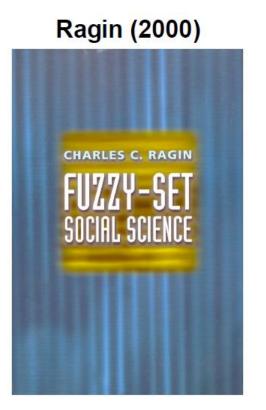
Qualititive Comparative Analysis

MEBVybrané metody výzkumu mezinárodních vztahů Mgr. Zinaida Bechná, Ph.D.

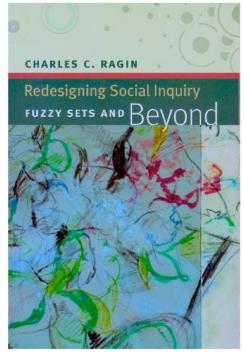
> 21.10.2016 bechna@fss.muni.cz

Outline

- Introduction
- Types of QCA
- Rationale for applying
- Set theory: basic logic
- Set Relations and Causal Complexity
- Calibration
- Truth Table


Key Books

Qualitative Comparative Analysis and Fuzzy-Sets


Ragin (1987) <u>The</u> <u>Comparative</u> <u>Method</u>

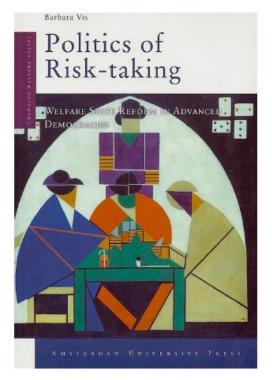
> MOVING BEYOND QUALITATIVE AND QUANTITATIVE STRATEGIES

Charles C. Ragin

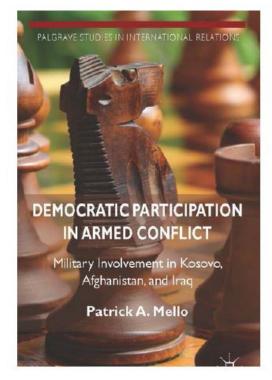
Ragin (2008)

Applications of Fuzzy-Set QCA

Democratization, Welfare State, War Involvement

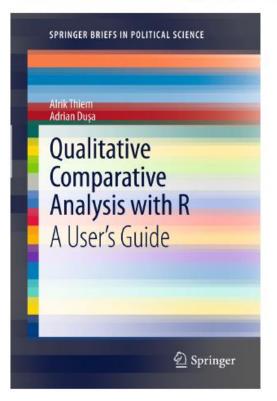

Schneider (2009)

The Consolidation of Democracy Comparing Europe and Latin America

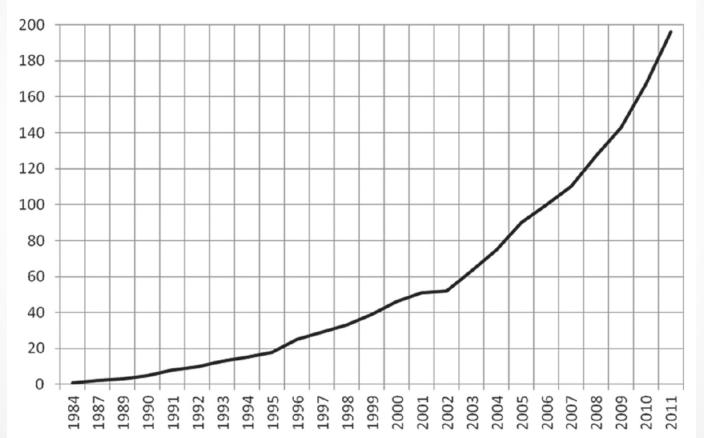

Carsten Q. Schneider

Democratization Studies

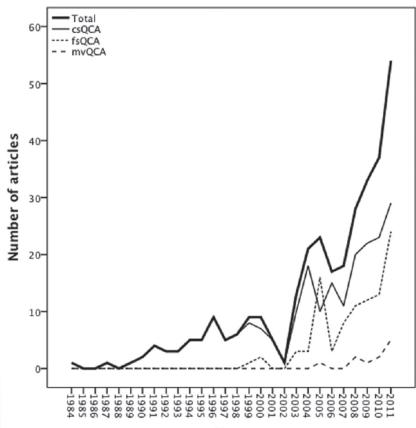
Vis (2010)



Mello (2014)

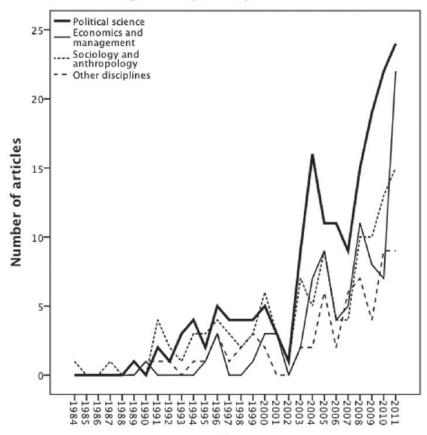

Guide to Using QCA with R

Thiem and Duşa (2013)

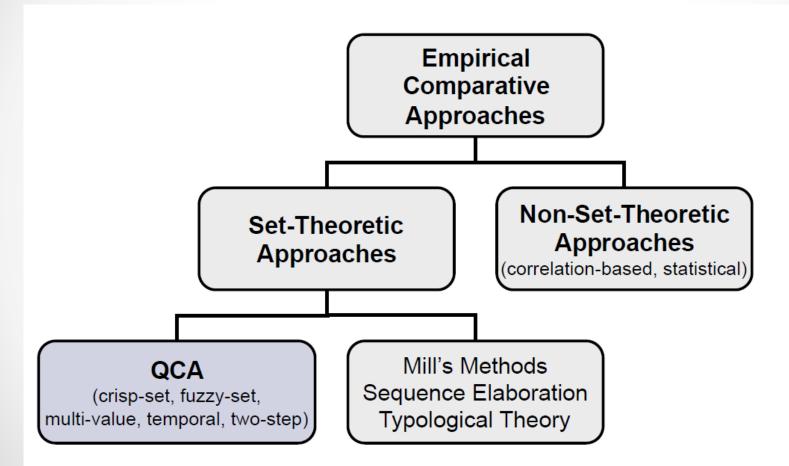

QCA Applications I

Journals with QCA Applications (Rihoux et al. 2013: 187)

QCA Applications II


Publication by QCA Variant (Rihoux et al. 2013: 176)

Year


QCA Applications III

Publication by Discipline (Rihoux et al. 2013: 177)

