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ABSTRACT
Computational text analysis has become an exciting research field with
many applications in communication research. It can be a difficult method
to apply, however, because it requires knowledge of various techniques,
and the software required to perform most of these techniques is not
readily available in common statistical software packages. In this teacher’s
corner, we address these barriers by providing an overview of general steps
and operations in a computational text analysis project, and demonstrate
how each step can be performed using the R statistical software. As a
popular open-source platform, R has an extensive user community that
develops and maintains a wide range of text analysis packages. We show
that these packages make it easy to perform advanced text analytics.

With the increasing importance of computational text analysis in communication research
(Boumans & Trilling, 2016; Grimmer & Stewart, 2013), many researchers face the challenge of
learning how to use advanced software that enables this type of analysis. Currently, one of the most
popular environments for computational methods and the emerging field of “data science”1 is the R
statistical software (R Core Team, 2017). However, for researchers that are not well-versed in
programming, learning how to use R can be a challenge, and performing text analysis in particular
can seem daunting. In this teacher’s corner, we show that performing text analysis in R is not as hard
as some might fear. We provide a step-by-step introduction into the use of common techniques, with
the aim of helping researchers get acquainted with computational text analysis in general, as well as
getting a start at performing advanced text analysis studies in R.

R is a free, open-source, cross-platform programming environment. In contrast to most program-
ming languages, R was specifically designed for statistical analysis, which makes it highly suitable for
data science applications. Although the learning curve for programming with R can be steep,
especially for people without prior programming experience, the tools now available for carrying
out text analysis in R make it easy to perform powerful, cutting-edge text analytics using only a few
simple commands. One of the keys to R’s explosive growth (Fox & Leanage, 2016; TIOBE, 2017) has
been its densely populated collection of extension software libraries, known in R terminology as
packages, supplied and maintained by R’s extensive user community. Each package extends the
functionality of the base R language and core packages, and in addition to functions and data must
include documentation and examples, often in the form of vignettes demonstrating the use of the
package. The best-known package repository, the Comprehensive R Archive Network (CRAN),
currently has over 10,000 packages that are published, and which have gone through an extensive

CONTACT Kasper Welbers kasperwelbers@gmail.com Institute for Media Studies, University of Leuven, Sint-Andriesstraat
2 – box 15530, Antwerp 2000, Belgium.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/hcms.
1The term “data science” is a popular buzzword related to “data-driven research” and “big data” (Provost & Fawcett, 2013).
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screening for procedural conformity and cross-platform compatibility before being accepted by the
archive.2 R thus features a wide range of inter-compatible packages, maintained and continuously
updated by scholars, practitioners, and projects such as RStudio and rOpenSci. Furthermore, these
packages may be installed easily and safely from within the R environment using a single command.
R thus provides a solid bridge for developers and users of new analysis tools to meet, making it a
very suitable programming environment for scientific collaboration.

Text analysis in particular has become well established in R. There is a vast collection of dedicated
text processing and text analysis packages, from low-level string operations (Gagolewski, 2017) to
advanced text modeling techniques such as fitting Latent Dirichlet Allocation models (Blei, Ng, &
Jordan, 2003; Roberts et al., 2014) — nearly 50 packages in total at our last count. Furthermore, there
is an increasing effort among developers to cooperate and coordinate, such as the rOpenSci special
interest group.3 One of the main advantages of performing text analysis in R is that it is often
possible, and relatively easy, to switch between different packages or to combine them. Recent efforts
among the R text analysis developers’ community are designed to promote this interoperability to
maximize flexibility and choice among users.4 As a result, learning the basics for text analysis in R
provides access to a wide range of advanced text analysis features.

Structure of this Teacher’s Corner

This teacher’s corner covers the most common steps for performing text analysis in R, from data
preparation to analysis, and provides easy to replicate example code to perform each step. The
example code is also digitally available in our online appendix, which is updated over time.5 We
focus primarily on bag-of-words text analysis approaches, meaning that only the frequencies of
words per text are used and word positions are ignored. Although this drastically simplifies text
content, research and many real-world applications show that word frequencies alone contain
sufficient information for many types of analysis (Grimmer & Stewart, 2013).

Table 1 presents an overview of the text analysis operations that we address, categorized in three
sections. In the data preparation section we discuss five steps to prepare texts for analysis. The first
step, importing text, covers the functions for reading texts from various types of file formats (e.g., txt,
csv, pdf) into a raw text corpus in R. The steps string operations and preprocessing cover techniques
for manipulating raw texts and processing them into tokens (i.e., units of text, such as words or word
stems). The tokens are then used for creating the document-term matrix (DTM), which is a common
format for representing a bag-of-words type corpus, that is used by many R text analysis packages.
Other non-bag-of-words formats, such as the tokenlist, are briefly touched upon in the advanced
topics section. Finally, it is a common step to filter and weight the terms in the DTM. These steps are
generally performed in the presented sequential order (see Figure 1 for conceptual illustration). As
we will show, there are R packages that provide convenient functions that manage multiple data
preparation steps in a single line of code. Still, we first discuss and demonstrate each step separately
to provide a basic understanding of the purpose of each step, the choices that can be made and the
pitfalls to watch out for.

