Game theory 1

Lukáš Lehotský llehotsky@mail.muni.cz

Agent vs. structure

- On the individualist extreme of agent-structure spectrum
- Regards the social phenomena as interactions of individuals –
 structure is a product of individual behavior
- Individual behavior is unconstrained

Criticism against rational choice theory

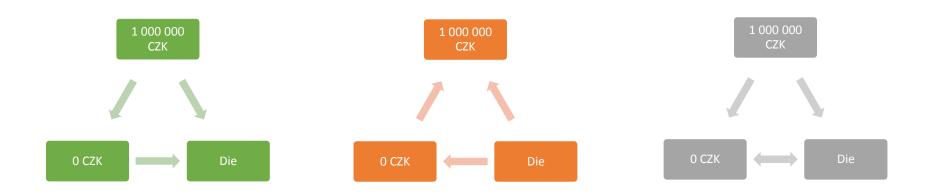
- Common criticism of rational choice people behave irrationally
- Rationality ≠ Sensibility
- Ordering preferences
- I can mostly prefer taking over the world and least painful death, but equally prefer most painful death and least taking over the world

Rationality

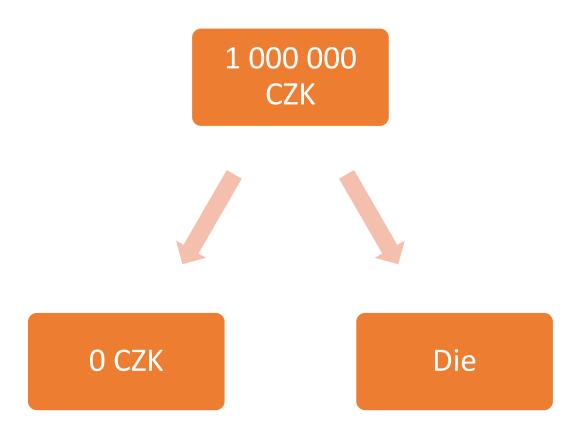
- Defined by two key premises
 - Completeness
 - Transitivity
- Indifferent to normative assessment of preferences and choices

Completeness

- Preference ordering complete if and only if for any two outcomes X and Y individual:
 - A) Prefers X to Y strong preference relation
 - B) Prefers Y to X strong preference relation
 - C) Is indifferent weak preference relation