Empirical Comparative Approaches in the

Social Sciences

Types of QCA I

Crisp-Set, Fuzzy-Set, and Multi-Value Variants

Crisp-Set QCA	Fuzzy-Set QCA	Multi-Value QCA
 Conventional 'dichotomous' sets Values of 1 and 0 	 Crisp and fuzzy sets Differentiated values between 1 and 0 	 Categorical and ordinal variables Outcome has to be a crisp set
 Binary concepts 	 Fuzzy concepts 	 Multinomial concepts
Examples: "married" "female" "veto power"	Examples: "rich countries" "tall men" "consolidated democracies"	Examples: "continent" "employment status" "UN membership"

Types of QCA II

The Two-Step Approach (Schneider/Wagemann 2006)

Two-Step Approach

- Differentiates between 'remote' and 'proximate' conditions (in terms of space, time, and causal effects)
 - First step starts analysis of remote conditions as 'outcome-enabling conditions' (2006: 761)
- Second step combines proximate conditions with each outcome-enabling context (separate analyses)
- Number of logical remainders is substantially reduced (by dividing the conditions into separate groups)
 - Can be used with all QCA variants
 - Plausibility of separating remote and proximate conditions needs to be justified theoretically

Types of QCA III

Temporal QCA (Caren/Panofsky 2005, Ragin/Strand 2008)

Temporal QCA (tQCA)

- Seeks to introduce notions of time to QCA
- Introduces additional Logical operator: "/" (A/B, as in "A then B")
- Drastically increases the number of logically possible combinations (2→8; 3→48; 4→384)

A/B, A/~B, ~A/~B, ~A/B, B/A, B/~A, ~B/~A, ~B/A

- Strategies to reduce these numbers have been devised (introducing limiting assumptions)
- Assumptions of tQCA reduce its applicability and utility for some research projects
- Only sequences of two conditions can be analyzed
- Only a subset of conditions is allowed to be part of a temporal sequence

Rational for Applying QCA I

Set Relations and Causal Complexity

Plausible suspicion that the phenomenon under study is best understood in terms of set relations and causal complexity

- Necessity
- Sufficiency
- Equifinality
- Multifinality
- Conjunctural causation
- Asymmetric causation
- INUS and SUIN conditions

Rationale for Applying QCA II

Number of Cases

Mid-Sized N (10-50 cases)

- Typical N in macro-comparative research
 EU, OECD, US states, German Länder, etc.
- Too small for meaningful statistical tests
- Too large for classical comparative case studies

However:

- QCA can also be applied to large N
- Do not use QCA if you are not interested in set relations (even when having a mid-sized N)!

Set Theory: Basics

(Schneider & Wagemann 2012: Chapter 1; see references for additional sources)

What Are Set-Theoretic Methods?

Three Shared Characteristics:

- 1) **Data consists of set-membership scores** Example: Czech Republic is a European country
- 2) Relations between social phenomena are modeled in terms of set relations

Example: All NATO member states are democracies

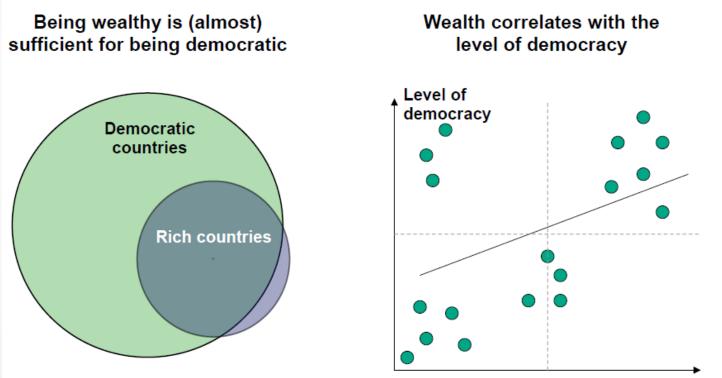
-- set of democracies is a super-set of the set of NATO members

3) Set relation are interpreted in terms of necessary and sufficient conditions

Example: Being democratic is necessary for being a NATO member.

-- Non-democracy is sufficient for NATO non-membership

-- This entails a focus on causal complexity: equifinality, conjunctional causation, asymmetry, INUS and SUIN conditions.


What are Sets?

Natural and Social Kinds of Sets

	Natural kinds	Social kinds
Examples	Magnetic field, electric charge, wavelength	Democracy, security, social status
Source of constitution	Ontologically prior to human experience, essential properties	Human mind, no essential properties
Spatiotemporal stability	High stability, e.g.: H ₂ 0 has a boiling point of 100°C, earth's magnetic field (but: geomagnetic reversal)	Low stability, e.g.: social status varies across cultures, democracy looked different a hundred years ago

Set Theory vs. Probabalistic Theory

Example: Relationship between Wealth and Democracy

Wealth

Types of Sets I

Crisp Sets

- Binary distinction: membership (1) vs. non-membership (0)
- Emphasizes qualitative differences between cases

Examples:

Criticism

- Loss of empirical information due to dichotomization
- Dividing line between members and non-members of a set is overstated at times

Dilemma of Crisps Sets Sorites Paradox

A heap of sand

- Remove a grain of sand from the heap and it remains a heap of sand
- Remove another grain and it still remains a heap of sand, and so forth
- Until a single grain of sand is left

Is that still a heap? When did the heap turn into a *non-*heap?

Types of Sets II Fuzzy Sets

- Originated in 1965 by Lofti Zadeh (Berkeley)
 - Applied in computer science, philosophy, mathematics, linguistics, and many other areas (cf. McNeill/Freiberger 1993)
- Fuzzy sets allow for partial membership in sets
 - Any value between 0 and 1 can be assigned
 - Three qualitative anchors
 - Full membership in a given set (1)
 - Point of maximum ambiguity (0.5)
 - Full non-membership in a given set (0)
 - Qualitative and quantitative differences can be accounted for
 - Semantic basis allows for linguistic qualifiers
- Fuzzy sets do <u>NOT</u> reflect probabilities!