The analysis section discusses four text analysis methods that have become popular in commu-
nication research (Boumans & Trilling, 2016) and that can be performed with a DTM as input.
Rather than being competing approaches, these methods have different advantages and disadvan-
tages, so choosing the best method for a study depends largely on the research question, and

2Other programming environments have similar archives, such as pip for python. However, CRAN excels in how it is strictly
maintained, with elaborate checks that packages need to pass before they will be accepted.

3The London School of Economics and Political Science recently hosted a workshop (http://textworkshop17.ropensci.org/), forming
the beginnings of an rOpenSci special interest group for text analysis.

4For example, the tif (Text Interchange Formats) package (rOpenSci Text Workshop, 2017) describes and validates standards for
common text data formats.

5https://github.com/kasperwelbers/text_analysis_in_R.
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sometimes different methods can be used complementarily (Grimmer & Stewart, 2013). Accordingly,
our recommendation is to become familiar with each type of method. To demonstrate the general
idea of each type of method, we provide code for typical analysis examples. Furthermore, It is
important to note that different types of analysis can also have different implications for how the
data should be prepared. For each type of analysis we therefore address general considerations for
data preparation.

Finally, the additional advanced topics section discusses alternatives for data preparation and
analysis that require external software modules or that go beyond the bag-of-words assumption,
using word positions and syntactic relations. The purpose of this section is to provide a glimpse of
alternatives that are possible in R, but might be more difficult to use.

Within each category we distinguish several groups of operations, and for each operation we
demonstrate how they can be implemented in R. To provide parsimonious and easy to replicate
examples, we have chosen a specific selection of packages that are easy to use and broadly
applicable. However, there are many alternative packages in R that can perform the same or
similar operations. Due to the open-source nature of R, different people from often different
disciplines have worked on similar problems, creating some duplication in functionality across
different packages. This also offers a range of choice, however, providing alternatives to suit a
user’s needs and tastes. Depending on the research project, as well as personal preference, other
packages might be better suited to different readers. While a fully comprehensive review and
comparison of text analysis packages for R is beyond our scope here—especially given that
existing and new packages are constantly being developed—we have tried to cover, or at least
mention, a variety of alternative packages for each text analysis operation.6 In general, these

Table 1. An overview of text analysis operations, with the R packages used in this Teacher’s Corner.

R packages

Operation example alternatives

Data preparation
importing text readtext jsonlite, XML, antiword, readxl, pdftools
string operations stringi stringr
preprocessing quanteda stringi, tokenizers, snowballC, tm, etc.
document-term matrix (DTM) quanteda tm, tidytext, Matrix
filtering and weighting quanteda tm, tidytext, Matrix
Analysis
dictionary quanteda tm, tidytext, koRpus, corpustools
supervised machine learning quanteda RTextTools, kerasR, austin
unsupervised machine learning topicmodels quanteda, stm, austin, text2vec
text statistics quanteda koRpus, corpustools, textreuse
Advanced topics
advanced NLP spacyr coreNLP, cleanNLP, koRpus
word positions and syntax corpustools quanteda, tidytext, koRpus

Figure 1. Order of text analysis operations for data preparation and analysis.

6For a list that includes more packages, and that is also maintained over time, a good source is the CRAN Task View for Natural
Language Processing (Wild, 2017). CRAN Task Views are expert curated and maintained lists of R packages on the Comprehensive
R Archive Network, and are available for various major methodological topics.
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packages often use the same standards for data formats, and thus are easy to substitute or
combine with the other packages discussed in this teacher’s corner.

Data preparation

Data preparation is the starting point for any data analysis. Not only is computational text analysis
no different in this regard, but also frequently presents special challenges for data preparation that
can be daunting for novice and advanced practitioners alike. Furthermore, preparing texts for
analysis requires making choices that can affect the accuracy, validity, and findings of a text analysis
study as much as the techniques used for the analysis (Crone, Lessmann, & Stahlbock, 2006; Günther
& Quandt, 2016; Leopold & Kindermann, 2002). Here we distinguish five general steps: importing
text, string operations, preprocessing, creating a document-term matrix (DTM), and filtering and
weighting the DTM.

Importing text

Getting text into R is the first step in any R-based text analytic project. Textual data can be stored in
a wide variety of file formats. R natively supports reading regular flat text files such as CSV and TXT,
but additional packages are required for processing formatted text files such as JSON (Ooms, 2014),
HTML, and XML (Lang & the CRAN Team, 2017), and for reading complex file formats such as
Word (Ooms, 2017a), Excel (Wickham & Bryan, 2017) and PDF (Ooms, 2017b). Working with these
different packages and their different interfaces and output can be challenging, especially if different
file formats are used together in the same project. A convenient solution for this problem is the
readtext package, that wraps various import packages together to offer a single catch-all function for
importing many types of data in a uniform format. The following lines of code illustrate how to read
a CSV file with the readtext function, by providing the path to the file as the main argument (the
path can also be an URL, as used in our example; online appendix with copyable code available from
https://github.com/kasperwelbers/text_analysis_in_R).

The same function can be used for importing all formats mentioned above, and the path can also
reference a (zip) folder to read all files within. In most cases, the only thing that has to be specified is
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the name of the field that contains the texts. Not only can multiple files be references using simple,
“glob”-style pattern matches, such as ~/myfiles/*.txt, but also the same command will recurse
through sub-directories to locate these files. Each file is automatically imported according to its
format, making it very easy to import and work with data from different input file types.