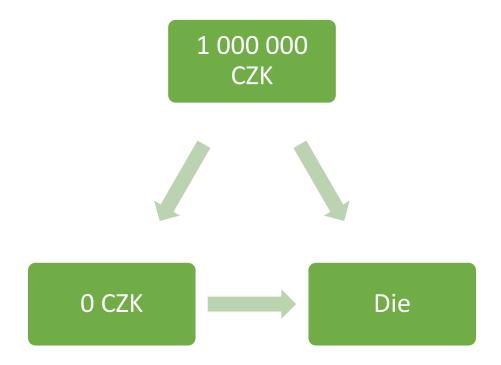


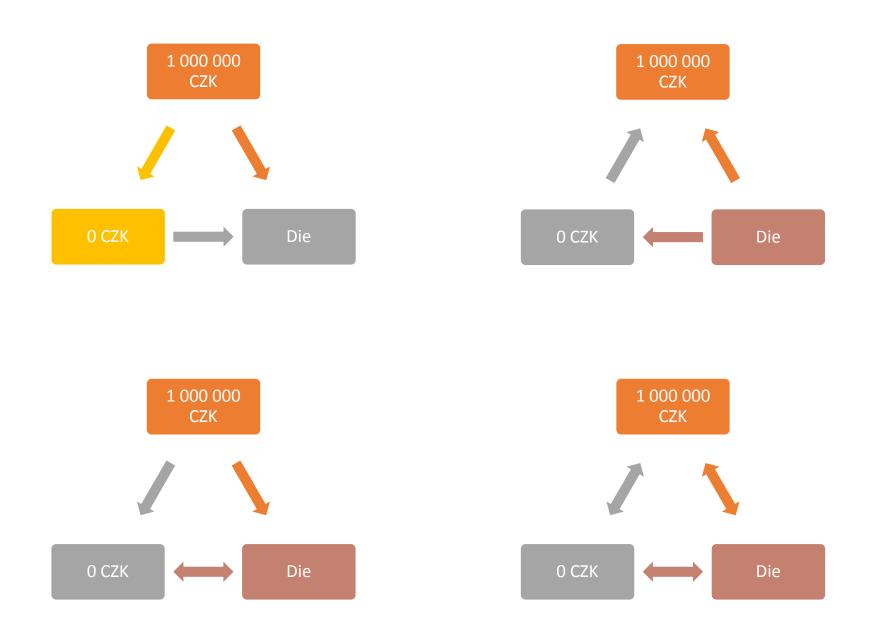
Incomplete preferences



Transitivity

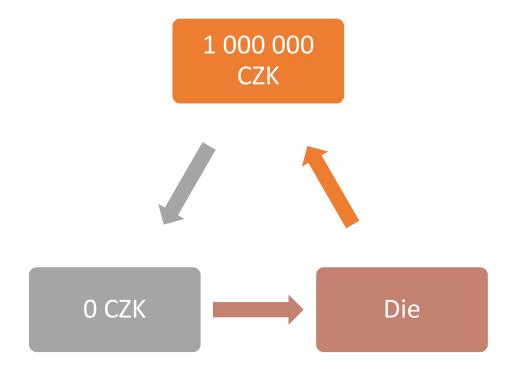
 For any three outcomes X, Y and Z, if X is preferred to Y and Y is preferred to Z, X must be preferred to Z





Intransitive preferences

- Prefer X to Y, Y to Z and Z to X
- Doesn't make sense



Other notions about preferences

- Preferences over outcomes are stable and do not change in the time of making decision – are fixed
- Preferences are ordinal they order actions but the difference between the two values has no meaning unless they state utility
- Compare two situations
 - $u(C_1) = 1$, $u(C_2) = 2$, $u(C_3) = 0$
 - $u(C_1) = 1$, $u(C_2) = 200$, $u(C_3) = -50$
- Both situations have same preference ordering
 - C₂ p C₁ p C₃

Other notions about rationality

- Rational choice theory is not attempting to explain cognitive processes happening in individuals
- Rationality tells nothing about preferences over outcomes
- Rational actors may differ in choices in same situation
- Rational actors can err

Types of games

Types of games

- Games of perfect information
- Games of imperfect information
- Cooperative games
- Non-cooperative games
- Constant-sum game
- Positive-sum game

Games of perfect/imperfect information

Perfect information games

- All players know other players' strategies available to them
- All players know payoffs over actions
- All players know other players know

Imperfect information games

 Some information about other players' actions is not know to the player

Cooperative/non-cooperative games

Cooperative games

- Actors are allowed to make enforceable contracts
- Players do not need to cooperate, but cooperation is enfoceable by an outside party

Non-cooperative games

- Actors unable to make enforceable contracts outside of those specifically modeled in the game
- Players might cooperate, but any cooperation must be selfenforcing

Constant-sum/Positive-sum games

Constant sum games

- Sum of all players' payoffs is the same for any outcome
- Gain for one participant is always at the expense of another
- Special case of zero-sum game where all outcomes involve a sum of all player's payoffs of 0

Positive-sum games

- Combined payoffs of all players are not the same in every outcome of the game
- Positive-sum game implies that players may have interests in common, to achieve an outcome that maximizes total payoffs.

