ÚVOD DO GRAFIKY V R Vít Gabrhel vit.gabrhel@mail.muni.cz FSS MU, 24. 10. 2016 Harmonogram Graphing and figures – general principles Guidelines for different kinds of graphs and publications: Specialist (colour) publications Presentations Journal papers (APA guidelines) Quick plots using qplot (plus, a review on saving graphs) More flexible graphs using ggplot Final formatting using ggplot Plotting packages in R Graphics functions in the base package: plot( ), hist( ), etc. Specialised packages: ggplot2 ggvis lattice Specialised functions inside other packages: plotrix, car, plotmeans, etc. Plotting packages in R General principles: Graphs and figures should... 1.Summarise and/or reveal data, making large datasets coherent 2.Encourage the viewer to think about the data being presented Rather than some aspect of the graph, like how pink, “pretty” or poorly visible it is 3.Avoid distorting the data 4.Encourage the viewer to compare different pieces of data Plotting packages in R A that satisfies all four criteria despite its complexitygraph Plotting packages in R A graph that satisfies all four criteria despite its simplicity Guidelines for different types of graphs All graphs: Think about when to start scales at the origin (0) Bar graphs: If needing colour, use colours to avoid overwhelming the viewer. Best to use some shading (e.g., grey or patterns) Histograms: Consider displaying the mean/median value as well. Graphs involving points (and possibly lines): Vibrant colours work well for points and lines, making them quite visible. Best to start y-axis at 0. Use a line if there is a flow of time from one point to the next. Patterns disappear if you stretch the x-axis too far. Scatter plots: Simplify the look by not using a thick border. Any line through the dots must be thicker than the dots or in a brighter colour. pastel Guidelines for different publication types Think about: What story do you want to tell? Who are you telling the story to? Journal articles Specialist (colour) articles Conference presentations •Follow APA guidelines – e.g., page 4 in this style manual. (https://intranet.ecu.edu.au/__ data/assets/pdf_file/0010/2061 1/APAstyle.pdf) •Follow APA guidelines as much as possible, but use colour if an additional explanatory tool is needed. •Colours: think about whether they should be vibrant or neutral, given (a) your topic, and (b) whether you are plotting points or bars (see previous slide). •No caption available, so more labelling in the title or inside the graph is needed. •Figures can be useful for a non-specialist audience. •Same advice as for specialist articles regarding colour. •For small sample sizes, you might not even need an x-axis and y-axis. Can instead label points of interest directly. Highlighting individual data points Quick plots using qplot The qplot function is in the ggplot2 package. The function is very useful for data exploration, as it is possible to draw fairly complex plots with one or two lines of code. The function is not useful for final plots for presentations and publications because the overall appearance of the plots is difficult to change. Basic principle: "geoms" (representations of data) have "aesthetics“ (properties) that can be "mapped" to variables in the dataset or “set” to a desired value geom examples: point, histogram, smooth (regression line) aesthetics (aes) examples: x and y (the variables being plotted), colour, size, shape, alpha (transparency), group additional arguments to do with avoiding overplotting: position and facet (facet_grid and facet_wrap) Packages + data ggplot install.packages("ggplot2") library("ggplot2") data setwd() NPAS = read.csv2("NPAS.csv", header = TRUE) NPAS_Clean <- na.omit(NPAS) qplot option description alpha Alpha transparency for overlapping elements expressed as a fraction between 0 (complete transparency) and 1 (complete opacity) color, shape, size, fill Associates the levels of variable with symbol color, shape, or size. For line plots, color associates levels of a variable with line color. For density and box plots, fill associates fill colors with a variable. Legends are drawn automatically. data Specifies a data frame facets Creates a trellis graph by specifying conditioning variables. Its value is expressed asrowvar ~ colvar. To create trellis graphs based on a single conditioning variable, userowvar~. or .