
Text analysis 1
Lukáš Lehotský

“text analysis is just a fancy
and convoluted way how to
obtain independent or
dependent variable”
Inaki Sagarzazu

Concepts

Bag of words

Bag of words

• The quick brown fox jumps over the lazy dog

Word Occurrence

brown 1

dog 1

fox 1

jumps 1

lazy 1

over 1

quick 1

the 2

Co-occurrence

Co-occurrence

• The quick brown fox jumps over the lazy dog.
Brown dog sleeps well.

Word Sentence 1 Sentence 2

brown 1 1

dog 1 1

fox 1

jumps 1

lazy 1

over 1

quick 1

sleeps 1

the 2

well 1

Co-locations and N-
grams

Co-locations/n-grams

• Established phrases – usually occur together and
form a meaning

Ministry of the Environment

European Union

prime minister

toilet paper

Zipf law

(Jimenez, 2015)

Manifest vs. latent
content

Design of CA research

Research
Question

Answers

Texts

Content Analysis

Krippendorff 2013, p. 36

Design of CA research

Unitizing Sampling
Recording/

Coding

ReducingInferringNarrating

Krippendorff 2013, p. 86

Basic terminology

• Corpus
• Body of all text pieces available for the content analysis

• Term
• Text token, usually word

• Term-document matrix
• Matrix which records occurrence of terms in documents

Methods

Methods of TA

Supervised

Semi-
supervised

Unsupervised

Methods of TA

• Supervised methods
• Manual coding

• Semi-supervised
• Dictionary-based methods

• Deductively given dictionary
• Dictionary obtained from data

• Automatically
• Manually

• Unsupervised
• Frequencies
• Topic modeling
• …

Fully supervised – manual coding

• Manual coding of text units

• Inductive vs. deductive coding
• Inductive – data-driven

• Categories not known

• Open coding – categories emerge in iterative text reading

• Axial coding – abstraction from open coding into categories

• Deductive – theory-driven
• Categories known a-priori

• Existing code-book applied over data

Fully supervised

• Coding is input for further analysis
• Frequencies of codes

• Temporal development

• Standard statistical methods

• Socio-semantic networks

• Discourse network analysis
• Socio-semantic networks of actors and meanings (codes)

they use

Fully supervised - DNA

(Haunss et al. 2013)

Fully supervised - DNA

Issues with manual coding

• Questions of validity and reliability

• Reliability of human coders needs to be measured
and accounted for
• Intra-coder reliability (variation by same coder)

• Inter-coded reliability (variation by different coder)

• Ways how to measure, e.g. Krippendorff α

• Ways how to account for
• Only overlap

• Resolution of differences

Semi-supervised

• Dictionary-based automated coding
• Words in dictionary are discovered across the corpus

• Coding process is done automatically

• Construction of dictionaries
• Given pre-defined dictionary

• WordStat, LIWC, …

• Constructed from data
• Theoretically-informed

• Automatically generated
• WordFish

• WordScores

Semi-supervised

• Existing dictionaries
• WordStat (Laver & Garry 2000)

• Estimation of policy positions from political texts
• 415 words, 19 categories

• LIWC (Linguistic Inquiry Word Count)
• Sentiment dictionaries
• General Inquirer

• Logic of this approach is to crawl over texts,
discover tokens in dictionary and score texts
• Scoring whole corpus
• Scoring individual texts

Semi-supervised

• Dictionary from data
• Sample of texts with known properties

• Other texts related – e.g. legal/conceptual documents

• Dictionaries built by researchers
• Long process

• High validity – researchers know texts

• Lower reliability – same reasons as manual coding

Semi-supervised

• Automated dictionary constructing
• Laver, Benoit and Garry 2003

• Two populations of texts
• Texts with known properties – training set

• Texts with unknown properties – target set

• Logic of the process
• Assign values of the category to known texts (training sample)

• Let computer find words in the training sample and assign
individual scores to words from texts

• Code unknown texts with existing dictionary

• High reliability, but questionable validity

Unsupervised

• Most naïve – word frequencies
• Just a crude exploratory hint of what is in text

• Clustering and multidimensional scaling of words
• Based on co-occurrence of words

• Unsupervised categorization on term-document
matrix
• Topic modeling

• Co-occurrence term networks

Unsupervised – co-occurrence net

Unsupervised – topic modeling

How to get TDM?

