount of variation in the population characteristic being measured. 
Sample size has an inverse relationship with random sampling error: As the sample size goes 
up, random sampling error goes down. Variation in the population characteristic has a direct 
relationship with random sampling error: As variation goes up, random sampling error goes 
up. These two components-the variation component and the sample size component-are 
not separate and independent. Rather, they work together, in a partnership of sorts, in deter­
mining the size of random sampling error. This partnership can be defined by using ideas and 
terminology that we have already discussed: 

Random sampling error = (Variation component) 1 (Sample size component). 

Before exploring the exact properties of this conceptual formula for random sampling 
error, consider its intuitive appeal. Notice that "Variation component" is the numerator. 
This reflects its direct relationship with random sampling error. "Sample size component" is 
the denominator, depicting its inverse relationship with random sampling error. Return to 
the student organization example and consider an illustration of how these two components 
work together. Suppose that in the population of 20,000 students there is a great deal of vari­
ation in ratings of the Democratic Party. Large numbers of students dislike the Democrats 
and give them ratings between 0 and 40. Many students like the Democrats and give them 
ratings between 60 and 100. Still others give ratings in the middle range, between 40 and 60. 
So the population parameter the student researchers wish to estimate, Democratic Party ther­
mometer ratings, would have a large variation component. Suppose further that the campus 
group is working with a small-sized random sample; Thus, the variation component is rela­
tively large and the sample size component is relatively small. Dividing the large variation 
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component by the small sample size component would yield a large amount of random 
sampling error. Under these circumstances, the organization could not be very confident that 
their sample statistic provides an accurate picture of the true population mean, because their 
estimate contains so much random sampling error. But notice that if the campus group were 
to take a larger sample, or if student ratings of the Democratic Party were not so spread out, 
random sampling error would diminish, and the student pollsters would gain confidence in 
their sample statistic. 

Both components, the variation component and the sample size component, have known 
properties that give the researcher a good idea of just how much random sampling error is 
contained in a sample statistic. 

Sample Size and Random Sampling Error 
As previously noted, the basic effect of sample size on random sampling error is: As the 
sample size increases, error decreases . Adopting conventional notation-in which sample size 
is denoted by a lowercase n-we would have to say that a sample of n = 400 is preferable to a 
sample of n = 100, since the larger sample would provide a more accurate picture of what we 
are after. However, the inverse relationship between sample size and sampling error is non­
linear. Even though the larger sample is four times the size of the smaller one, going from 
n = 100 to n = 400 delivers only a twofold reduction in random sampling error. In ordinary 
language, if you wish to cut random error in half, you must quadruple the sample size. In 
mathematical language, the sample size component of random sampling error is equal to the 
square root of the sample size, n: 

Sample size component of random sampling error = V;;. 

Plugging this into our conceptual formula for random sampling error: 

Random sampling error = (Variation component) / V;;. 

Because of the nonlinear relationship between sample size and random sampling error, 
samples that seem rather small nonetheless carry an acceptable amount of random error. 
Consider three samples: n = 400, n = 1,600, and n = 2,500. The sample size component of the 
smallest sample size is the square root of 400, which is equal to 20. So, for a sample of this 
size, we would calculate random sampling error by dividing the variation component by 20. 
Random sampling error for the next sample would be the variation component divided by 
the square root of 1,600, which is equal to 40. So, by going from a sample size of 400 to a 
sample size of 1,600, we can increase the sample size component of random sampling error 
from 20 to 40. Notice that by increasing the sample size component from 20 to 40, we double 
the denominator, V;;. This has a beneficial effect on random sampling error, effectively 
cutting it by half. Thus, if resources permit, obtaining a sample of n = 1,600 would be a smart 
move. Random sampling error for the largest sample would be equal to the variation com­
ponent divided by the square root of 2,500, which is equal to 50. Boosting the sample size by 
900 cases-from 1,600 to 2,500-occasions a modest increase in the sample size component, 
from 40 to 50. Sophisticated sampling is an expensive undertaking, and survey designers must 
balance the cost of drawing larger samples against the payoff in precision. For this reason, 
most of the surveys you see and read about have sample sizes in the 1,500 to 2,000 range, 
an acceptable comfort range for estimating a population parameter. 