Another important consideration is that texts can be represented with different character encod-
ings. Digital text requires binary code to be mapped to semantically meaningful characters, but many
different such mappings exist, with widely different methods of encoding “extended” characters,
including letters with diacritical marks, special symbols, and emoji. In order to be able to map all
known characters to a single scheme, the Unicode standard was proposed, although it also requires a
digital encoding format (such as the UTF-8 format, but also UTF-16 or UTF-32). Our recommenda-
tion is simple: in R, ensure that all texts are encoded as UTF-8, either by reading in UTF-8 texts, or
converting them from a known encoding upon import. If the encoding is unknown, readtext’s
encoding function can be used to guess the encoding. readtext can convert most known encodings
(such as ISO-8859-2 for Central and Eastern European languages, or Windows-1250 for Cyrillic—
although there are hundreds of others) into the common UTF-8 standard. R also offers additional
low-level tools for converting character encodings, such as a bundled version of the GNU libiconv
library, or conversion though the stringi package.

String operations

One of the core requirements of a framework for computational text analysis is the ability to
manipulate digital texts. Digital text is represented as a sequence of characters, called a string. In
R, strings are represented as objects called “character” types, which are vectors of strings. The group
of string operations refers to the low-level operations for working with textual data. The most
common string operations are joining, splitting, and extracting parts of strings (collectively referred
to as parsing) and the use of regular expressions to find or replace patterns.

Although R has numerous built-in functions for working with character objects, we recommend
using the stringi package (Gagolewski, 2017) instead. Most importantly, because stringi uses the
International Components for Unicode (ICU) library for proper Unicode support, such as imple-
menting Unicode character categories (such as punctuation or spacing) and Unicode-defined rules
for case conversion that work correctly in all languages. An alternative is the stringr package, which
uses stringi as a backend, but has a simpler syntax that many end users will find sufficient for their
needs.

It is often unnecessary to perform manual, low-level string operations, because the most impor-
tant applications of string operations for text analysis are built into common text analysis packages.
Nevertheless, access to low-level string operations provides a great deal of versatility, which can be
crucial when standardized solutions are not an option for a specific use case. The following example
shows how to perform some basic cleaning with stringi functions: removing boilerplate content in
the form of markup tags, stripping extraneous whitespace, and converting to lower case.
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As with most functions in R, stringi operations are vectorized, meaning they apply to each element
of a vector. Manipulation of vectors of strings is the recommended approach in R, since looping over
each element and processing it separately in R is very inefficient.

Preprocessing

For most computational text analysis methods, full texts must be tokenized into smaller, more
specific text features, such as words or word combinations. Also, the computational performance
and accuracy of many text analysis techniques can be improved by normalizing features, or by
removing “stopwords”: words designated in advance to be of no interest, and which are therefore
discarded prior to analysis. Taken together, these preparatory steps are commonly referred to as
“preprocessing”. Here we first discuss several of the most common preprocessing techniques, and
show how to perform each technique with the quanteda package.

In practice, all of these preprocessing techniques can be applied in one function when creating a
document-term matrix, as we will demonstrate in the DTM section. Here, we show each step
separately to illustrate what each technique does.

Tokenization
Tokenization is the process of splitting a text into tokens. This is crucial for computational text
analysis, because full texts are too specific to perform any meaningful computations with. Most often
tokens are words, because these are the most common semantically meaningful components of texts.

For many languages, splitting texts by words can mostly be done with low-level string processing
due to clear indicators of word boundaries, such as white spaces, dots and commas. A good
tokenizer, however, must also be able to handle certain exceptions, such as the period in the title
“Dr.”, which can be confused for a sentence boundary. Furthermore, tokenization is more difficult
for languages where words are not clearly separated by white spaces, such as Chinese and Japanese.
To deal with these cases, some tokenizers include dictionaries of patterns for splitting texts. In R, the
stringi package is often used for sentence and word disambiguation, for which it leverages diction-
aries from the ICU library. There is also a dedicated package for text tokenization, called tokenizers
(Mullen, 2016b).

The following code uses quanteda’s (Benoit et al., 2017) tokens function to split a single
sentence into words. The tokens function returns a list whose elements each contain the tokens of
the input texts as a character vector.

Normalization: Lowercasing and stemming
The process of normalization broadly refers to the transformation of words into a more uniform
form. This can be important if for a certain analysis a computer has to recognize when two words
have (roughly) the same meaning, even if they are written slightly differently. Another advantage is
that it reduces the size of the vocabulary (i.e., the full range of features used in the analysis). A simple
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but important normalization techniques is to make all text lower case. If we do not perform this
transformation, then a computer will not recognize that two words are identical if one of them was
capitalized because it occurred at the start of a sentence.

Another argument for normalization is that a base word might have different morphological
variations, such as the suffixes from conjugating a verb, or making a noun plural. For purposes of
analysis, we might wish to consider these variations as equivalent because of their close semantic
relation, and because reducing the feature space is generally desirable when multiple features are in
fact closely related. A technique for achieving this is stemming, which is essentially a rule-based
algorithm that converts inflected forms of words into their base forms (stems). A more advanced
technique is lemmatization, which uses a dictionary to replace words with their morphological root
form. However, lemmatization in R requires external software modules (see the advanced pre-
processing section for instructions) and for weakly inflected languages such as modern English,
stemming is often sufficient. In R, the SnowballC (Bouchet-Valat, 2014; Porter, 2001) package is
used in many text analysis packages (such as quanteda and tm) to implement stemming, and
currently supports 15 different languages. Lowercasing and stemming of character, tokens, or
feature vectors can be performed in quanteda with the *_tolower and *_wordstem functions,
such as char_tolower to convert character objects to lower case, or tokens_wordstem to
stem tokens.