Data pre-processing

• Any text analysis must be preceded by data pre-
processing
• Dropping sparse terms – has a word which occurs in

1.5M corpus once, any value?
• Dropping most frequent terms – does most profound

word of interest any informative value?
• Dropping “stopwords” – a, the, …
• Dropping numerals, punctuation, …
• Dropping time and place information
• …

• No general rules on how to do that – rule of thumb

Data pre-processing

• Stemming/lemmatization
• Disposal of grammatical features of text

• Dictionary-based
• Rules-based

• Both introduce some error into the corpus

• Lemmatization
• Identification of lemmas (lexemes) of the words -

transformation to lemmas

• Stemming
• Stripping the word of prefixes or suffixes, leaving only

word stems

Lemmatization and stemming

“This was the most tranquil presidential address.
President’s approach was very relaxed.”

• Lemmatization

“This be the most tranquil presidential address.
President approach be very relax.”

• Stemming

“This be the most tranquil presidenti address.

Presid approach be veri relax.”

Corpus generation

• Decision on document unitizing

• Decision over sampling
• Does 5M texts provide more information than 15k?

• Random vs. non-random sampling

• Inclusion of metadata – allow for filtering later
• Author

• Time and date

• Source (e.g. media/newspaper)

• …

Term-document matrix

• Matrix – most methods based on this
• 1st dim – Tokens
• 2nd dim – Documents/units
• Cells – frequency of tokens in documents

• Boolean – Present vs. Not present (1/0)
• Weighted

• Absolute frequency (how many times word occur in document)

• TF-IDF

• Grows large easily
• 500 documents * easily 4k unique tokens = 2M cells

• At the same time, very sparse
• Most of cells are empty – contain 0

Term-document matrix

2003-
2004-cz

2004-
2005-pl

2005-
2006-hu

2006-
2007-sk

2007-
2008-cz Sum

agriculture 3 6 2 5 3 19

aim 4 2 7 12 6 31

area 11 8 8 28 26 81

base 1 2 2 2 5 12

border 5 9 9 3 3 29

central 2 3 6 3 5 19

cohesion 3 1 7 4 4 19

commission 2 7 3 2 4 18

common 10 9 17 8 17 61

community 2 2 3 3 6 16

concern 9 13 12 18 6 58

Programming in R

Learning curves of popular stats
programs

R community / resources

• there is huge number of free resources

• R package / library manuals

• R site: http://cran.r-project.org

• community forums:
• http://stackoverflow.com
• http://www.statmethods.net
• http://www.r-bloggers.com

• Youtube videos:
https://www.youtube.com/watch?v=qHfSTRNg6jE

• googling (often fastest)

http://stackoverflow.com/
http://www.statmethods.net/
http://www.r-bloggers.com/
https://www.youtube.com/watch?v=qHfSTRNg6jE

R as language – focus on logic

• Any programming language is just very condensed
and formalized speech
• Just like mathematical notation

• Understand and formulate the process

• If you think about the procedure of what needs to
be done, scripting becomes matter of knowing right
expressions

R studio layout

Scripting window
Environment (stored objects)

History

Console window

Plots
Packages

Help
Viewer

Scripting window

Console

Environment
History

Plots
Packages

Help
Viewer

Terminology used

• Data, (data) element
• unit of information (e.g. 1, 2, “word”, TRUE, FALSE)

• Data class
• describes properties of data elements (numeric, character, logical,

etc.)

• Object
• a “container” that stores and organizes data in the R environment

• Object type
• describes properties of objects (vector, matrix, list, data frame,

etc.)

• Function
• transforms inputs into outputs based on certain rules

(methods/procedures)
• arguments of the function specify the inputs and applied rules

Object

• object: instance of a certain data class that can be
manipulated according set of procedures
(methods)

one <- 1

Object

Creating/storing objects

Lukas <-

Creating/storing objects

Obj. name Object<-

Object

• Once objects exist, operations over objects may be
applied

one <- 1

one + one

> one <- 1

> one + one

[1] 2

?

What is an object?