Foundations of Statistical Inference 7 79 

Sample size is an important factor in the accuracy of a sample statistic. You now have a 
better idea of how random sampling error is affected by n. Suppose the campus organization 
successfully collects its sample (n = 100) and computes a sample statistic, mean Democratic 
rating. Let's say that the sample rates the Democrats at 59, on average. The group wants to 
know how much random sampling error is contained in this estimate. As we have just seen, 
part of the sampling error will depend on the sample size. In this case, the sample size 
component is equal to v'lOO = 10. Now what? What does a sample size error component of 
10 have to do with the accuracy of the sample mean of 59, the campus group's estimate of the 
true rating of the Democratic Party in the student population? The answer depends on the 
second component of random sampling error, the amount of variation in the population 
characteristic being measured. As we have seen, this connection is direct: As variation in the 
population characteristic goes up, random samplii1g error goes up. 

To better appreciate how variation in the population parameter affects random sampling 
error, consider Figure 6-1, which depicts two possible ways that student ratings of the 
Democrats might be distributed within the student population. First, suppose that Demo­
cratic Party ratings are widely dispersed across the student population, as in Panel A of 
Figure 6-1. There are appreciable numbers of students in every range of the rating scale, from 
lower to higher, with only a slight amount of clustering around the center of the distribution. 
Since variation in the population characteristic is high, the variation component of random 
sampling error is high. A random sample taken from the population would produce a sample 
mean that mayor may not be close to the population mean-it all depends on which cases 
were randomly selected. Because each student has an equal chance of being chosen for the 
sample, one sample might pick up a few more students who reside in the upper range of the 
distribution. Another sample from the same population may randomly choose a few more 
students from the lower range. In fact, one might draw a very large number of random 
samples, each one producing a different sample estimate of the population mean. Now, visu­
alize a population like the one depicted in Panel B of Figure 6-1. Notice that the ratings are 
clustered around a well-defined center, with fewer cases at the extremes of the scale. Since 
variation in the population characteristic is low, the variation component of random 
sampling error is low. A random sample taken from the population would produce a sample 
mean that is close to the population mean. What is more, repeated sampling from the same 
population would produce sample mean after sample mean that are close to the population 
mean-and close to each other. 

The variation component of random sampling error is statistically defined by a measure 
you may have encountered before: the standard deviation. After discussing the standard devi­
ation, we return to the question of how this foundational measure affects random sampling 
error. 

Variation Revisited: The Standard Deviation 
The amount of variation in a variable is determined by the dispersion of cases across the 
values of the variable. If the cases tend to fall into one value of a variable, or into a handful of 
similar values, then the variable has low dispersion. If the cases are more spread out across the 
variable's values, then the variable has high dispersion. As discussed in Chapter 2, describing 
the degree of dispersion in nominal and ordinal variables sometimes requires a judgment call. 

For interval-level variables, a more precise measure of variation is used. The standard 
deviation summarizes the extent to which the cases in an interval-level distribution fall on or 
close to the mean of the distribution. Although more precise, the standard deviation is based 
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Figure 6-1 High Variation and Low Variation in a Popu lation Parameter 

A. High Variation in Democratic Thermometer Ratings in the Student Popu lation 
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B. Low Variation in Democratic Thermometer Ratings in the Student Population 
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on the same intuition as the less precise judgment calls applied to nominal and ordinal vari­
ables. If, on the whole, the individual cases in the distribution do not deviate very much from 
~he .d~stribution's mean, then the standard deviation is a small number. If, by contrast, the 
IndIvIdual cases tend to deviate a great deal from the mean-that is, large differences exist 
between the values of individual cases and the mean of the distribution-then the standard 
deviation is a large number. 