In this example we see that the difference between “an” and “An” is eliminated due to low-
ercasing. The words “example” and “techniques” are reduced to “exampl” and “techniqu”, such that
any distinction between singular and plural forms is removed.

Removing stopwords
Common words such as “the” in the English language are rarely informative about the content of a
text. Filtering these words out has the benefit of reducing the size of the data, reducing computa-
tional load, and in some cases also improving accuracy. To remove these words beforehand, they are
matched to predefined lists of “stop words” and deleted. Several text analysis packages provide
stopword lists for various languages, that can be used to manually filter out stopwords. In quanteda,
the stopwords function returns a character vector of stopwords for a given language. A total of 17
languages are currently supported.
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Care should be taken to perform some preprocessing steps in the correct order, for instance
removing stopwords prior to stemming, otherwise “during” will be stemmed into “dure” and not
matched to a stopword “during”. Case conversion may also create sequencing issues, although the
default stopword matching used by quanteda is case-insensitive.

Conveniently, the preprocessing steps discussed above can all be performed with a single function
that will automatically apply the correct order of operations. We will demonstrate this in the next
section.

Document-term matrix

The document term matrix (DTM) is one of the most common formats for representing a text
corpus (i.e. a collection of texts) in a bag-of-words format. A DTM is a matrix in which rows are
documents, columns are terms, and cells indicate how often each term occurred in each document.
The advantage of this representation is that it allows the data to be analyzed with vector and matrix
algebra, effectively moving from text to numbers. Furthermore, with the use of special matrix
formats for sparse matrices, text data in a DTM format is very memory efficient and can be analyzed
with highly optimized operations.

Two of the most established text analysis packages in R that provide dedicated DTM classes are
tm and quanteda. Of the two, the venerable tm package is the more commonly used, with a user base
of almost 10 years (Meyer, Hornik, & Feinerer, 2008) and several other R packages using its DTM
classes (DocumentTermMatrix and TermDocumentMatrix) as inputs for their analytic functions. The
quanteda package is a more recently developed package, built by a team supported by an ERC grant
to provide state-of-the-art, high performance text analysis. Its sparse DTM class, known as a dfm or
document-feature matrix, is based on the powerful Matrix package (Bates & Maechler, 2015) as a
backend, but includes functions to convert to nearly every other sparse document-term matrix used
in other R packages (including the tm formats). The performance and flexibility of quanteda’s dfm
format lends us to recommend it over the tm equivalent.

Another notable alternative is the tidytext package (Silge & Robinson, 2016). This is a text analysis
package that is part of the Tidyverse7—a collection of R packages with a common philosophy and
format. Central to the Tidyverse philosophy is that all data is arranged as a table, where (1) “each
variable forms a column”, (2) “each observation forms a row”, and (3) “each type of observational unit
forms a table” (Wickham et al., 2014, p. 4). As such, tidytext does not strictly use a document term
matrix, but instead represents the same data in a long format, where each (non-zero) value of the DTM
is a row with the columns document, term, and count (note that this is essentially a triplet format for
sparse matrices, with the columns specifying the row, column and value). This format can be less
memory efficient and make matrix algebra less easily applicable, but has the advantage of being able to
add more variables (e.g., a sentiment score) and enables the use of the entire Tidyverse arsenal. Thus,
for users that prefer the tidy data philosophy, tidytext can be a good alternative package to quanteda or
tm, although these packages can also be used together quite nicely depending on the particular
operations desired.

Consistent with the other examples in this teacher’s corner, we demonstrate the creation of DTMs
using the quanteda package. Its dfm function provides a single line solution for creating a DTM
from raw text, that also integrates the preprocessing techniques discussed above. These may also be
built up through a sequence of lower-level functions, but many users find it convenient to go straight
from a text or corpus to a DTM using this single function.

7http://www.tidyverse.org/.
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The DTM can also be created from a quanteda corpus object, which stores text and associated
meta-data, including document-level variables. When a corpus is tokenized or converted into a
DTM, these document-level variables are saved in the object, which can be very useful later when the
documents in the DTM need to be used as covariates in supervised machine learning. The stored
document variables also make it possible to aggregate quanteda objects by groups, which is
extremely useful when texts are stored in small units—like Tweets—but need to be aggregated in a
DTM by grouping variables such as users, dates, or combinations of these.

Because quanteda is compatible with the readtext package, creating a corpus from texts on disk
takes only a single additional step. In the following example we create a DTM from the readtext data
as imported above.

Filtering and weighting

Not all terms are equally informative for text analysis. One way to deal with this is to remove these
terms from the DTM. We have already discussed the use of stopword lists to remove very common
terms, but there are likely still other common words and this will be different between corpora.
Furthermore, it can be useful to remove very rare terms for tasks such as category prediction (Yang
& Pedersen, 1997) or topic modeling (Griffiths & Steyvers, 2004). This is especially useful for
improving efficiency, because it can greatly reduce the size of the vocabulary (i.e., the number of
unique terms), but it can also improve accuracy. A simple but effective method is to filter on
document frequencies (the number of documents in which a term occurs), using a threshold for
minimum and maximum number (or proportion) of documents (Griffiths & Steyvers, 2004; Yang &
Pedersen, 1997).