• Anything may become an object

• Temporary objects
• Only appear in console
• Their values must be stored in order to use them in

operations

• Stored objects
• Must be defined by user
• Remain the same unless overwritten
• Must be removed by user as well

Data classes – prop. of elements

• Numeric
• continuous numeric data
• -1, 0.5, 10.49

• Integer
• discrete numeric data
• -1, 0, 1

• Character
• string values
• "anythingWithinQuotes"

• Logical
• output of logical operation – TRUE/FALSE
• 5 > 10

Data classes

> as.numeric(10.49)

[1] 10.49

>

> as.integer(10.49)

[1] 10

>

> as.character(-1)

[1] "-1"

>

> as.numeric("anythingwithinquotes")

[1] NA Warning message: NAs introduced by coercion

>

> 5 > 10

[1] FALSE

>

> as.character(5 > 10)

[1] "FALSE"

Object types – prop. of objects

Object types – prop. of objects

• vector
• sequence (1-dimensional) of elements of same data class

• matrix
• 2-dimensional rectangular collection of elements of same data class
• array: n-dimensional matrix

• list
• vector that can contain elements of different data classes

• data frame
• list of vectors of equal length
• table data

Vector

> c(2,3,5)

[1] 2 3 5

>

> c("aa", "bb", "cc", "dd", "ee")

[1] "aa" "bb" "cc" "dd" "ee“

>

> c(TRUE, FALSE, TRUE, FALSE, FALSE)

[1] TRUE FALSE TRUE FALSE FALSE

>

Matrix

> m <- matrix(data = c(1,2,3,4,5,6,7,8,9,10,11,12),

+ nrow = 3,

+ ncol = 4)

>

> m

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

>

List

> n <- c(2, 3, 5)

> s <- c("aa", "bb", "cc", "dd", "ee")

> x <- list(n, s, b, 3) # x contains copy of n, s

> x

[[1]]

[1] 2 3 5

[[2]]

[1] "aa" "bb" "cc" "dd" "ee"

[[3]]

[1] TRUE FALSE TRUE FALSE FALSE

[[4]]

[1] 3

Data frame

> teams <- c("PHI","NYM","FLA","ATL","WSN")

> wins <- c(92,89,94,72,59)

> losses <- c(70,73,77,90,102)

>

> data <- data.frame(teams,wins,losses)

>

> data

teams wins losses

1 PHI 92 70

2 NYM 89 73

3 FLA 94 77

4 ATL 72 90

5 WSN 59 102

>

R functions

• word() indicates function

• function(argument_1, argument_2, …)

• basic functions (part of the basic R package)

• package functions (part of the particular package)

• user functions (user-defined functions)

> sqrt(9)

[1] 3

> sample(x = 0:100, size = 10, rep = FALSE)

[1] 48 50 37 94 42 39 21 19 63 95

R libraries

• Libraries allow to load pre-defined functions
according to problem at hand

• Load, install and unload either using R Studio or
using functions in script

• Libraries download and install automatically

Basic R functions

c() # combine two or more elements into an object

class() # explore elements’ data class

length() # explore number of first dim. of object

dim() # explore dimensions of two-dimensional obj.

nrow() # number of rows

ncol() # number of columns

head() # first few rows of data

tail() # last few rows of data

str() # explore structure of object

names() # names in the named vector - one dimension

rownames() # names of rows - two dimensions

colnames() # names of columns - two dimensions

Working directory

• Folder, where all imports and exports are taking
place – enough to set once

• Makes data import and export easier

• Functions setwd() and getwd()

• Does not accept single backslash in Win path
• Replace backslash \ with forwardslash / or double

backslash \\

setwd("C:\\Users\\Lukas\\Documents\\R intro")

setwd("C:/Users/Lukas/Documents/R intro")

Data output

• Save entire workspace
• Save all R objects you’ve created so far

• Allows to return to work/backup current work

• Save particular object
• Export data to tabular objects

• CSV as most common format

CSV - most common data format

• Comma-Separated Values

• Tabular data separated by commas
(separator/delimiter) or other signs (tabulator,
space, semicolon)

• CSV file (.csv), TSV file (.tsv) – always a text file (.txt)

• Must have same number of columns (separators)

cars,type,price,consumption,emissions,expensive

BMW,3,1200000,6.2,0,0

Audi,A4,1164000,5.9,0,0

VW,Passat,950500,6.2,NA,NA

CSV – other examples

"cars" "type" "price" "consumption" "emissions"

"BMW" "3" "1,200,000" "6.2" "0"

"Audi" "A4" "1,164,000" "5.9" "0"