Crisp and Fuzzy Sets (Ragin 2008: 31)

Crisp set	Three-value fuzzy set	Four-value fuzzy set	Six-value fuzzy set	"Continuous" fuzzy set
1 = fully	1 = fully in	1 = fully	1 = fully in	1 = fully in
in		in	0.8 = mostly but not fully in	
		0.67 = more in		Degree of membership is more "in" than "out":
		than out	0.6 = more or less in	0.5 < X _i < 1
	0.5 = neither			0.5 = cross-over: neither
	fully in nor		0.6	in nor out
	fully out		0.4 = more or less out	(maximum ambiguity)
		0.33 =		Degree of membership is
		more out		more "out" than "in":
		than in	0.2 = mostly	0 < X _i < 0.5
			but not fully out	
0 = fully out	0 = fully out	0 = fully out	0 = fully out	0 = fully out

Advantages and Challenges

Advantages

- More information than crisp sets
- Differences in kind and differences in degree
- Closer correspondence to theoretical concepts
- Meaningful variation can be specified

Challenges

- How to define the qualitative anchors (0.5 especially)?
- What variation is relevant and what is not?
- False impression of preciseness (direct method of calibration)
- → Fuzzy sets offer greater conceptual validity when translating concepts into sets, but they are also more demanding and open to manipulation (On "standards of good practice" see Schneider/Wagemann 2010, Mello 2013)

Fuzzy Sets vs. Probabilism

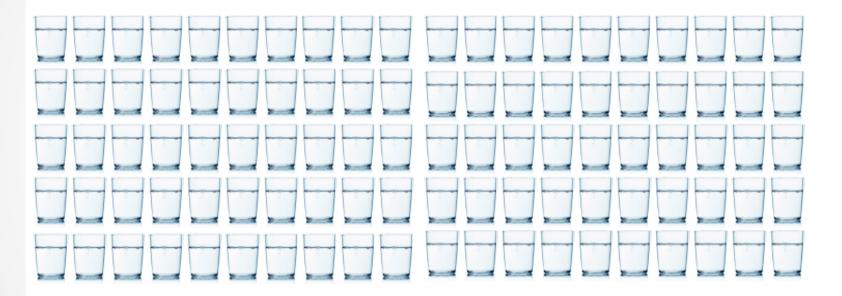
Example: Which glass is safer to drink?

Glass 1

1% chance of being poisonous liquid

Glass 2

0.01 membership in the fuzzy set "poisonous liquid"


Probability 1% Chance of being poisonous liquid

On average, one glass out of 100 consists of poison.

0.01 Membership in the fuzzy set "poisonous liquid"

Even if you had 100 glasses of this liquid, each single glass would still hold only 0.01 membership in the fuzzy set "poisonous liquid".

Set Operations

Three Basic Operators

Logical AND (*)

Minimum value across sets

Example: Conservative government with public support (on some policy issue), Set C "conservative government", Set P "public support", Denmark in 2001/Afghanistan (0.96,0.70): C*P = 0.70

Logical OR (+)

Maximum value across sets

Example: Countries with parliamentary veto rights OR constitutional restrictions in security policy, Set V "veto rights", Set C "restrictions", Japan 2003/Iraq (0.60, 1.00): V+C = 1.00

Set Operations II

Three Basic Operators

Negation (~)

Membership value in the set 'not A' (1-A)

Example: "Military non-participation" (~MP) in the Iraq War, Set MP "military participation", Norway (0.3): 1-0.3 = 0.7

Set Operations III

Basic Operators – Examples

		AND (min)	OR (max)	NOT (1-A)
Α	В	A*B	A+B	~A
1	0	0	1	0
0.9	0.4	0.4	0.9	0.1
0.3	0.2	0.2	0.3	0.7
0	0.8	0	0.8	1

Set Operations IV

Summary – Basic operations and notations

Operator	Logic of propositions	Boolean algebra	Set theory
AND	Conjunction	Multiplication	Intersection
	\wedge	*, (•)	\cap
OR	Disjunction	Addition	Union
	\vee	+	U
NOT	Complement	Negation	Negative Set
	¬, ~	1-D	-
Inclusion	If-then relation		Subset
	\rightarrow , \Rightarrow		C

Source: Schneider/Wagemann 2012: 54 (Table 2.3)

Set Operations V

Basic Operators – Exercises

Fuzzy-set scores: A (0.1), B (0.7), C (0.9), D (0.3)

1. $(A^*B) + (C^*D) =$

 $[(0.1)^*(0.7)] + [(0.9)^*(0.3)] =$ (0.1) + (0.3) = 0.3

2. $(A^*D) + (B^*C) =$

 $[(0.1)^*(0.3)] + [(0.7)^*(0.9)] =$ (0.1) + (0.7) = 0.7

3. (A*~D) + (B*~C) =

 $[(0.1)^*(1 - 0.3)] + [(0.7)^*(1 - 0.9)] =$ $[(0.1)^*(0.7)] + [(0.7)^*(0.1)] =$ (0.1) + (0.1) = 0.1

Set Operations VI

Rules for Complex Sets

Commutativity

The order in which elements are connected (through AND, OR) is irrelevant (does not hold for the complement, as 1-A ≠ A-1) A * B = B * A ; A + B = B + A

Associativity

The sequence in which elements are combined is irrelevant (A * B) * C = A * (B * C); (A + B) + C = A + (B + C)

Distributivity

 When both AND and OR operators are used in the same logical expression, shared elements can be factored out A * B + A * C = AB + AC = A (B + C)

Set Operations VII

Universal Set and Empty Set

The Universal Set

 If the union (logical OR) of a set with its complement (negation) is created, then the "universal set" will result
 A + ~A = U

The Empty Set

 If the intersection (logical AND) of a set with its complement (negation) is created, then the "empty set" will result

A * ~A = Ø

Set Operations VIII

De Morgan's Law

Two Rules:

- If a statement is negated, then all elements that have been present become absent, and vice versa
- If a statement is negated, then all *logical operators* become inverted (AND to OR, and vice versa)

Example: ~(AB + ~CD) = (~A + ~B) * (C + ~D)

De Morgan's Law

(Limited) Applicability for Solution Terms

Two Rules:

- If a statement is negated, then all elements that have been present become absent, and vice versa
- If a statement is negated, then all *logical operators* become inverted (AND to OR, and vice versa)
 Example: ~(AB + ~CD) = (~A + ~B) * (C + ~D)

Can this be applied to necessary and sufficient conditions? Example: $A \rightarrow Y = A \leftarrow A = Y$ (Is this statement true?)

De Morgan's Law can <u>only</u> be applied if

- Outcome and solution have a perfect overlap
- Truth table contains no logical contradictions

Set Operations

Operations on Complex Sets – Examples

Negation: F + [G*(~H + ~I)]

De Morgan's law: ~F*[~G + (H*I)] = ~F*~G + ~F*H*I

- Intersection (Logical AND): [F + G*(~H + ~I)] * (~FG + G~H)
 - = (F + G~H + G~I) * (~FG + G~H)
 - = F~FG + FG~H + G~H~FG + G~HG~H + G~I~FG + G~IG~H
 - = F~FG + FG~H + G~H~FG + G~HG~H + G~I~FG + G~IG~H (erase empty set and superfluous expressions)
 - = FG~H + ~FG~H + G~H + ~FG~I + G~H~I (sorted alphabetically)
 - = FG~H + ~FG~H + <u>G~H</u> + ~FG~I + G~H~I

(erase superfluous subsets of G~H)

= G - H + -FG - I = G(-H + -F - I)

Set Relations

(Schneider & Wagemann 2012: Chapter 3; see references for additional sources)