Instead of removing less informative terms, an alternative approach is assign them variable
weights. Many text analysis techniques perform better if terms are weighted to take an estimated
information value into account, rather than directly using their occurrence frequency. Given a
sufficiently large corpus, we can use information about the distribution of terms in the corpus to
estimate this information value. A popular weighting scheme that does so is term frequency-inverse
document frequency (tf-idf), which down-weights that occur in many documents in the corpus.
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Using a document frequency threshold and weighting can easily be performed on a DTM.
quanteda includes the functions docfreq, tf, and tfidf, for obtaining document frequency,
term frequency, and tf-idf respectively. Each function has numerous options for implementing the
SMART weighting scheme Manning et al. (2008). As a high-level wrapper to these, quanteda also
provides the dfm_weight function. In the example below, the word “senat[e]” has a higher weight
than the less informative term “among”, which both occur once in the first document.

Analysis

For an overview of text analysis approaches we build on the classification proposed by Boumans and
Trilling (2016) in which three approaches are distinguished: counting and dictionary methods,
supervised machine learning, and unsupervised machine learning. They position these approaches,
in this order, on a dimension from most deductive to most inductive. Deductive, in this scenario,
refers to the use of an a priori defined coding scheme. In other words, the researchers know
beforehand what they are looking for, and only seek to automate this analysis. The relation to the
concept of deductive reasoning is that the researcher assumes that certain rules, or premises, are true
(e.g., a list of words that indicates positive sentiment) and thus can be applied to draw conclusions
about texts. Inductive, in contrast, means here that instead of using an a priori coding scheme, the
computer algorithm itself somehow extracts meaningful codes from texts. For example, by looking
for patterns in the co-occurrence of words and finding latent factors (e.g., topics, frames, authors)
that explain these patterns—at least mathematically. In terms of inductive reasoning, it can be said
that the algorithm creates broad generalizations based on specific observations.

In addition to these three categories, we also consider a statistics category, encompassing all
techniques for describing a text or corpus in numbers. Like unsupervised learning, these techniques
are inductive in the sense that no a priori coding scheme is used, but they do not use machine learning.

For the example code for each type of analysis, we use the Inaugural Addresses of US presidents
(N = 58) that is included in the quanteda package.

Counting and dictionary

The dictionary approach broadly refers to the use of patterns—from simple keywords to complex
Boolean queries and regular expressions—to count how often certain concepts occur in texts. This is
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a deductive approach, because the dictionary defines a priori what codes are measured and how, and
this is not affected by the data.8 Using dictionaries is a computationally simple but powerful
approach. It has been used to study subjects such as media attention for political actors (Schuck,
Xezonakis, Elenbaas, Banducci, & De Vreese, 2011; Vliegenthart, Boomgaarden, & Van Spanje, 2012)
and framing in corporate news (Schultz, Kleinnijenhuis, Oegema, Utz, & Van Atteveldt, 2012).
Dictionaries are also a popular approach for measuring sentiment (De Smedt & Daelemans, 2012;
Mostafa, 2013; Taboada, Brooke, Tofiloski, Voll, & Stede, 2011) as well as other dimensions of
subjective language (Tausczik & Pennebaker, 2010). By combining this type of analysis with
information from advanced NLP techniques for identifying syntactic clauses, it also becomes
possible to perform more fine-grained analyses, such as sentiment expressions attributed to specific
actors (Van Atteveldt, 2008), or actions and affections from one actor directed to another (Van
Atteveldt, Sheafer, Shenhav, & Fogel-Dror, 2017).

The following example shows how to apply a dictionary to a quanteda DTM. The first step is to
create a dictionary object (here called myDict), using the dictionary function. For simplicity our
example uses a very simple dictionary, but it is is also possible to import large, pre-made dictionaries,
including files in other text analysis dictionary formats such as LIWC, Wordstat, and Lexicoder.
Dictionaries can also be written and imported from YAML files, and can include patterns of fixed
matches, regular expressions, or the simpler “glob” pattern match (using just * and ? for wildcard
characters) common in many dictionary formats. With the dfm_lookup function, the dictionary
object can then be applied on a DTM to create a new DTM in which columns represent the dictionary
codes.

Supervised machine learning

The supervised machine learning approach refers to all classes of techniques in which an algorithm
learns patterns from an annotated set of training data. The intuitive idea is that these algorithms can
learn how to code texts if we give them enough examples of how they should be coded. A
straightforward example is sentiment analysis, using a set of texts that are manually coded as
positive, neutral, or negative, based on which the algorithm can learn which features (words or
word combinations) are more likely to occur in positive or negative texts. Given an unseen text
(from which the algorithm was not trained), the sentiment of the text can then be estimated based on

8Notably, there are techniques for automatically expanding a dictionary based on the semantic space of a text corpus (see, e.g.,
Watanabe, 2017). This can be said to add an inductive layer to the approach, because the coding rules (i.e., the dictionary) are to
some extent learned from the data.
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the presence of these features. The deductive part is that the researchers provide the training data,
which contains good examples representing the categories that the researchers are attempting to
predict or measure. However, the researchers do not provide explicit rules for how to look for these
codes. The inductive part is that the supervised machine learning algorithm learns these rules from
the training data. To paraphrase a classic syllogism: if the training data is a list of people that are
either mortal or immortal, then the algorithm will learn that all men are extremely likely to be
mortal, and thus would estimate that Socrates is mortal as well.