Introducing a game

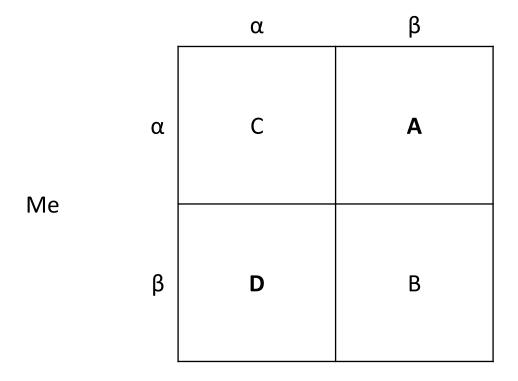
What makes a game the game

- Players
- Actions
- Strategies
- Outcomes
- Payoffs of player

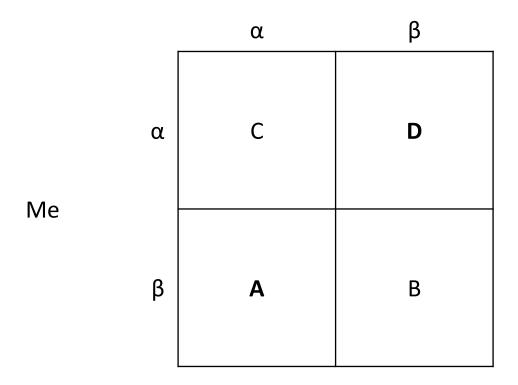
Game of grades

- Each pair can choose 2 actions: α or β
- If both choose α , both will receive **C**
- If both choose β, both will receive **B**
- If one chooses α and other β , one will receive **A** and other **D**

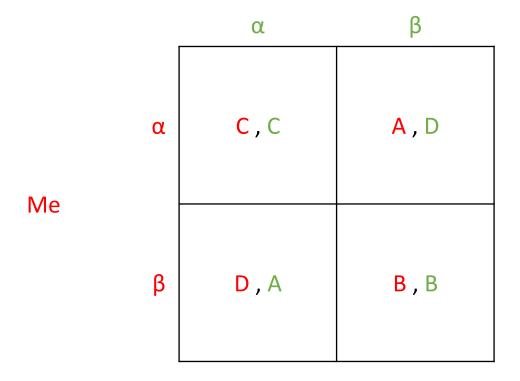
Game of grades – my grades



Game of grades – my opponent's grades



Game of grades – normal form



Games in normal form

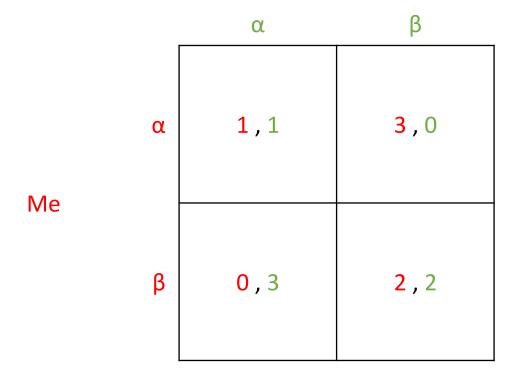
Normal form representation of a game

- Called also "strategic form" or "matrix form"
- Visualized as a matrix
- Represents a game as if agents were acting simultaneously

Utilities (Payoffs)

- Grades are not utilites
- Utilities for game:
 - EU(A) = 3
 - EU(B) = 2
 - EU(C) = 1
 - EU(D) = 0
- Preference over outcomes: A > B > C > D -> APBPCPD