Causal Complexity I

Defining Characteristics

- Equifinality
 - Different conditions, same outcome
- Conjunctural causation
 - Combination of conditions produce outcome
- Causal asymmetry
 - Presence/absence of outcome have different explanations
- Multifinality
 - Same condition, different outcomes
- Time, timing, and sequence
 - Order of events has causal implications

Causal Complexity II

Degree of Causal Complexity across Methods

Case Studies

- All elements of causal complexity
- Limited generalizability, sometimes idosyncratic

Qualitative Comparative Analysis

- Equifinal, conjunctural, asymmetric, multifinal
- Enables generalization across population
- Only little, if any, modelling of time, timing, sequence

Standard Regression Analysis

- Unifinal, additive
- Enables broad generalization across cases
- More complex relations can be modelled

Set Relations I

Necessary Condition – Definition

- Whenever we observe the outcome (Y), we also see the condition (X)
 - → The condition is necessary for the outcome to occur

(For cases with ~Y, we neither care nor need to know about their membership score in X, because neither cases with X nor ~X violate a statement of necessity)

- Formal:
 - Membership of cases in X ≥ membership of cases in Y
 - X is a superset of Y (and Y is a subset of X)

Set Relations II

Sufficient Condition – Definition

- Whenever we observe the condition (X), we also see the outcome (Y)
 - \rightarrow The condition is *sufficient* for the outcome to occur

(For cases with ~X, we neither care nor need to know about their membership score in Y, because neither cases with Y nor ~Y violate a statement of sufficiency)

- Formal:
 - Membership of cases in Y ≥ membership of cases in X
 - Y is a superset of X (and X is a subset of Y)

Set Relations III

Necessity and Sufficiency – Notation

Sufficient condition: INUS condition:

Necessary condition: $X \leftarrow Y$ (X is necessary for Y) $X \rightarrow Y$ (X is sufficient for Y)

> "an insufficient but necessary part of a condition, which is itself unnecessary but sufficient for the result" (Mackie 1965: 245)

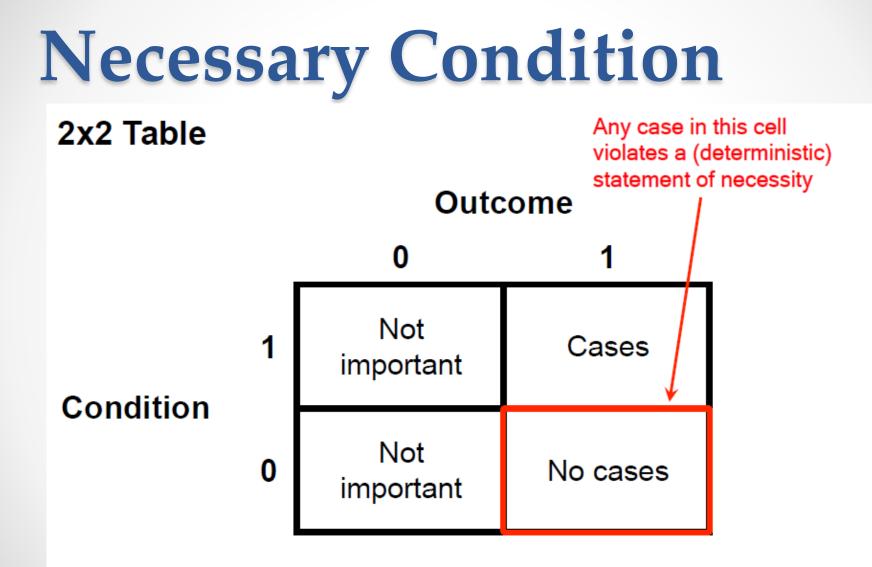
SUIN condition:

 $A + BC \rightarrow Y$

"a sufficient but unnecessary part of a factor that is *insufficient* but *necessary* for an outcome" (Mahoney et al. 2009: 126)

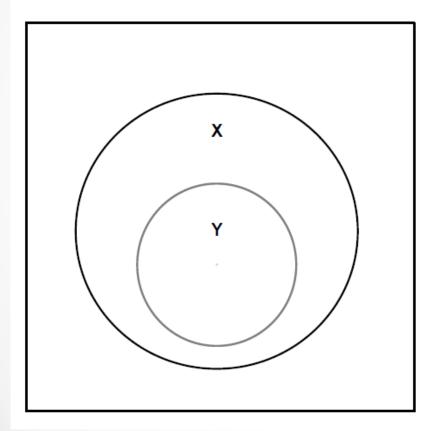
; A = B + C $A \leftarrow Y$

Set Relations IV


Necessity and Sufficiency – Presentational Forms

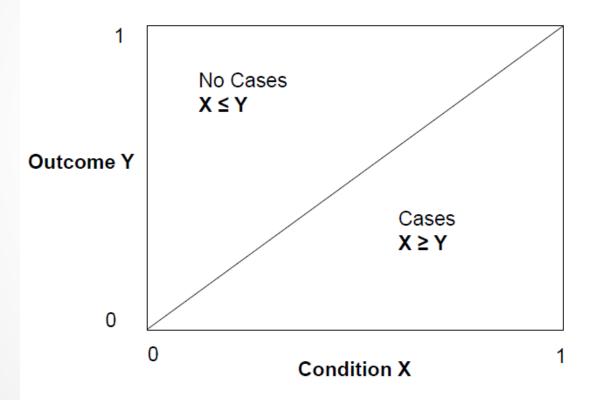
Crisp sets

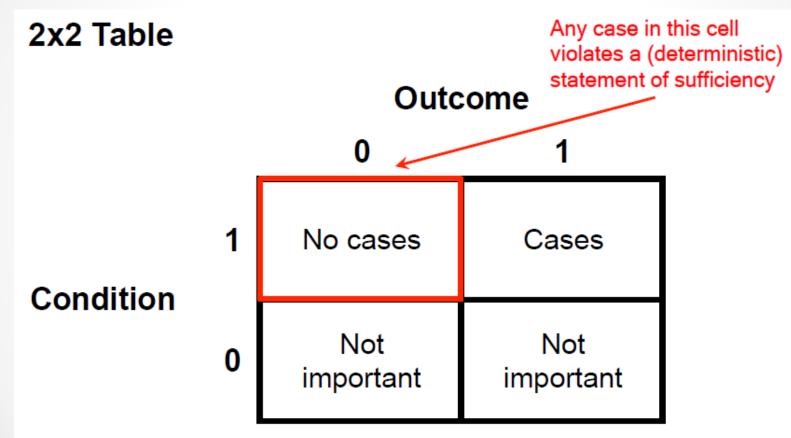
- Boolean notation
- Truth table
- 2x2 Table
- Venn diagram