T~ demonstrate ~he central importance of the standard deviation in determining random 
samplIng error, we wIll present two hypothetical possibilities for the distribution of Demo­
cratic thermometer ratings in the student population. The population means are the same 
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Table 6-1 Central Tendency and Variation in Democratic Thermometer Rat ings: 

Hypothetica l Scenario A 

Student 

1 

2 
3 
4 

5 

6 
7 

8 

9 

10 

11 

Summary information 

Democratic 
rating 

20 
22 

34 

50 

56 

58 

60 

66 
82 

94 

96 

Central tendency 

Summation of 
ratings = 638 

N = ll 
11 = 58 

Deviation from 
the mean 

- 38 

-36 
-24 

-8 
- 2 

0 
2 

8 
24 

36 
38 

Squared deviation 
from the mean 

1,444 

1,296 

576 

64 
4 

o 
4 

64 

576 

1,296 
1,444 

Dispersion 

Summation of squared 
deviations = 6,768 

Average of squared 
deviations (variance) = 

615.3 

(J = 24.8 

in both scenarios, a mean rating of 58. However, in population A student ratings are more 
spread out-the distribution has a higher standard deviation-than in population B. In 
discussing population A, we will provide a step-by-step guide for arriving at the standard 
deviation. Populations A and B are unrealistic in two respects. First, both show calculations 
that have been performed on a population. Researchers perform calculations on samples, not 
populations. But here we bend reality so that we can introduce appropriate terminology and 
lay necessary groundwork. Second, both scenarios depict the student population as having 
11 members, not the more realistic 20,000 students we have been using as an example. This is 
done to make the math easier to follow. After these simplifications have served their purposes, 
we will restore plausibility to the populations. 

Table 6-1 presents student population A. As discussed earlier, a sample size is denoted by 
a lowercase n. In contrast, a population size is denoted by an uppercase N. In Table 6-1, then, 
N = 11. The thermometel: ratings given by each member of the population are in the "Demo­
cratic rating" column, from 20 for the student with the coolest response to the Democrats 
to 96 for the most pro-Democratic student. To arrive at the mean rating for the population, 
we divide the summation of all ratings (20 + 22 + 34 + . .. ), 638, by the population size, 
II, which yields 58. Unlike sample statistics, which (as we will see) are represented by ordi­
nary letters, population parameters are always symbolized by Greek letters. A population 
mean is symbolized by the Greek letter 11 (pronounced "mew"). Thus, in Table 6-1, Jl = 58. 

This is a familiar measure of central tendency for interval-level variables. 
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How might we summarize variation in ratings among the students in this population? 
A rough-and-ready measure is provided by the range, defined as the maximum actual value 
minus the minimum actual value. So, in this example, the range would be the highest rating, 
96, minus the lowest rating, 20, a range of 76. In gauging variation in interval-level variables, 
however, the measure of choice is the standard deviation. The standard deviation of a popu­
lation is symbolized by the Greek letter (J ("sigma"). As its name implies, the standard 
deviation measures variation as a function of deviations from the mean of a distribution. 
The first step in finding the standard deviation, then, is to express each value as a deviation 
from the mean or, more specifically, to subtract the mean from each value. 

Step 1. Calculate each value's deviation from the mean: 

(Individual value - /l) = Deviation from the mean. 

A student whose rating is below the population mean will have a negative deviation, and 
a student who gave a rating that is above the mean will have a positive deviation. An individ­
ual with a rating equal to the population mean will have a deviation of o. In Table 6-1, the 
deviations for each member of the population are shown in the column labeled "Deviation 
from the mean." These deviations tell us the locations of each population member relative to 
the population mean. So, for example, Student I, who rated the Democrats at 20 on the scale, 
has a deviation of -38,38 units below the population mean of 58. Student 7, who rated the 
Democratic Party at 60, is slightly above the population mean, scoring the Democrats 2 
points higher than the population mean of 58. Deviations from the population mean 
provide the starting point for figuring out the standard deviation. 