~colvar) geom Specifies the geometric objects that define the graph type. The geom option is expressed as a character vector with one or more entries. geom values include "point", "smooth", "boxplot", "line", "histogram", "density", "bar", and "jitter". main, sub Character vectors specifying the title and subtitle method, formula If geom="smooth", a loess fit line and confidence limits are added by default. When the number of observations is greater than 1,000, a more efficient smoothing algorithm is employed. Methods include "lm" for regression, "gam" for generalized additive models, and "rlm" for robust regression. The formula parameter gives the form of the fit. For example, to add simple linear regression lines, you'd specify geom="smooth", method="lm", formula=y~x. Changing the formula to y~poly(x,2) would produce a quadratic fit. Note that the formula uses the letters x and y, not the names of the variables. For method="gam", be sure to load the mgcv package. For method="rml", load the MASS package. x, y Specifies the variables placed on the horizontal and vertical axis. For univariate plots (for example, histograms), omit y xlab, ylab Character vectors specifying horizontal and vertical axis labels xlim,ylim Two-element numeric vectors giving the minimum and maximum values for the horizontal and vertical axes, respectively qplot(x, y, data=, color=, shape=, size=, alpha=, geom=, method=, formula=, facets=, xlim=, ylim= xlab=, ylab=, main=, sub=) Bar plot qplot # Data qplot(data = NPAS, x = urban, geom = "bar") # bar chart with categories on x axis # Faktorizace proměnné "urban" NPAS_Clean$urbanFACTOR = NPAS_Clean$urban NPAS_Clean$urbanFACTOR <- factor(NPAS_Clean$urbanFACTOR,levels=c(1,2,3), labels=c("Rural","Suburban","Urban")) # Jednoduchý barplot qplot(data = NPAS_Clean, x = urbanFACTOR, color = urbanFACTOR, fill = urbanFACTOR, geom = c("bar"), alpha=I(1), main="Respondenti dle typu osídlení", xlab="Typ osídlení", ylab="Počet obyvatel") Histogram qplot # Jednoduchý histogram qplot(NPAS_Clean$age, geom="histogram") # Stanovení rozsahu min(NPAS_Clean$age) max(NPAS_Clean$age) qplot(NPAS_Clean$age, geom="histogram", xlim = c(14, 90)) # Šířka jednotlivých sloupců v histogramu qplot(NPAS_Clean$age, geom="histogram", binwidth = 1, xlim = c(0, 100)) qplot(NPAS_Clean$age, geom="histogram", binwidth = 1, main = "Histogram for věk", xlab = "Věk", ylab = "Počet", fill=I("blue"), col=I("red"), alpha=I(.5), xlim=c(14,90)) Scatterplot qplot # Index nerdství NPAS_Clean$NerdyPersona = rowSums(NPAS_Clean[, 1:26]) # Jednoduchý scatterplot qplot(age, NerdyPersona, data = NPAS_Clean, geom = c("point")) # Data dle vybrané proměnné qplot(age, NerdyPersona, data = NPAS_Clean, colour = urbanFACTOR, geom = c("point")) # Scatterplot proložený křivkou qplot(age, NerdyPersona, data = NPAS_Clean, geom = c("point", "smooth")) # Scatterplot proložený křivkou dle vybrané proměnné qplot(age, NerdyPersona, data = NPAS_Clean, geom = c("point", "smooth"), colour = urbanFACTOR) # Scatterplot se spojnicemi bodů dle vybrané proměnné qplot(age, NerdyPersona, data = NPAS_Clean, colour = urbanFACTOR, geom = "line") Boxplot qplot # Jednoduchý boxplot s "integer" třídou třídící proměnné qplot(gender, NerdyPersona, data=NPAS_Clean, geom="boxplot") # Faktorizace proměnné gender NPAS_Clean$genderFACTOR = NPAS_Clean$urban NPAS_Clean$genderFACTOR <- factor(NPAS_Clean$genderFACTOR,levels=c(1,2,3), labels=c("Muž","Žena","Ostatní")) # Jednoduchý boxplot qplot(genderFACTOR, NerdyPersona, data=NPAS_Clean, geom="boxplot") # Jednoduchý boxplot s legendou dané proměnné qplot(genderFACTOR, NerdyPersona, fill=genderFACTOR, data=NPAS_Clean, geom="boxplot") Saving graphs: a review In the Plots tab, Export -> Save Plot As Image... Then choose Image Format and Size By default, graphs are saved to your working directory, but you can choose any folder by clicking “Directory” after clicking “Save Plot As Image”. More flexible graphs using ggplot The ggplot