To demonstrate this, we train a model to predict whether an Inaugural Address was given before
World War II—which we expect because prominent issues shift over time, and after wars in
particular. Some dedicated packages for supervised machine learning are RTextTools (Jurka,
Collingwood, Boydstun, Grossman, & Van Atteveldt, 2014) and kerasR (Arnold, 2017b). For this
example, however, we use a classifier that is included in quanteda. Before we start, we set a custom
seed for R’s random number generator so that the results of the random parts of the code are always
the same. To prepare the data, we add the document (meta) variable is_prewar to the DTM that
indicates which documents predate 1945. This is the variable that our model will try to predict. We
then split the DTM into training (train_dtm) and test (test_dtm) data, using a random sample
of 40 documents for training and the remaining 18 documents for testing. The training data is used
to train a multinomial Naive Bayes classifier (Manning et al., 2008, Ch. 13) which we assign to
nb_model. To test how well this model predicts whether an Inaugural Address predates the war, we
predict the code for the test data, and make a table in which the rows show the prediction and the
columns show the actual value of the is_prewar variable.

The results show that the predictions are perfect. Of the eight times that FALSE (i.e. Inaugural Address
does not predate the war) was predicted, and the 10 times that TRUE was predicted, this was actually the
case.

Unsupervised machine learning

In unsupervised machine learning approaches, no coding rules are specified and no annotated
training data is provided. Instead, an algorithm comes up with a model by identifying certain
patterns in text. The only influence of the researcher is the specification of certain parameters,
such as the number of categories into which documents are classified. Popular examples are topic
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modeling for automatically classifying documents based on an underlying topical structure (Blei
et al., 2003; Roberts et al., 2014) and the “Wordfish” parametric factor model (Proksch & Slapin,
2009) for scaling documents on a single underlying dimension, such as left-right ideology.

Grimmer and Stewart (2013) argue that supervised and unsupervised machine learning are not
competitor methods, but fulfill different purposes and can very well be used to complement each other.
Supervised methods are the most suitable approach if documents need to be placed in predetermined
categories, because it is unlikely that an unsupervised method will yield a categorization that reflects these
categories and how the researcher interprets them. The advantage of the somewhat unpredictable nature of
unsupervised methods is that it can come up with categories that the researchers had not considered.
(Conversely, this may also present challenges for post-hoc interpretation when results are unclear.)

To demonstrate the essence of unsupervised learning, the example below shows how to fit a topic model
in R using the topicmodels package (Grun &Hornik, 2011). To focus more specifically on topics within the
inaugural addresses, and to increase the number of texts to model, we first split the texts by paragraph and
create a newDTM.From thisDTMwe remove termswith a document frequency of five and lower to reduce
the size of the vocabulary (less important for current example) and use quanteda’s convert function to
convert the DTM to the format used by topicmodels. We then train a vanilla LDA topic model (Blei et al.,
2003) with five topics—using a fixed seed tomake the results reproducible, since LDA is non-deterministic.

The results show the first five terms of the five topics. Although this is a basic example, the idea of
“topics” being found bottom-up from the data can be seen in the semantic coherence of terms within the
same topic. In particular, topic one seems to revolve around governance, with the terms “govern[ance]”,
“power”, “state”, “constitut[ion]”, and “law”.

Statistics

Various statistics can be used to describe, explore and analyze a text corpus. An example of a popular
technique is to rank the information value of words inside a corpus and then visualize the most
informative words as a word cloud to get a quick indication of what a corpus is about. Text statistics
(e.g., average word and sentence length, word and syllable counts) are also commonly used as an
operationalization of concepts such as readability (Flesch, 1948) or lexical diversity (McCarthy &
Jarvis, 2010). A wide range of such measures is available in R with the koRpus package (Michalke,
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2017). Furthermore, there are many useful applications of calculating term and document simila-
rities (which are often based on the inner product of a DTM or transposed DTM), such as analyzing
semantic relations between words or concepts and measuring content homogeneity. Both techniques
are supported in quanteda, corpustools (Welbers & Van Atteveldt, 2016), or dedicated packages such
as textreuse (Mullen, 2016a) for text overlap.

A particularly useful technique is to compare the term frequencies of two corpora, or between two
subsets of the same corpus. For instance, to see which words are more likely to occur in documents
about a certain topic. In addition to providing a way to quickly explore how this topic is discussed in
the corpus, this can provide input for developing better queries. In the following example we show
how to perform this technique in quanteda.

Here, the signed χ2 measure of association indicates that “america”, “american”, and “first” were
used with far greater frequency by Trump than Obama, while “us”, “can”, “freedom”, “peace”, and
“liberty” were among the words much more likely to be used by Obama than by Trump.

Advanced topics

The data preparation and bag-of-words analysis techniques discussed above are the basis for the
majority of the text analysis approaches that are currently used in communication research. For
certain types of analyses, however, techniques might be required that rely on external software
modules, are more computationally demanding, or that are more complicated to use. In this section
we briefly elaborate on some of these advanced approaches that are worth taking note of.

Advanced NLP

In addition to the preprocessing techniques discussed in the data preparation section, there are
powerful preprocessing techniques that rely on more advanced natural language processing (NLP).
At present, these techniques are not available in native R, but rely on external software modules that
often have to be installed outside of R. Many of the advanced NLP techniques are also much more
computationally demanding, thus taking more time to perform. Another complication is that these
techniques are language specific, and often only available for English and a few other big languages.