Step 2. Square each deviation. All measures of variation in interval-level variables, 
including the standard deviation, are based on the square of the deviations from the mean 
of the distribution. In Table 6-1, these calculations for each student in the population appear 
in the column labeled "Squared deviation from the mean." Squaring each individual devia­
tion, of course, removes the minus signs on the negative deviations, those members of the 
population who gave ratings below the population mean. Notice, for example, that the square 
of Student l's deviation, -38, is the same as the square of Students II's deviation, 38. Both 
square to 1,444. Why perform a calculation that treats Student 1 and Student 11 as equal, 
when they clearly are not equal at all? Because, in the logic of the standard deviation, both of 
these students make equal contributions to the variation in ratings. Both lie an equal distance 
from the population mean of 58, and so both deviations figure equally in determining the 
dispersion of ratings around the mean. 

Step 3. Sum the squared deviations. If we add all the squared deviations in the "Squared 
deviation from the mean" column, we arrive at the sum 6,768. The summation of the squared 
deviations, often called the total sum of squares, can be thought of as an overall summary of 
the variation in a distribution. When calculated on real-world data with many units of analy­
sis, the total sum of squares is always a large and seemingly meaningless number. However, 
the summation of the squared deviations becomes important in its own right when we 
discuss correlation and regression analysis (see Chapter 8). 

Step 4. Calculate the average of the sum of the squared deviations. The average of the 
squared deviations is known by a statistical name, the variance. The population variance is 
equal to the sum of the squared deviations divided by N. (Special note: To calculate the vari­
ance for a sample, you would divide the sum of the squared deviations by n - 1. This is 
discussed below.) For the population depicted in Table 6-1, the variance is the summation of 
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Table 6-2 Central Tendency and Variation in Democratic Thermometer Ratings: 

Hypothetical Scenario B 
Deviation from 

the mean 

Squared deviation 
from the mean 

Student 

1 

Democratic 
rating 

25 

34 

50 

55 

56 

58 

60 

61 

66 
82 

91 

33 

-24 

1,089 

576 
2 
3 
4 

5 

6 
7 

8 

9 

-8 
-3 
-2 
o 
2 
3 

8 

64 

9 

4 

o 
4 

9 

10 
24 

33 

64 

576 

1,089 
11 

Summary information 
Central tendency 

Summation of 
ratings = 638 

N= 11 

/l 58 

Dispersion 
Summation of squared 

deviations = 3,484 

Average of squared 
deviations (variance) = 

316.7 

(J = 17.8 

h d d 
. tl·011S (6 768) divided by the population size (N = 11), which yields an aver-

t e square eVla , . 1 1 r f· ay 
a e of 615.3 . Notice that, as with any mean, the variance is sensitive to va ues t1at Ie al aw 
/ the mean Students toward the tails of the distribution-Students 1 and 2 on t~e low 
er:~uand Stude~ts 10 and 11 on the high end-make greater c~ntributions to ~he vanance 
than students who gave ratings that were closer to the populatIOn mean. That s the beauty 
of the variance. If a population's values cluster close to the m~an, then the average. of .the 
squared deviations will record the closer clustering. As deviatIOns from the mean 111crease, 

then the variance increases, too. .. f . . 
Step 5 Take the square root of the variance. The populatIOn parameter 0 cu~le~t . h 

oncern tl~e standard deviation, is based on the variance. In fact, the st~ndard devlatlO~1 IS t e 

~quare r~ot of the variance. The standard deviation ((J) f~r the population of students 111 

cenario A, then, is the square root of 615.3, or V6i5.3 - 24.8. .. . .... 
s . t T ble 6-2 which depicts a second pOSSibilIty for the dlstllbutlon 

Turn your attentIOn 0 a , . . £ . 1 f 
of Democratic ratings in the student population. The mean DemoCl·adtlC rat~n~d 01 PO~~:i:on 