Fuzzy sets

- Boolean notation
- Truth table
- XY plot

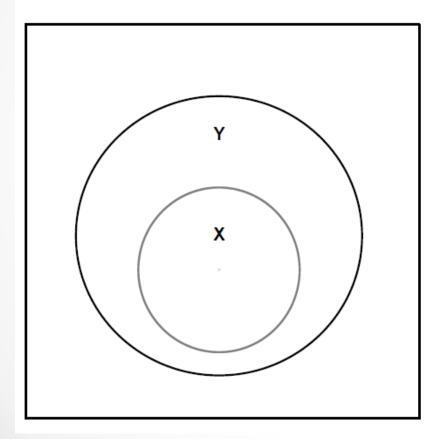
Necessary Condition


Venn Diagram


X is a *superset* of Y (and Y is a *subset* of X)

Necessary Condition

XY Plot – Ideal Distribution

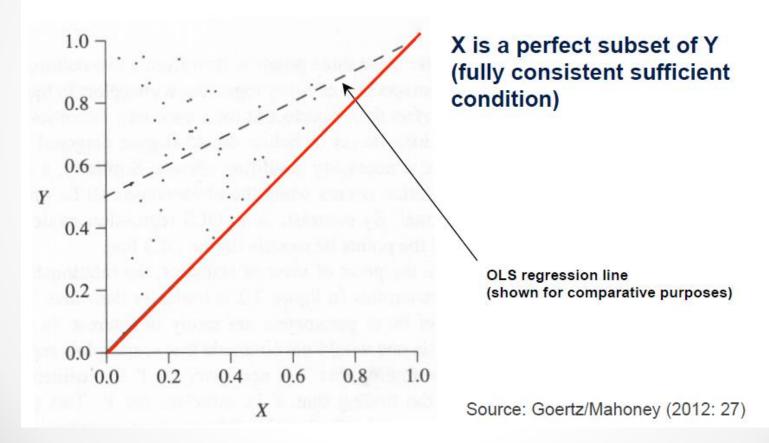


Succificient Condition

Sufficient Condition

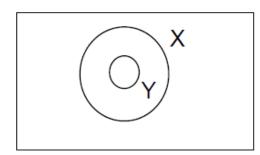
Venn Diagram

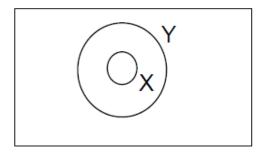
X is a *subset* of Y (and Y is a *superset* of X)


Sufficient Condition

XY Plot – Ideal Distribution

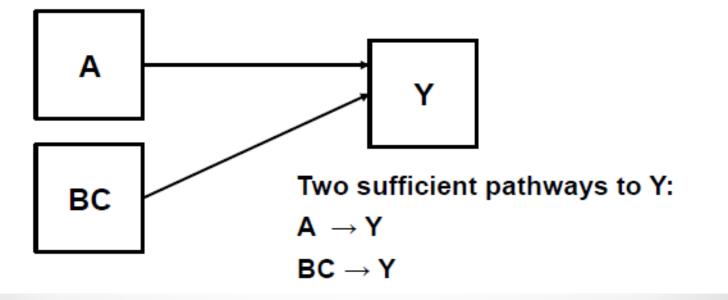
Sufficient Condition


XY Plot – Example



Set Relations

Necessity and Sufficiency – Summary



Causal Complexity

Equifinality and Conjunctural Causation

- Different factors, same outcome (equifinality)
- Combinations of conditions can lead toward an outcome, whereas their constituents might not lead to the outcome by themselves (conjunctural causation)

Causal Complexity INUS and SUIN Conditions

INUS condition:

"an *insufficient* but *necessary* part of a condition, which is itself *unnecessary* but *sufficient* for the result" (Mackie 1965: 245)

 $A + BC \rightarrow Y$

SUIN condition:

- "a *sufficient* but *unnecessary* part of a factor that is *insufficient* but *necessary* for an outcome" (Mahoney et al. 2009: 126)
- $A \leftarrow Y \qquad ; \qquad A = B + C$

Causal Complexity III

Causal Asymmetry

- Presence and absence of outcome have different explanations
 - Economic growth → Democratization
 - Clientelism → Non-democratization
- Presence and absence of condition produce different outcomes
 - Wealth → Democracy
- Antonym: Symmetric causation
 - An increase or decrease in the independent variable(s) leads to increase or decrease in the dependent variable

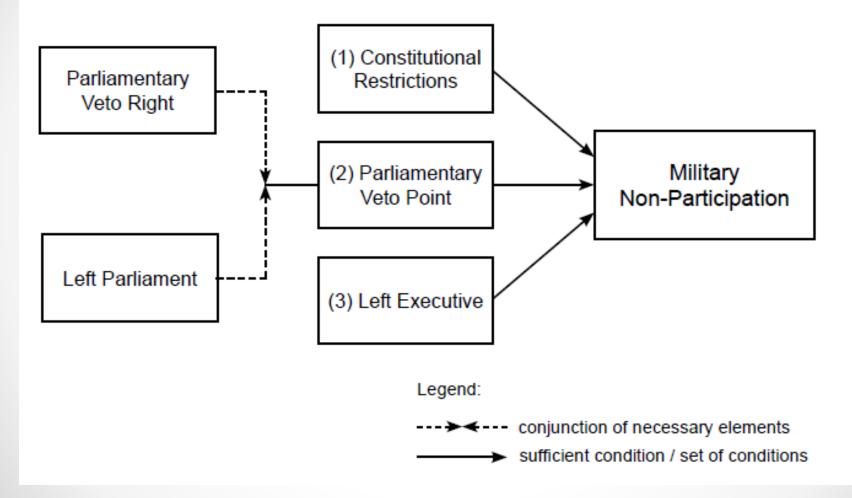
Causal Complexity IV

Multifinality

- Same factor, different outcomes
 - Regime change (Tunesia, Egypt)
 - "Arab Spring" protests

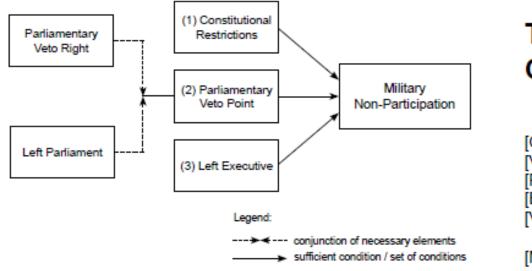
No regime change (Syria, Morocco)

- Antonym: Unit (causal) homogeneity
 - Independent variable has the same effect on the dependent variable across all cases