Several R packages provide interfaces for external NLP modules, so that once these modules have
been installed, they can easily be used from within R. The coreNLP (Arnold & Tilton, 2016) package
provides bindings for Stanford CoreNLP java library (Manning et al., 2014), which is a full NLP
parser for English, that also supports (albeit with limitations) Arabic, Chinese, French, German, and
Spanish. The spacyr (Benoit & Matsuo, 2017) package provides an interface for the spaCy module for
Python, which is comparable to CoreNLP but is faster, and supports English and (again with some
limitations) German and French. A third package, cleanNLP (Arnold, 2017a), conveniently wraps

258 K. WELBERS ET AL.

D
ow

nl
oa

de
d 

by
 [

G
ot

he
nb

ur
g 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

1:
30

 1
1 

D
ec

em
be

r 
20

17
 



both CoreNLP and spaCy, and also includes a minimal back-end that does not rely on external
dependencies. This way it can be used as a swiss army knife, choosing the approach that best suits
the occasion and for which the back-end is available, but with standardized output and methods.

Advanced NLP parsers generally perform all techniques in one go. In the following example we
use the spacyr package to parse a sentence, that will be used to illustrate four advanced NLP
techniques: lemmatization, part-of-speech (POS) tagging, named entity recognition (NER) and
dependency parsing.

Lemmatization

Lemmatization fulfills a similar purpose as stemming, but instead of cutting off the ends of terms to
normalize them, a dictionary is used to replace terms with their lemma. The main advantage of this

us
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Figure 2. Keyness plot comparing relative word frequencies for Trump and Obama.
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approach is that it can more accurately normalize different verb forms—such as “gave” and “give” in
the example—which is particularly important for heavily inflected languages such as Dutch or
German.

Part-of-speech tagging

POS tags are morpho-syntactic categories for words, such as nouns, verbs, articles and adjectives. In
the example we see three proper nouns (PROPN), a verb (VERB) an adjective (ADJ), two nouns
(NOUN), and punctuation (PUNCT). This information can be used to focus an analysis on certain
types of grammar categories, for example, using nouns and proper names to measure similar events
in news items (Welbers, Van Atteveldt, Kleinnijenhuis, & Ruigrok, 2016), or using adjectives to focus
on subjective language (De Smedt & Daelemans, 2012). Similarly, it is a good approach for filtering
out certain types of words, such as articles or pronouns.

Named entity recognition

Named entity recognition is a technique for identifying whether a word or sequence of words
represents an entity and what type of entity, such as a person or organization. Both “Bob Smith” and
“Alice” are recognized as persons. Ideally, named entity recognition is paired with co-reference
resolution. This is a technique for grouping different references to the same entity, such as anaphora
(e.g., he, she, the president). In the example sentence, the word “his” refers to “Bob Smith”. Co-
reference resolution is currently only supported by Stanford CoreNLP, but discussion on the spaCy
GitHub page suggests that this feature is on the agenda.

Dependency parsing

Dependency parsing provides the syntactic relations between tokens, which can be used to analyze
texts at the level of syntactic clauses (Van Atteveldt, 2008). In the spacyr output this information is
given in the head_token_i and dep_rel columns, where the former indicates to what token a token
is related and the latter indicates the type of relation. For example, we see that “Bob” is related to
“Smith” (head_token_i 2) as a compound, thus recognizing “Bob Smith” as a single entity. Also,
since “Smith” is the nominal subject (nsubj) of the verb “gave”, and Alice is the dative case (dative)
we know that “Bob Smith” is the one who gives to “Alice”. This type of information can for
instance be used to analyze who is attacking whom in news coverage about the Gaza war (Van
Atteveldt et al., 2017).

Word positions and syntax

As discussed above, the bag-of-words representation of texts is memory-efficient and convenient for
various types of analyses, and this often outweighs the disadvantage of losing information by
dropping the word positions. For some analyses, however, the order of words and syntactical
properties can be highly beneficial if not crucial. In this section we address some text representations
and analysis techniques where word positions are maintained.

A simple but potentially powerful solution is to use higher order n-grams. That is, instead of
tokenizing texts into single words (n = 1; unigrams), sequences of two words (n = 2; bigrams), three
words (n = 3; trigrams) or more are used.9 The use of higher order n-grams is often optional in
tokenization functions. quanteda makes it possible to form n-grams when tokenizing, or to form
ngrams from tokens already formed. Other options include the formation of “skip-grams”, or
n-grams from words with variable windows of adjacency. Such non-adjacent collocations form the

9The term n-grams can be used more broadly to refer to sequences, and is also often used for sequences of individual characters.
In this teacher’s corner we strictly use n-grams to refer to sequences of words.
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basis for counting weighted proximity vectors, used in vector-space network-based models built on
deep learning techniques (Mikolov, Chen, Corrado, & Dean, 2013; Selivanov, 2016). Below, we
illustrate how to form both tri-grams and skipgrams of size three using a vector of both 0 and 1
skips.