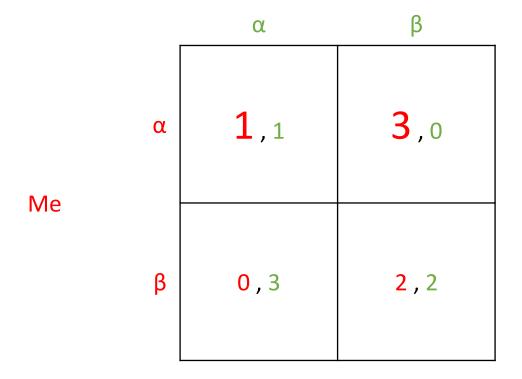
Game of grades with payoffs

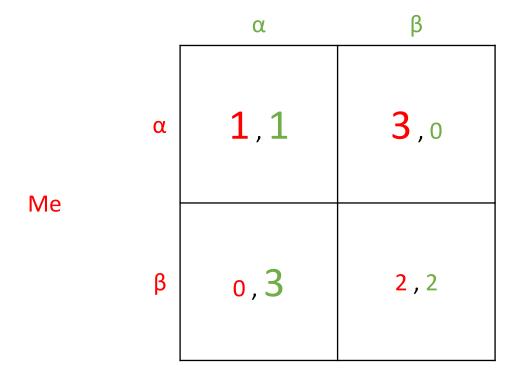


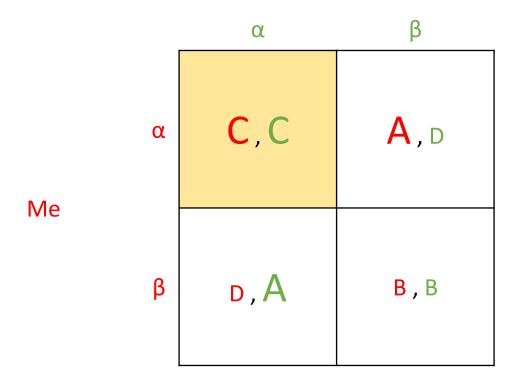
Solution concepts

- Nash Equilibrium
 - Dominant Strategy Equilibrium
 - Pure Strategy Equilibrium
 - Mixed Strategy Equilibrium
- Subgame Perfect Equilibrium
- Bayesian Equilibrium
- Weak Perfect Bayesian Equilibrium

		α	β
Me	α	1,1	3,0
ivie	β	0,3	<mark>2</mark> ,2







Prisoner's dilemma

- Both players are tempted to defect, since cooperate is strictly dominated by defect
- The outcome of the game is that both players betray the other one and end up choosing $\boldsymbol{\alpha}$
- Both will end up with outcome that is less preferred than the optimal outcome β , β by seeking maximal gain from own action
- Though β, β is Pareto Efficient outcome brings best outcomes for all players, while no one could be better-off without making someone worse-off

Dominance

Dominant Strategy Equilibrium

Strategy might be dominant

Two types of dominance

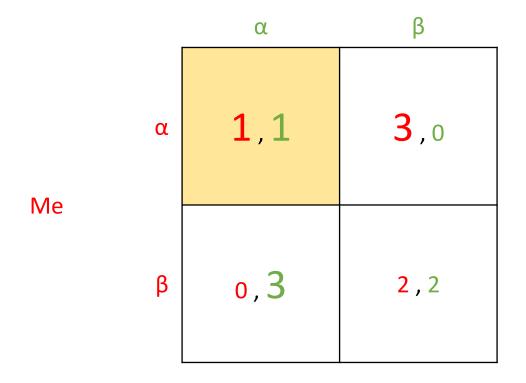
- Strict (strong) dominance
- Weak dominance

Strict dominance

- Player i
- Payoff u_i
- Dominant strategy s_i
- Dominated strategy s_i'
- Strategy of all other players s_{-i}
- Player i's strategy s_i' is strictly dominated by player i's strategy s_i if and only if
- $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$ for **all** s_{-i}
- utility of playing s_i against others' strategies s_{-i} is **greater** than utility of playing s_i' against others's strategies s_{-i} for all others' strategies s_{-i}