Causal Complexity V

Time, Timing, and Sequence

- Order of events has causal implications
 - First property rights, then economic liberalization
 - Functioning Market Economy (DV)
 - First economic liberalization, then property rights
 - Non-Functioning Market Economy (DV)
- Antonym: Static analysis
 - Sequence of independent variables is causally irrelevant
 - A + B = B + A, A * B = B * A
- tQCA can be performed with the QCA package for R
- Notions of timing and sequence can also be included in the research design (calibration of conditions, indicators)


Causal Complexity – Example 1

Military (Non-)Participation in Iraq (Mello 2012)

Causal Complexity – Example 1

Military (Non-)Participation in Iraq (Mello 2012)

Theory: C + (V * \sim P) + \sim E $\rightarrow \sim$ MP

[C] Constitutional Restrictions [V] Parliamentary Veto Rights [P] Right Parliament [E] Right Executive [V*~P] Parliamentary Veto Point

[MP] Military Participation

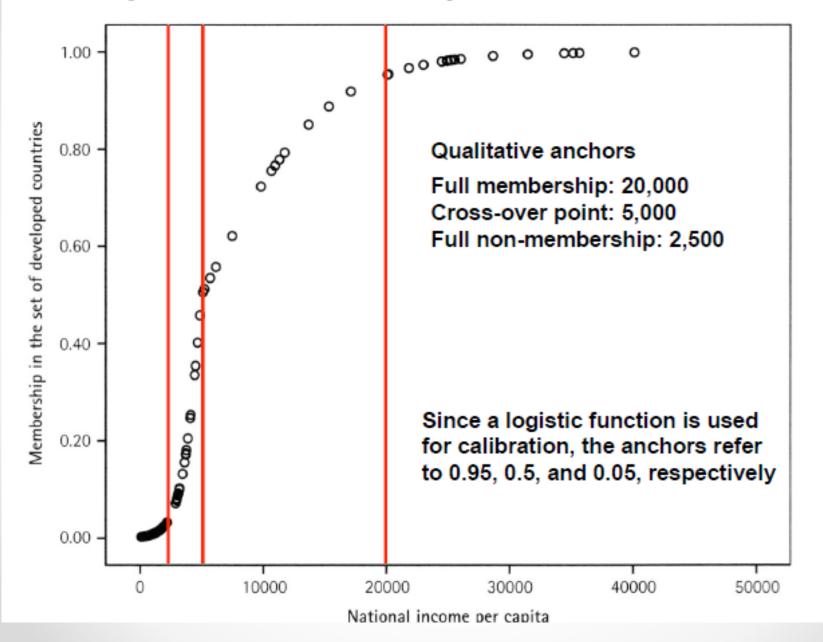
Measurement and Calibration

Measurement and Calibration

What is needed for calibration?

- Assigning set-membership values requires:
 - Plausible and consistent rules for assigning values
 - Close correspondence with the concept of interest (content validity)
- "Substantive knowledge provides the external criteria that make it possible to calibrate measures" (Ragin 2008: 82)

Three Approaches to Calibration

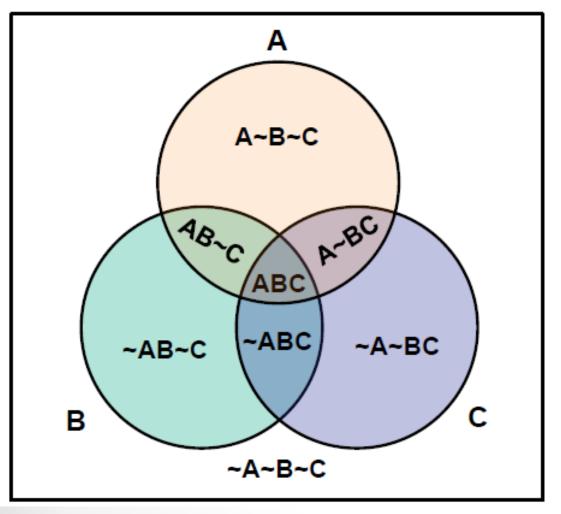

Qualitative Calibration	Direct Method of Calibration	Indirect Method of Calibration
Crisp and fuzzy sets	Fuzzy sets only	Fuzzy sets only
 Values are directly assigned by the researcher 	 Qualitative break- points are determined by the researcher 	 Initial, preliminary assignment of values by the researcher
 Theory-guided, qualitative calibration process that draws on external criteria 	 Interval-scale variables are trans- formed into fuzzy-set values using log odds (software-based: fsQCA, R, Stata) 	 Values are then regressed onto the raw data (interval- scale variable), (software-based: R, Stata)
 Widely used 	 Widely used 	 Less often used

Country	National income (US\$)	Example 1: Direct Method (Ragin 2008: 89)	
Switzerland	40,110	Towned former and	
United States	34,400	Target fuzzy set:	
Netherlands	25,200	"developed countries"	
Finland	24,920		
Australia	20,060		20,000
Israel	17,090	Г	
Spain	15,320		
New Zealand	13,680		
Cyprus	11,720		
Greece	11,290	Dow data	
Portugal	10,940	⊢ Raw data	
Korea, Rep.	9,800		
Argentina	7,470	Qualitative anchors –	5,000
Hungary	4,670		
Venezuela	4,100		
Estonia	4,070		
Panama	3,740		
Mauritius	3,690		
Brazil	3,590		
Turkey	2,980		2,500
Bolivia	1,000		
Cote d'Ivoire	650		
Senegal	450		
Burundi	110		

Country	National income (US\$)	Deviations from crossover		Example 1: Direct Metho
Switzerland	40,110	35,110.00		(Ragin 2008: 8
United States	34,400	29,400.00		
Netherlands	25,200	20,200.00		
Finland	24,920	19,920.00		
Australia	20,060	15,060.00		20,000
Israel	17,090	12,090.00		
Spain	15,320	10,320.00		
New Zealand	13,680	8,680.00		
Cyprus	11,720	6,720.00		
Greece	11,290	6,290.00		
Portugal	10,940	5,940.00		
Korea, Rep.	9,800	4,800.00	Calculate raw data	
Argentina	7,470	2,470.00	deviation from the	5,000
Hungary	4,670	-330.00	crossover point	
Venezuela	4,100	-900.00		
Estonia	4,070	-930.00		
Panama	3,740	-1,260.00		
Mauritius	3,690	-1,310.00		
Brazil	3,590	-1,410.00		
Turkey	2,980	-2,020.00		2,500
Bolivia	1,000	-4,000.00		
Cote d'Ivoire	650	-4,350.00		
Senegal	450	-4,550.00		
Burundi	110	-4,890.00		