. 1 f A = 58 but the scores are not as sprea out. VI ence 0 
B IS the same .as popu a IOn , ~: of Table 6-2. Notice that the range is equal to 
lower disperSIOn can be found 111 every column £ d bl digit devi-
91 _ 25 = 66 (compared with 76 for population A) and that there are ~wer O~l h

e
- d 

ations from the population mean. Most noticeable are the lower ~agl11tudes 0 t e s;uare 
. ( . d ·tl 6678 for populatIOn A), and the vallance, 

deviations, whICh sum to 3,484 compare WI 1 ' . . d· . d 
which is equal to 316.7, substantially less than the value we calcul~ted for the m~re ;~p:lse 
population (615.3). Taking the square root of the variance, we arrIve at a (J equa to . , 
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which is 7 points lower than the standard deviation of population A (0" = 24.8). As we will 
demonstrate, a statistic computed on a random sample from population A will have a higher 
amount of random sampling error than will a statistic computed on a random sample drawn 
from population B. 

nand (J 

Let's pause and review the statistical components discussed thus far. 

Sample size component: As the sample size goes up, random sampling error declines as a func­
tion of the square root of the sample size. 

Variation component: As variation goes up, random sampling error increases in direct relation 
to the population's standard deviation. 

Now, we will take a firsthand look at how these components work together. Again 
consider population A and population B-only this time think of them in a much more real­
istic light. Instead of a mere 11 members, each population now has 20,000 students. Just as its 
counterpart in Table 6-1, the distribution of the 20,000 students in population A has a mean 
equal to 58 and a standard deviation equal to 24.8. And, just as in Table 6-2, the distribution 
of the 20,000 students in population B has a mean equal to 58 and a standard deviation equal 
to 17.8. Having artificially created these realistic populations, we can ask the computer to 
draw random samples of different sizes from each population.4 We can then calculate and 
record the mean Democratic rating obtained from each sample. 

The results are presented in Figure 6-2 . All the sample means displayed in panel A are 
based on the same student population-a population in which f.l = 58 and 0" = 24.8 . All the 
sample means displayed in panel B were drawn from a student population in which f.l = 58 
and 0" = 17.8. The dashed horizontal line in each panel shows the location of the true popu­
lation mean, the parameter being estimated by the sample means. For each population, the 
computer drew ten random samples of n = 25, ten random samples of n = 100, and ten 
random samples of n = 400. So, by scanning from left to right within each panel, you can see 
the effect of sample size on random sampling error. By moving between panel A and panel B, 
you can see the effect of the standard deviation on random sampling error. (So that we don't 
lose track of our student researchers, their sample's mean of 59 appears as a solid dot in the 
n = 100 group in panel A. We return to this example below.) 

Consider the set of sample means with the largest error component, the samples of 
n = 25 in panel A. Even though three or four of these sample means come fairly close to the 
population mean of 58, most are wide of the mark, ranging in value from the chilly (a mean 
Democratic rating of 50) to the balmy (a mean rating of 65). A small sample size, combined 
with a dispersed population parameter, equals a lot of random error. As we move across panel 
A to the ten sample means based on n = 100, we get a tighter grouping and less wildness, but 
even here the means range from about 53 to 62. The samples of n = 400 return much better 
precision. Four of the ten sample means hit the population mean almost exactly. Plainly 
enough, as sample size increases, error declines. By comparing panel A with panel B, we can 
see the effect of the population standard deviation on random sampling error. For example, 
notice that the ten samples of n = 25 in panel B generate sample statistics that are about as 
accurate as those produced by the samples of n = 100 in panel A. When less dispersion exists 
in the population parameter, a smaller sample can sometimes yield relatively accurate statis­
tics. Naturally, just as in panel A, increases in sample size bring the true population mean into 
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Figure 6-2 Sample Means from Population with IJ = 58 and 0" = 24.8 

(Panel A) and 0" = 17.8 (Panel B) 

Sample mean 
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Sample size 

Note: H othetical data. Hypothetical student group's sample mea n is represented by the soli~dot in tile 
n = 1O/6roup in panel A. Dashed horizontal line shows location of true population mean U-L - 58). 

.. 
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clearer focus. At n = 400 in panel B, six of the ten sample means are within a few tenths of a 
point of the true population mean. A larger sample, combined with lower dispersion, equals 

less random error and greater confidence in a sample statistic. 

I 