function is also in the ggplot2 package. Key concepts, apart from the already mentioned geoms, aesthetics, position, facet, setting and mapping: Layers (+): The graph is not displayed until you add a layer, but it is customary to specify the aesthetics that apply to all layers at the very beginning. Stats: Stats have default geoms, while geoms have default stats. Each plot is treated as a variable. The aesthetics in each layer override any aesthetics specified at the beginning. Search for these terms in the script and in the book for concrete examples. We covered: overlaying of histograms and regression lines, adding error bars to line plots and bar plots, setting axis limits (coord_cartesian), faceting, and free scales. Final formatting using ggplot ​Adjusted through ​Terms to look for Overall colour-scheme: •black and white? •settings for colours theme_set scale_colour_manual theme_bw() scale_colour_hue() scale_colour_grey Appearance of points geom_point geom_params Appearance of error bars stat_summary (in our script) Other possibilities: geom_errorbar, geom_params colour = "gray41" Appearance of lines scale_linetype_manual scale_linetype_manual(value s=c("dotted", "solid", "longdash", "dotdash")) Gridlines theme(panel.grid.major = element_line( )) theme(panel.grid.minor = element_line( )) panel.grid.major = element_line(colour = "gray41", size = 1) panel.grid.minor.y = element_blank() Final formatting using ggplot ​Adjusted through ​Terms to look for Labels along the axes scale_x_continuous (when x is not a factor variable) scale_x_discrete scale_y_continous scale_y_discrete scale_x_continuous(breaks = 1:2, labels = c("Trials 1-24", "Trials 25- 48“, name = "Time period") scale_y_continuous(name = "") Facet labels theme(strip.text = ___) Changes to name of factor levels strip.text.y = element_text(size=14, face = "bold") levels(longsub2$Measure) <- c("Kick Dir Entropy", "No. of Player\nChanges") Text size theme( ___ = element_text( )) theme(axis.title.x = element_text(size= 20), axis.text.y = element_text(size=14, colour = "black") Legend scale_linetype_manual scale_colour_hue etc. Depending on what aesthetic (colour, linetype, shape) you have mapped the variable to theme(legend.text = ___) scale_linetype_manual(values=c("do tted", "solid", "longdash", "dotdash"), name="Success Slope", breaks=c("Descending", "U-shaped", "Ascending", "Flat"), labels=c("Desc.", "U-shaped", "Ascending", "Flat")) legend.text = element_text(size=12) ggplot2 Bar chart Data + formula mtc <- mtcars ggplot(mtc, aes(x = factor(gear))) + geom_bar(stat = "count") Aggregate data for barplot summary.mtc <- data.frame( gear=levels(as.factor(mtc$gear)), meanwt=tapply(mtc$wt, mtc$gear, mean)) summary.mtc ggplot2 Bar chart Horizontal bars, colors, width of bars #1. horizontal bars p1<-ggplot(mtc,aes(x=factor(gear),y=wt)) + stat_summary(fun.y=mean,geom="bar") + coord_flip() p1 #2. change colors of bars p2<-ggplot(mtc,aes(x=factor(gear),y=wt,fill=factor(gear))) + stat_summary(fun.y=mean,geom="bar") + scale_fill_manual(values=c("purple", "blue", "darkgreen")) p2 #3. change width of bars p3<-ggplot(mtc,aes(x=factor(gear),y=wt)) + stat_summary(fun.y=mean,geom="bar", aes(width=0.5)) p3 Split and color by another variable #1. next to each other p1<-ggplot(mtc,aes(x=factor(gear),y=wt,fill=factor(vs)), color=factor(vs)) + stat_summary(fun.y=mean,position=position_dodge(),geom="bar") p1 #2. stacked p2<-ggplot(mtc,aes(x=factor(gear),y=wt,fill=factor(vs)), color=factor(vs)) + stat_summary(fun.y=mean,position="stack",geom="bar") p2 #3. with facets p3<-ggplot(mtc,aes(x=factor(gear),y=wt,fill=factor(vs)), color=factor(vs)) + stat_summary(fun.y=mean, geom="bar") + facet_wrap(~vs) p3 ggplot2 Bar chart Add text to the bars, label axes, and label legend ag.mtc<-aggregate(mtc$wt, by=list(mtc$gear,mtc$vs), FUN=mean) colnames(ag.mtc)<-c("gear","vs","meanwt") ag.mtc g1<-ggplot(ag.mtc, aes(x = factor(gear), y = meanwt, fill=factor(vs),color=factor(vs))) + geom_bar(stat = "identity", position=position_dodge()) + geom_text(aes(y=meanwt, ymax=meanwt, label=meanwt),position= position_dodge(width=0.9), vjust=-.5) g1 #2. fixing the yaxis problem, changing