Country	National income (US\$)	Deviations from crossover	Scalars	Product	Degree of membership	Example 1: Direct Method
Switzerland	40,110	35,110.00	.0002	7.02	1.00	(Ragin 2008: 89)
United States	34,400	29,400.00	.0002	5.88	1.00	
Netherlands	25,200	20,200.00	.0002	4.04	0.98	
Finland	24,920	19,920.00	.0002	3.98	0.98	
Australia	20,060	15,060.00	.0002	3.01	0.95	20,000
Israel Spain New Zealand		3 / (2				
Cyprus						
Greece	Calc	ulate scalars	cores			
Portugal	abov	e and below				
Korea, Rep.						
Argentina		og odds for the			I [5,000
Hungary	ı)	non-)membersh	nip (3.0 a	nd -3.0)		
Venezuela	• D	ivided by devia	ation from	n crosso	over	
Estonia						
Panama						
Mauritius						
Brazil						0.500
Turkey						2,500
Bolivia					/	
Cote d'Ivoire		-3 /				
Senegal			/	,,		
Burundi						

Example 1: Set "developed countries" (Ragin 2008: 92)


Country	National income (US\$)	Deviations from crossover	Scalars	Product	Degree of membership	Example 1: Direct Method
Switzerland	40,110	35,110.00	.0002	7.02	1.00	(Ragin 2008: 89)
United States	34,400	29,400.00	.0002	5.88	1.00	
Netherlands	25,200	20,200.00	.0002	4.04	0.98	
Finland	24,920	19,920.00	.0002	3.98	0.98	
Australia	20,060	15,060.00	.0002	3.01	0.95	20,000
Israel Spain New Zealand	Mult	iply deviation				
Cyprus Greece		Convert pro				
Portugal Korea, Rep.	e.g.,	Netherlands:				
Argentina	20,2	00.00 * 0.0002 =	4.04			5,000
Hungary	exp	(4.04) / [1 + exp	(4.04)]			
Venezuela		3 / (1 + 56,83)				
Estonia	0.98					
Panama						
Mauritius						
Brazil						
Turkey			2,500			
Bolivia						
Cote d'Ivoire						
Senegal						
Burundi						

Country	Polity score	Example 2: Direct Method	
Norway	10	(Ragin 2008: 100)	
United States	10	Target fuzzy cet:	
France	9	Target fuzzy set:	
Korea, Rep.	8	"democratic countries"	Polity score 9
Colombia	7		
Croatia	7		
Bangladesh	6		
Ecuador	6		
Albania	5		
Armenia	5		
Nigeria	4		
Malaysia	3		
Cambodia	2		
Tanzania	2		Polity score 2
Zambia	1		
Liberia	0		
Tajikistan	-1		
Jordan	-2		
Algeria	-3		Polity score -3
Rwanda	-4		
Gambia	-5		
Egypt	-6		
Azerbaijan	-7		
Bhutan	-8		

Country	Polity score	Deviations from crossover	Scalars	Product	Degree of membership	
Norway	10	8.00	0.43	3.43	0.97	
United States	10	8.00	0.43	3.43	0.97	
France	9	7.00	0.43	3.00	0.95	
Korea, Rep.	8	6.00	0.43	2.57	0.93	Polity score 9
Colombia	7	5.00	0.43	2.14	0.89	
Croatia	7	5.00	0.43	2.14	0.89	
Bangladesh	6	4.00	0.43	1.71	0.85	
Ecuador	6	4.00	0.43	1.71	0.85	
Albania	5	3.00	0.43	1.29	0.78	
Armenia	5	3.00	0.43	1.29	0.78	
Nigeria	4	2.00	0.43	0.86	0.70	
Malaysia	3	1.00	0.43	0.43	0.61	
Cambodia	2	0.00	0.00	0.00	0.50	
Tanzania	2					Polity score 2
Zambia	1					-
Liberia	0	e.g., Cambo	dia:			
Tajikistan	-1	0.00 * 0.00 =				
Jordan	-2	exp (0.00) /		.00)1		
Algeria	-3	1/(1+1)				Polity score -3
Rwanda	-4	0.50				
Gambia	-5					
Egypt	-6					
Azerbaijan	-7					
Bhutan	-8					

(Schneider & Wagemann 2012: Chapter 4; see references for additional sources)

Logically Possible Combinations

2^{3 (A, B, C)} = 2x2x2 = 8 Combinations = 8 Rows (Truth Table)

2⁴ = 16 Rows 2⁵ = 32 Rows 2⁶ = 64 Rows 2⁷ = 128 Rows

From Data Matrix to Truth Table

How to get from a data matrix to a truth table?

- Write down all 2^k combinations
- For each case, determine to which truth table row it belongs
- For each row, check if it is consistent with the statement of sufficiency by looking at each case's membership in the outcome

Truth Tables (Example with Crisp Sets)

From Data Matrix to Truth Table

	C	Conditions					
Cases	Α	В	С	Y			
ARG	1	1	1	0			
PER	1	0	0	0			
BOL	1	1	0	0			
CHI	0	1	0	1			
ECU	1	0	0	0			
BRZ	0	1	1	1			
URU	1	0	1	1			
PAR	0	0	1	1			
COL VEN	0 1	0 1	0 1	1 0			

Data Matrix

Y: Stable democracy A: Violent breakdown B: Ethnic homogeneity C: Fragmented party system

Truth Tables (Example with Crisp Sets)

From Data Matrix to Truth Table

	Co	ndit	ions	Outcome		
Row	Α	в	С		Y	
1	0	0	0	1	COL	
2	0	0	1	1	PAR	
3	0	1	0	1	CHI	
4	0	1	1	1	BRA	
5	1	0	0	0	PER, ECU	
6	1	0	1	1	URU	
7	1	1	0	0	BOL	
8	1	1	1	0	ARG, VEN	

Truth Table

- Y: Stable democracy
- A: Violent breakdown
- B: Ethnic homogeneity
- C: Fragmented party system

From Data Matrix to Truth Table

Cases	Α	в	С
ARG	0.8	0.9	1
PER	0.7	0	0
BOL	0.6	1	0.1
CHI	0.3	0.9	0.2
ECU	0.9	0.1	0.3
BRZ	0.2	0.8	0.9
URU	0.9	0.2	0.8
PAR	0.2	0.3	0.7
COL	0.2	0.4	0.4
VEN	0.9	0.7	0.6

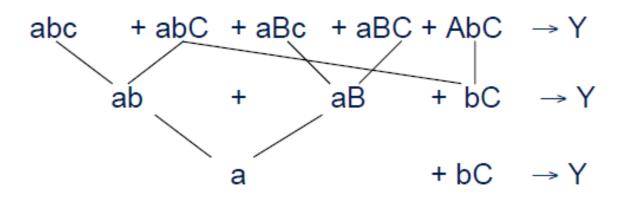
Exercise

Summarize the information gained from this table and reduce the Boolean expressions as far as possible!