The advantage of this approach is that these n-grams can be used in the same way as unigrams:
we can make a DTM with n-grams, and perform all the types of analyses discussed above. Functions
for creating a DTM in R from raw text therefore often allow the use of n-grams other than unigrams.
For some analysis this can improve performance. Consider, for instance, the importance of negations
and amplifiers in sentiment analysis, such as “not good” and “very bad” (Aue & Gamon, 2005). An
important disadvantage, however, is that using n-grams is more computationally demanding, since
there are many more unique sequences of words than individual words. This also means that more
data is required to get a good estimate of the distribution of n-grams.

Another approach is to preserve the word positions after tokenization. This has three main
advantages. First, the order and distance of tokens can be taken into account in analyses, enabling
analyses such as the co-occurrence of words within a word window. Second, the data can be
transformed into both a fulltext corpus (by pasting together the tokens) and a DTM (by dropping
the token positions). This also enables the results of some text analysis techniques to be visualized in
the text, such as coloring words based on a word scale model (Slapin & Proksch, 2008), or to
produce browsers for topic models (Gardner et al., 2010). Third, each token can be annotated with
token specific information, such as obtained from advanced NLP techniques. This enables, for
instance, the use of dependency parsing to perform an analysis at the level of syntactic clauses
(Van Atteveldt et al., 2017). The main disadvantage of preserving positions is that it is very memory
inefficient, especially if all tokens are kept and annotations are added.

A common way to represent tokens with positions maintained is a data frame in which rows
represent tokens, ordered by their position, and columns represent different variables pertaining to
the token, such as the literal text, its lemma form and its POS tag. An example of this type of
representation was shown above in the advanced NLP section, in the spacyr token output. Several R
packages provide dedicated classes for tokens in this format. One is the koRpus (Michalke, 2017)
package, which specializes in various types of text statistics, in particular lexical diversity and
readability. Another is corpustools (Welbers & Van Atteveldt, 2016), which focuses on managing
and querying annotated tokens, and on reconstructing texts to visualize quantitative text analysis
results in the original text content for qualitative investigation. A third option is tidytext (Silge &
Robinson, 2016), which does not focus on this format of annotated tokens, but provides a framework
for working with tokenized text in data frames.

For a brief demonstration of utilizing word positions, we perform a dictionary search with the
corpustools package (Welbers & Van Atteveldt, 2016), that supports searching for words within a
given word distance. The results are then viewed in key word in context (KWIC) listings. In the
example, we look for the queries “freedom” and “americ*” within a distance of five words, using the
State of the Union speeches from George W. Bush and Barack Obama.
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Conclusion

R is a powerful platform for computational text analysis, that can be a valuable tool for communication
research. First, its well developed packages provide easy access to cutting edge text analysis techniques. As
shown here, not only are most common text analysis techniques implemented, but in most cases,
multiple packages offer users choice when selecting tools to implement them. Many of these packages
have been developed by and for scholars, and provide established procedures for data preparation and
analysis. Second, R’s open source nature and excellent system for handling packagesmake it a convenient
platform for bridging the gap between research and tool development, which is paramount to establish-
ing a strong computational methods paradigm in communication research. New algorithms do not have
to be confined to abstract and complex explanations in journal articles aimed at methodology experts, or
made available through arcane code that many interested parties would not know what to do with. As an
R package, algorithms can be made readily available in a standardized and familiar format.

For new users, however, choosing from the wide range of text analysis packages in R can also be
daunting. With various alternatives for most techniques, it can be difficult to determine which
packages are worth investing the effort to learn. The primary goal of this teacher’s corner, therefore,
has been to provide a starting point for scholars looking for ways to incorporate computational text
analysis in their research. Our selection of packages is based on our experience as both users and
developers of text analysis packages in R, and should cover the most common use cases. In
particular, we advise users to become familiar with at least one established and well-maintained
package that handles data preparation and management, such as quanteda, tidytext (Silge &
Robinson, 2016) or tm (Feinerer & Hornik, 2017). From here, it is often a small step to convert
data to formats that are compatible with most of the available text analysis packages.

It should be emphasized that the selection of packages presented in this teacher’s corner is not
exhaustive, and does not represent which packages are the most suitable for the associated function-
alities. Often, the best package for the job depends largely on specific features and problem specific
priorities such as speed, memory efficiency and accuracy. Furthermore, when it comes to establish-
ing a productive workflow, the importance of personal preference and experience should not be
underestimated. A good example is the workflow of the tidytext package (Silge & Robinson, 2016),
which could be preferred by people that are familiar with the tidyverse philosophy (Wickham et al.,
2014). Accordingly, the packages recommended in this teacher’s corner provide a good starting
point, and for many users could be all they need, but there are many other great package out there.
For a more complete list of packages, a good starting point is the CRAN Task View for Natural
Language Processing (Wild, 2017).

Marshall McLuhan (1964) famously stated that “we shape our tools, and thereafter our tools
shape us”, and in science the same can be said for how tools shape our findings. We thus argue that
the establishment of a strong computational methods paradigm in communication research goes
hand-in-hand with embracing open-source tool development as an inherent part of scientific
practice. As such, we conclude with a call for researchers to cite R packages similar to how one
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would cite other scientific work.10 This gives due credit to developers, and thereby provides a just
incentive for developers to publish and maintain new code, including proper testing and documen-
tation to facilitate the correct use of code by others. Citing packages is also paramount for the
transparency of research, which is especially important when using new computational techniques,
where results might vary depending on implementation choices and where the absence of bugs is
often not guaranteed. Just as our theories are shaped through collaboration, transparency and peer
feedback, so should we shape our tools.
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