the color of text, legend labels, and rounding to 2 decimals g2<-ggplot(ag.mtc, aes(x = factor(gear), y = meanwt, fill=factor(vs))) + geom_bar(stat = "identity", position=position_dodge()) + geom_text(aes(y=meanwt, ymax=meanwt, label=round(meanwt,2)), position= position_dodge(width=0.9), vjust=-.5, color="black") + scale_y_continuous("Mean Weight",limits=c(0,4.5),breaks=seq(0, 4.5, .5)) + scale_x_discrete("Number of Gears") + scale_fill_discrete(name ="Engine", labels=c("V-engine", "Straight engine")) g2 ggplot2 Bar chart Add error bars summary.mtc2 <- data.frame( gear=levels(as.factor(mtc$gear)), meanwt=tapply(mtc$wt, mtc$gear, mean), sd=tapply(mtc$wt, mtc$gear, sd)) summary.mtc2 ggplot(summary.mtc2, aes(x = factor(gear), y = meanwt)) + geom_bar(stat = "identity", position="dodge", fill="lightblue") + geom_errorbar(aes(ymin=meanwt-sd, ymax=meanwt+sd), width=.3, color="darkblue") ggplot2 Histogram # Histogram s nastavením hodnot na osách X a Y ggplot(data=NPAS_Clean, aes(NPAS_Clean$age)) + geom_histogram(breaks=seq(14, 100, by = 2), col="red", fill="green", alpha = .2) + labs(title="Histogram for Age") + labs(x="Age", y="Count") + xlim(c(14,90)) + ylim(c(0,250)) # Barva jako intenzita ggplot(data=NPAS_Clean, aes(NPAS_Clean$age)) + geom_histogram(breaks=seq(14, 100, by = 2), col="red", aes(fill=..count..)) # Dvě barvy pro vyjádření intenzity ggplot(data=NPAS_Clean, aes(NPAS_Clean$age)) + geom_histogram(breaks=seq(14, 100, by = 2), col="red", aes(fill=..count..)) + scale_fill_gradient("Count", low = "green", high = "red") ggplot2 Histogram # Manipulace s backgroundem: ggplot(data=NPAS_Clean, aes(NPAS_Clean$age)) + geom_histogram(breaks=seq(14, 100, by = 2), col="red", aes(fill=..count..)) + scale_fill_gradient("Count", low = "green", high = "red") + theme(plot.background = element_blank(), plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), axis.line = element_line(size=.4)) # You can easily add a trendline to your histogram by adding geom_density to your code: ggplot(data=NPAS_Clean, aes(NPAS_Clean$age)) + geom_histogram(aes(y =..density..), breaks=seq(14, 100, by = 2), col="red", fill="green", alpha = .2) + geom_density(col=2) + labs(title="Histogram for Age") + labs(x="Age", y="Count") ggplot2 Scatterplot mtc <- mtcars # Basic scatterplot p1 <- ggplot(mtc, aes(x = hp, y = mpg)) # Print plot with default points p1 + geom_point() Change color of points p2 <- p1 + geom_point(color="red") #set one color for all points p2 p3 <- p1 + geom_point(aes(color = wt)) #set color scale by a continuous variable p3 p4 <- p1 + geom_point(aes(color=factor(am))) #set color scale by a factor variable p4 Change default colors in color scale p1 + geom_point(aes(color=factor(am))) + scale_color_manual(values = c("orange", "purple")) ggplot2 Scatterplot Change shape or size of points p2 <- p1 + geom_point(size = 5) #increase all points to size 5 p2 p3 <- p1 + geom_point(aes(size = wt)) #set point size by continuous variable p3 p4 <- p1 + geom_point(aes(shape = factor(am))) #set point shape by factor variable p4 ggplot2 Scatterplot Add lines to scatterplot p1 + geom_point(aes(shape = factor(am))) + scale_shape_manual(values=c(0,2)) #connect points with line p2 <- p1 + geom_point(color="blue") + geom_line() p2 #add regression line p3 <- p1 + geom_point(color="red") + geom_smooth(method = "lm", se = TRUE) p3 #add vertical line p4 <- p1 + geom_point() + geom_vline(xintercept = 100, color="red") p4 ggplot2 Scatterplot Change axis labels #label all axes at once p2 <- ggplot(mtc, aes(x = hp, y = mpg)) + geom_point() p3 <- p2 + labs(x="Horsepower", y = "Miles per Gallon") p3 #label and change font size p4 <- p2 + theme(axis.title.x = element_text(face="bold", size=20)) + labs(x="Horsepower") p4 #adjust axis limits and breaks p5 <- p2 + scale_x_continuous("Horsepower", limits=c(0,400), breaks=seq(0, 400, 50)) p5 ggplot2 Scatterplot Change legend options g1<-ggplot(mtc, aes(x = hp, y = mpg)) + geom_point(aes(color=factor(vs))) #move legend inside g2 <- g1 + theme(legend.position=c(1,1),legend.justification=c(1,1)) g2 #move legend bottom g3 <- g1 + theme(legend.position = "bottom") g3 #change labels g4 <- g1 + scale_color_discrete(name ="Engine", labels=c("V-engine", "Straight engine")) g4 ggplot2 Scatterplot Change legend options If we had changed the shape of the points, we would use scale_shape_discrete() with the same options. We can also remove the entire legend altogether by using theme(legend.position=“none”) g5<-ggplot(mtc, aes(x = hp, y = mpg)) + geom_point(size=2, aes(color = wt)) g5 + scale_color_continuous(name="Weight", #name of legend breaks = with(mtc, c(min(wt), mean(wt), max(wt))), #choose breaks of variable labels = c("Light", "Medium", "Heavy"), #label low = "pink", #color of lowest value high = "red") #color of highest value ggplot2 Scatterplot Change background color and style g2<- ggplot(mtc, aes(x = hp, y = mpg)) + geom_point() g2 #Completely clear all lines except axis lines and make background white t1<-theme( plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), axis.line = element_line(size=.4)) #Use theme to change axis label style t2<-theme( axis.title.x = element_text(face="bold", color="black", size=10), axis.title.y = element_text(face="bold", color="black", size=10), plot.title = element_text(face="bold", color = "black", size=12)) g3 <- g2 + t1 g3 g4 <- g2 + theme_bw() g4 g5 <- g2 + theme_bw() + t2 + labs(x="Horsepower", y = "Miles per Gallon", title= "MPG vs Horsepower") g5 ggplot2 Scatterplot Change background color and style g2<- ggplot(mtc, aes(x = hp, y = mpg)) + geom_point(size=2, aes(color=factor(vs), shape=factor(vs))) + geom_smooth(aes(color=factor(vs)),method = "lm", se = TRUE) + scale_color_manual(name ="Engine", labels=c("V-engine", "Straight engine"), values=c("red","blue")) + scale_shape_manual(name ="Engine", labels=c("V-engine", "Straight engine"), values=c(0,2)) + theme_bw() + theme( axis.title.x = element_text(face="bold", color="black", size=12), axis.title.y = element_text(face="bold", color="black", size=12), plot.title = element_text(face="bold", color = "black", size=12), legend.position=c(1,1), legend.justification=c(1,1)) + labs(x="Horsepower", y = "Miles per Gallon", title= "Linear Regression (95% CI) of MPG vs Horsepower by Engine type") g2 ggplot2 Boxplot # Prostý boxplot bp1 <- ggplot(NPAS_Clean, aes(urbanFACTOR, NerdyPersona)) bp1 + geom_boxplot() # Barva dle proměnné (bez legendy) bp1 + geom_boxplot(aes(color=urbanFACTOR)) + theme(legend.position='none') bp1 + geom_boxplot(aes(fill=urbanFACTOR), alpha=I(0.5)) + theme(legend.position='none') # Manipulace s rozložením bodů bp1 + geom_boxplot(aes(fill=urbanFACTOR), alpha=I(0.5)) + geom_point(aes(color=urbanFACTOR), size=3) + theme(legend.position='none') bp1 + geom_boxplot(aes(fill=urbanFACTOR), alpha=I(0.5)) + geom_point(position="jitter", alpha=0.5) + geom_boxplot(outlier.size=0, alpha=0.5) ggplot2 Pirate plot # To use the install_github function, you also need to have the devtools library installed and loaded! # install.packages("devtools") library(devtools) install_github("ndphillips/yarrr") library("yarrr") pirateplot(NerdyPersona ~ urbanFACTOR, data = NPAS_Clean, main = "Index nerdství dle typu osídlení") For each interval, we can state that there is a 95% probability that the true population mean falls within that interval ggplot2 Pirate plot # 1 IV pirateplot(NerdyPersona ~ urbanFACTOR, data = NPAS_Clean, main = "Index nerdství dle typu osídlení", pal = "southpark", theme = 2, point.o = 1, # Add points point.col = "black", point.bg = "purple", point.pch = 21, bean.f.o = 0.2, # Turn down bean filling inf.f.o = 1, # Turn up inf filling gl.col = "gray", # gridlines gl.lwd = c(.5, 0)) # turn off minor grid lines) # 2 IV pirateplot(formula = NerdyPersona ~ gender + urbanFACTOR, data = NPAS_Clean, main = "Index nerdství dle typu osídlení a genderu", point.pch = 1, # Point specifications... point.col = "black", point.o = .7, inf.f.o = .9, # inference band opacity gl.col = "gray") Základní literatura Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Available online: Field, A., Miles, J., & Field, Z. (2012). Discovering Statistics Using R. Sage: UK. Chapter 4. Exploring data with graphs. Support website: http://moderngraphics11.pbworks.com/f/ggplot2- Book09hWickham.pdf http://docs.ggplot2.org/current/