Game of grades – strict dominance

My pair

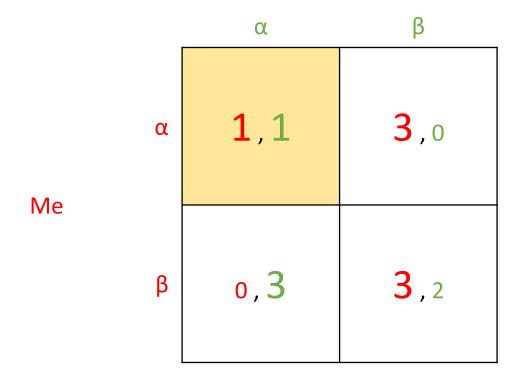


Weak dominance

- Player i
- Payoff u_i
- Dominant strategy s_i
- Dominated strategy s_i'
- Strategy of all other players s_{-i}
- Player i's strategy s_i' is weakly dominated by player i's strategy s_i if
- $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$ for **all** s_{-i} and
- $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$ for **some** s_{-i}
- utility of playing s_i against others' strategies s_{-i} is **greater or equal to** utility of playing s_i' against others's strategies s_{-i} for all others' strategies s_{-i} and **greater for some** others' strategies s_{-i}

Game of grades – weak dominance

My pair



Never play dominated strategies

- Dominated strategy brings lesser payoffs than dominant strategy
- Dominated strategy brings lesser payoffs no matter what strategy is selected by other player
- Can't control minds of others to force them not to play dominant strategy
- Event if **could** control minds of others and be sure they'll play dominated strategy, than **rational to play dominant strategy anyway**

Choosing numbers

- Choose integer between 1 − 100 incl.
- All numbers will be averaged
- Winner is the one who will be closest to the 2/3 of the group's average

Choosing numbers

- Average = 100
- 2/3 of average = ~ 66.66
- X > 67 is strictly dominated strategy
 - Even if everyone else selected 100
 - One selected 67
 - I selected 68
 - Outcome 68 is dominated by 67
- What is the rational choice for this game?

If all players were strictly rational, result is 1

I know you know

- I know
 - Numbers above 67 are never rational
- You know that I know
 - You'll never select number above 67, therefore numbers above 46 are never rational either
- I know You know that I know
 - I know that You'll never select above 46, hence I should never select number higher than 30
- You know that I know that You know that I know
 - You know that I won't select above 30, therefore I should never select number above 20

Get into opponent's shoes

Real life results

- 2012 Game theory online course
- 10 000 + players
- Mean 34
- Mode 50
- Median 33
- Winner 23
- Spikes: 50, 33, 20, 1

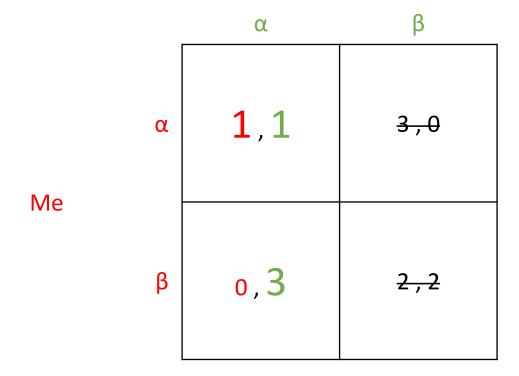
Iterated deletion of dominated strategies

Iterated deletion of dominated strategies

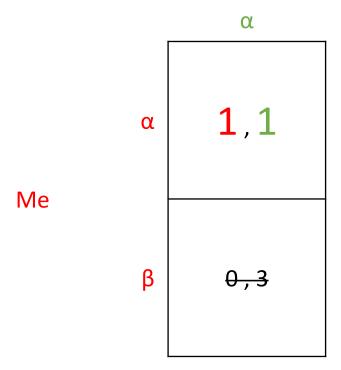
- Can delete dominated strategies as if they were not present in the game
- Game becomes simpler than the original one
- Can find equilibriums quickly games are dominance-solvable

Game of grades

My pair



My pair



My pair

 $\begin{array}{c|c} \alpha \\ \\ \end{array}$ Me $\begin{array}{c|c} \alpha \\ \end{array}$