"VW" "Passat" "950,500" "6.2" "0"

cars;type;price;consumption;emissions

BMW;3;1200000;6.2;0

Audi;A4;1164000;5.9;0

VW;Passat;950500;6.2;0

cars,type,price,consumption,emissions

BMW,3,1,200,000,6.2

Audi,A4,1,164,000,5.9

VW,Passat,950,500,6.2

Bad data – improper use of comma
delimiter results in uneven # of
rows

Exporting object – tabular

• Function write.table()

• Name of file must be specified

• Easy to import to Excel or other software

frequencies <- c(92,89,94,72,59)

write.table(frequencies,

"frequencies.csv",

sep = ",",

row.names = FALSE,

col.names = TRUE,

fileEncoding = "UTF-8")

Exporting object – unstructured

• Function writeLines()

• Has basically no arguments

• Saves the whole object as one text

frequencies <- c(92,89,94,72,59)

writeLines(frequencies,

"frequencies.txt")

Text analysis in R

Text analysis in R

• Most prominent package for text analysis is “tm”
(stands for text mining)
• Provides tools corpus creation, text manipulation, term-

document matrix creation

• Easily allows to read text documents as corpus

• Competing packages – “quanteda”
• Developed by Ken Benoit (WordScores)

• Provides some TA methods

• Overlaps with “tm” package – if both packages loaded, it
will generate conflicts (feature, not bug)

Corpus

• getSources() provides list of available sources
• Files inside a directory – DirSource()

• Text inside a vector – VectorSource()

• Dataframe, XML, links to web-sites, …

• Corpus() creates a corpus object out of text
sources

Corpus

my.texts <- "C:\\Users\\Lukas\\Desktop\\data\\"

directory.source <- DirSource(directory = my.texts)

text.corpus <- Corpus(directory.source)

Corpus operations – functions

• Useful functions:
• removePunctuation() – remove all punctuation

• removeWords() – remove stopwords

• stripWhitespace() – remove duplicate white
space

• removeNumbers() – remove all numbers

• stemDocument() – stem document

• plainTextDocument() – turn document into tm
package’s plain text format

Corpus operations

• tm_map() function allows to apply manipulations
over the corpus data

edited.corpus <- text.corpus

edited.corpus <- tm_map(edited.corpus, removeNumbers)

edited.corpus <- tm_map(edited.corpus, removePunctuation)

edited.corpus <- tm_map(edited.corpus, stripWhitespace)

edited.corpus <- tm_map(edited.corpus,

removeWords,

stopwords("english"))

Term-document matrix

• Function TermDocumentMatrix()
• Terms in rows

• Documents in columns

• DocumentTermMatrix() creates inverse TDM

• Output is non-standard matrix object
• If matrix operations are needed, it must be converted to

basic matrix format with as.matrix() function

Term-document matrix

tdm <- TermDocumentMatrix(edited.corpus)

dtm <- DocumentTermMatrix(edited.corpus)

tdm.matrixed <- as.matrix(tdm)

Useful functions in “tm”

• removeSparseTerms()
• Removes terms to a defined sparsity of the TDM matrix

– removes terms which are used sparsely across
documents

• findFreqTerms()
• Lists most frequent terms across the TDM matrix

• Does not provide frequencies, though

• findAssocs()
• Correlation of appearance of a term with other terms

across TDM – returns Pearson’s r

Frequencies

• findFreqTerms() shows frequent terms
• Has two attributes defining bounds – lowfreq,
highfreq

• Easier to calculate frequencies separately
• Convert TDM to matrix with as.matrix()

• Calculate sums of rows with rowSums()

• Sort the vector with sort() with decreasing
attribute

tdm.matrixed <- as.matrix(tdm)

frequencies <- rowSums(tdm.matrixed)

frequencies <- sort(frequencies, decreasing = T)

Wordclouds

• Package “wordcloud”

• Function wordcloud()

Attribute Description

words Terms

freq Frequencies of terms

scale Two values in c() function to bound upper and lower
scale

max.words Maximum number of words rendered

random.order Binary - should terms be placed in random order?

rot.per Percentage of terms placed vertically

colors Color or color palette

random.color Binary – should colors be assigned randomly or based on
the word frequency?

Wordclouds

tdm.matrixed <- as.matrix(tdm)

frequencies <- rowSums(tdm.matrixed)

frequencies <- sort(frequencies,decreasing = T)

terms <- names(frequencies)

library(wordcloud)

wordcloud(words = terms,

freq = frequencies,

scale = c(5,0.5),

max.words = 150,

random.order = F,

rot.per = 0,

colors = "red")

Wordclouds