	Conditions		Sufficient for	Cases with membership ≥ 0.5 in row	
Row	A	в	с	Y	
1	0	0	0	1	COL (0.6)
2	0	0	1	1	PAR (0.7)
3	0	1	0	0	CHI (0.7)
4	0	1	1	0	BRZ (0.8)
5	1	0	0	0	PER (0.7), ECU (0.7)
6	1	0	1	1	URU (0.8)
7	1	1	0	0	BOL (0.6)
8	1	1	1	0	AR (0.8), VEN (0.6)

	Conditions		Sufficient for	Cases with membership ≥ 0.5 in row	
Row	Α	в	с	Y	
1	0	0	0	1	COL (0.6)
2	0	0	1	1	PAR (0.7)
3	0	1	0	0	CHI (0.7)
4	0	1	1	0	BRZ (0.8)
5	1	0	0	0	PER (0.7), ECU (0.7)
6	1	0	1	1	URU (0.8)
7	1	1	0	0	BOL (0.6)
8	1	1	1	0	AR (0.8), VEN (0.6)

 $\begin{array}{l} \textbf{-A-B-C + -A-BC + A-BC \rightarrow Y} \\ \textbf{-A-B + A-BC \rightarrow Y} \\ \textbf{-B(-A + AC) \rightarrow Y} \end{array}$


Logical Minimization Procedure

- How to analyze a truth table?
 - Aim
 - Which (combinations of conditions) are linked to the outcome?
 - Which combinations are sufficient for the outcome?

→ All rows that display the outcome Most complex answer/solution term

- How to get a more parsimonious solution?
 - By hand
 - By computer

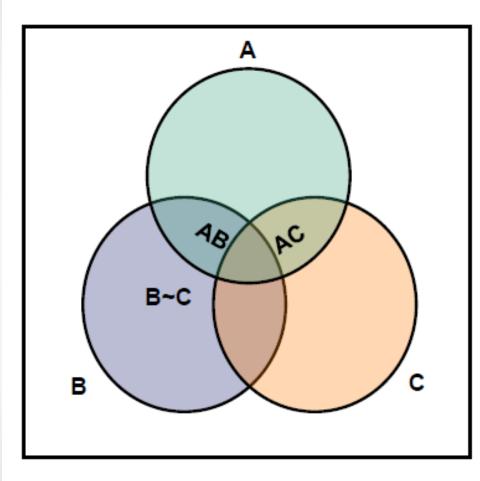
Logical Minimization Procedure

Primitive expression – Prime Implicants – Minimal solution

- Comprise same truth value contained in truth table
- Are logically equivalent
- Should be reported in publications
- Which one to focus on most depends on research aims

Logical Minimization Procedure

 Not always does the above minimization strategy lead to the most parsimonious solution


S

(Ragin 1986: Table 5)

 $AbC + aBc + ABc + ABC \rightarrow$

- $\begin{array}{cccc} AC & + & Bc & + & AB & \rightarrow & S \\ \hline Computer & & & \\ AC & + & Bc & & \rightarrow & S \end{array}$
- Why is the implicant 'AB' logically redundant?

Logical Minimization Procedure

Our solution: AC + B~C + AB \rightarrow S Computer: AC + B~C \rightarrow S

AB is covered by (AC + B~C) AB is thus logically redundant (no additional information)

References

- Gallie, William B. (1956) 'Essentially Contested Concepts', *Proceedings of the Aristotelian* Society (56) 167–98.
- Goertz, Gary (2003) 'The Substantive Importance of Necessary Condition Hypotheses', In *Necessary Conditions*, edited by Gary Goertz and Harvey Starr, Lanham: Rowman & Littlefield, 65–94.
- Goertz, Gary, and James Mahoney (2012) A Tale of Two Cultures: Qualitative and Quantitative Research in the Social Sciences, Princeton: Princeton University Press.
- Lakoff, George (1987) Women, Fire, and Dangerous Things: What Categories Reveal about the Mind, Chicago: Chicago University Press.
- Mackie, John L. (1965) 'Causes and Conditions', *American Philosophical Quarterly* (2) 4: 245–64.
- Mahoney, James (2010) 'What is a Concept? Two Definitions and their Research Implications', Mimeo, Northwestern University, Evanston.
- Mahoney, James, Erin Kimball, and Kendra L. Koivu (2009) 'The Logic of Historical Explanation in the Social Sciences', *Comparative Political Studies* (42) 1: 114-46.
- McNeill, Daniel, and Paul Freiberger (1993) Fuzzy Logic, New York: Touchstone.
- Mello, Patrick A. (2013) 'From Prospect to Practice: A Critical Review of Applications in Fuzzy-Set Qualitative Comparative Analysis', Paper presented at the EISA conference, Warsaw, 18-21 September.
- Merton, Robert K. (1958) Social Theory and Social Structure, New York: Free Press.
- Ragin, Charles C. (2000) Fuzzy-Set Social Science, Chicago: University of Chicago Press.
 ——— (2008) Redesigning Social Inquiry: Fuzzy Sets and Beyond, Chicago: University of Chicago Press.

- Gallie, William B. (1956) 'Essentially Contested Concepts', Proceedings of the Aristotelian Society (56) 167–98.
- Goertz, Gary (2003) 'The Substantive Importance of Necessary Condition Hypotheses', In *Necessary Conditions*, edited by Gary Goertz and Harvey Starr, Lanham: Rowman & Littlefield, 65–94.
- Goertz, Gary, and James Mahoney (2012) A Tale of Two Cultures: Qualitative and Quantitative Research in the Social Sciences, Princeton: Princeton University Press.
- Lakoff, George (1987) Women, Fire, and Dangerous Things: What Categories Reveal about the Mind, Chicago: Chicago University Press.
- Mackie, John L. (1965) 'Causes and Conditions', American Philosophical Quarterly (2) 4: 245– 64.
- Mahoney, James (2010) 'What is a Concept? Two Definitions and their Research Implications', Mimeo, Northwestern University, Evanston.
- Mahoney, James, Erin Kimball, and Kendra L. Koivu (2009) 'The Logic of Historical Explanation in the Social Sciences', *Comparative Political Studies* (42) 1: 114-46.
- McNeill, Daniel, and Paul Freiberger (1993) Fuzzy Logic, New York: Touchstone.
- Mello, Patrick A. (2013) 'From Prospect to Practice: A Critical Review of Applications in Fuzzy-Set Qualitative Comparative Analysis', Paper presented at the EISA conference, Warsaw, 18-21 September.
- Merton, Robert K. (1958) Social Theory and Social Structure, New York: Free Press.
- Ragin, Charles C. (2000) Fuzzy-Set Social Science, Chicago: University of Chicago Press.

—— (2008) Redesigning Social Inquiry: Fuzzy Sets and Beyond, Chicago: University of Chicago Press.