This game is dominance-solvable

		S_1	s_2	s ₃
	S ₁	0,1	-2 ,3	4,-1
Me	S ₂	0,3	3,1	6,4
	S ₃	1,5	4,2	5,2

 $S_1 \text{ vs } S_2$

		S_{1}	S ₂	S ₃
Me	S ₁	0,1	-2,3	4,-1
	S ₂	0 ,3	3,1	6,4
	S ₃	1,5	4,2	5,2

$S_1 \text{ vs } S_3$

		S_1	S_2	s_3
	S_1	0,1	-2,3	4,-1
Me	S ₂	0,3	3,1	6 , 4
	S ₃	1 ,5	4,2	5 ,2

 S_2 vs S_3

		S_1	S_2	S ₃
Me	S_1	0,1	-2,3	4,-1
	S ₂	0,3	3,1	6,4
	S ₃	1 ,5	4,2	5,2

 $s_1 vs s_3$

		s_1	S ₂	s ₃
	S ₁	o, 1	-2,3	4,-1
Me	S ₂	0,3	3,1	6,4
	S ₃	1,5	4,2	5,2

		S_1	S_2	S ₃
	S ₁	0,1	-2,3	4,-1
Me	S ₂	0,3	3,1	6,4
	S ₃	1,5	4,2	5,2

 $s_2 vs s_3$

		S_{1}	S_2	S ₃
	S ₁	0,1	-2,3	4,-1
Me	S ₂	0,3	3,1	6,4
	S ₃	1,5	4,2	5, 2

		S_1	S ₂	S ₃
	S ₁	0,1	-2,3	4,-1
Me	S ₂	0,3	3,1	6,4
	S ₃	1,5	4,2	5,2

		s_1	S_2	s ₃
Me	S ₂	0,3	3,1	6, 4
	S ₃	1, 5	4,2	5 ,2

s₁ vs s₃ after deletion

		s_1	S ₂	s ₃
Me	S ₂	0,3	3,1	6,4
	S_3	1,5	4,2	5,2

s₁ vs s₂ after deletion

		S_{1}	S_2	s ₃
Me	S ₂	0,3	3,1	6,4
	S ₃	1,5	4,2	5,2

s₂ vs s₃ after deletion

		S_1	S_2	S ₃
Me	S ₂	0,3	3,1	6,4
	S ₃	1,5	4,2	5, 2

		s_1	S_2	s ₃
Me	S ₂	0,3	3,1	6,4
	S ₃	1 ,5	4,2	5 ,2

		s_{1}	s_3
Me	S ₂	0,3	6,4
	S ₃	1,5	5,2

		S_1	s ₃
Me	S ₂	0,3	6,4
	S ₃	1 ,5	5,2

		S_1	s_3
Me	S ₂	0,3	6,4
	S_3	1,5	5,2

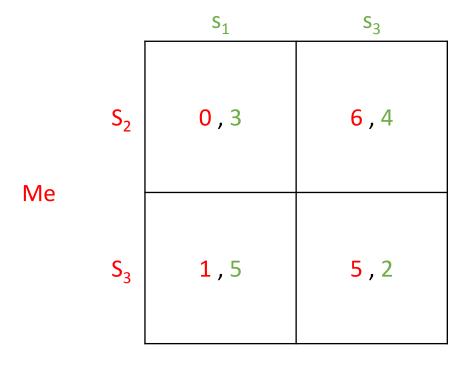
Games sometimes not dominance solvable, but simplified

Limits of iterated deletion of dominated strategies

- Strictly dominated strategies may be deleted in a random order
- Deleting weakly dominated strategies in some order might delete equilibriums
- This solution concept is not always applicable sometimes game simply don't have dominance

How to solve the game without dominance?

Opponent

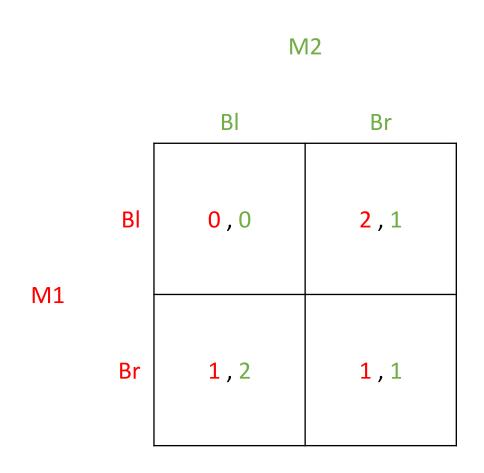


Nash Equilibrium

Nash Blonde Game

- 2 or more lusty males
- Several interested females
- At least one more female than male
- Just one female blonde
- Every male prefers blonde to brunette and brunette to no companion

Nash Blonde Game – normal form



Nash Equilibrium

- Set of strategies, one for each player, such that no player has incentive to unilaterally change her action
- Players are in equilibrium if a change in strategies by any one of them would lead player to earn less (considering strategies of others') than if she remained with her current strategy
- Mutual best response to others' choices

	_	L	С	R
	Т	1,1	0,0	0,0
В І	M	0,2	1,1	2,-1
	В	0,0	1,2	2,1

A

		L	С	R
	Т	1 ,1	0,0	0,0
В	M	0,2	1 ,1	2,-1
	В	0,0	1 ,2	2,1

	L	С	R
Т	1,1	0,0	0,0
в м	0,2	1,1	2,-1
В	0,0	1,2	2,1

A

	L	С	R
Т	1,1	0,0	0,0
в м	0,2	1 ,1	2,-1
В	0 ,0	1,2	2,1

Games might have more NE

Pure strategy equilibrium

- Two equilibriums in this game
- (T , L)
 - u(A) = 1
 - u(B) = 1
- (C,B)
 - u(A) = 1
 - u(B) = 2
- These are pure strategy equilibriums

Other basic games

Chicken

h S 5,5 <mark>0</mark>,10 Α 10,0 -10,-10 Н

В

Chicken NE

Pure strategies NE

- (H,s)
 - EU(A) = 10
 - EU(B) = 0
- (S,h)
 - EU(A) = 0
 - EU(B) = 10

Mixed strategies NE

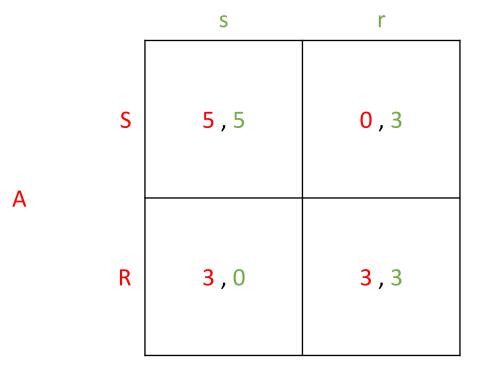
- (1/2 S, 1/2 S)
 - EU(A) = 5/2
 - EU(B) = 5/2

В

	S	h
S	5 ,5	0,10
Н	10 ,0	-10 , -10

Stag hunt

В



Stag hunt NE

• Pure strategies NE

- (S,s)
 - EU(A) = 5
 - EU(B) = 5
- (R,r)
 - EU(A) = 3
 - EU(B) = 3

• Mixed strategies NE

- (3/5 S, 3/5 s)
 - EU(A) = 3
 - EU(B) = 3

В

	S	R
S	5 ,5	0,3
R	3,0	3 ,3

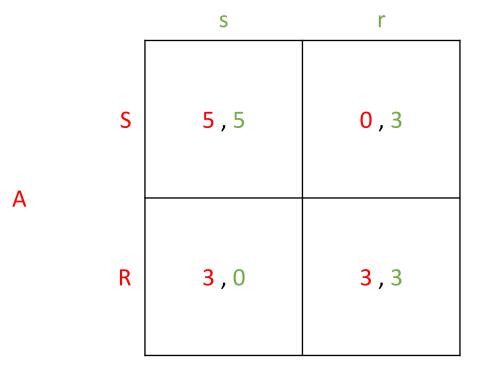
В

S 5,5 0,7

A R 7,0 3,3

Stag hunt

В



Problems with games in normal form

- Treat decision-making as simultaneous
- Some games have more NE and not easy to find out which is more probable than the other
- Introduction of time and ability to observe actions of other players changes the decision-making of an actor