Game theory 1

Lukáš Lehotský

MEB421

Agent vs. structure

- On the individualist extreme of agent structure spectrum
- Regards the social phenomena as interactions of individuals structure is a product of individual behavior
- Individual behavior is **unconstrained**

Criticism against rational choice theory

- Common criticism of rational choice people behave irrationally
- Rationality ≠ Sensibility
- Ordering preferences
- I can prefer taking over the world over painful death, but equally prefer painful death over taking over the world

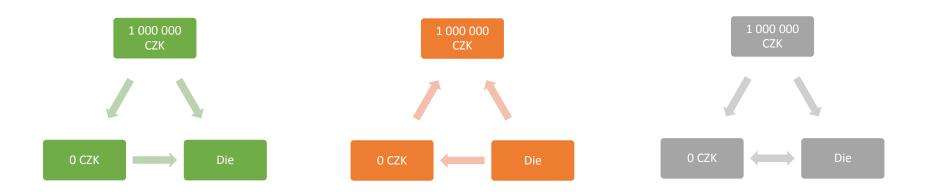
Rationality

- Defined by two key premises
 - Completeness
 - Transitivity

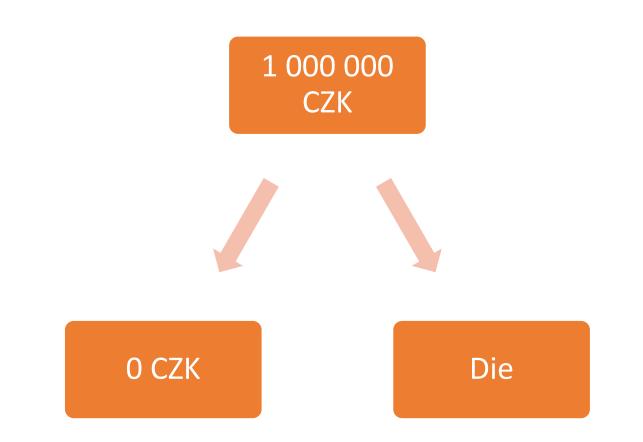
• Indifferent to normative assessment of preferences and choices

Completeness

- Preference ordering complete if and only if for any two outcomes X and Y individual:
 - A) Prefers X to Y strong preference relation
 - B) Prefers Y to X strong preference relation
 - C) Is indifferent weak preference relation

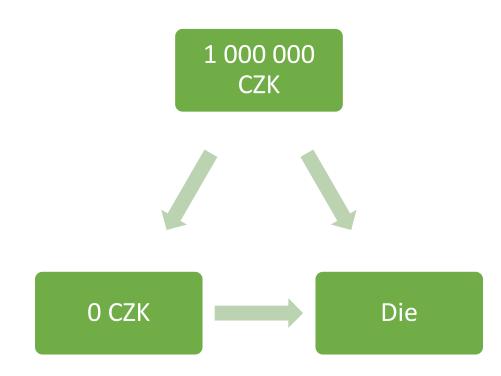


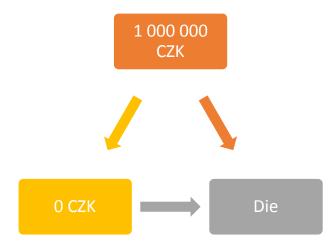
Incomplete preferences

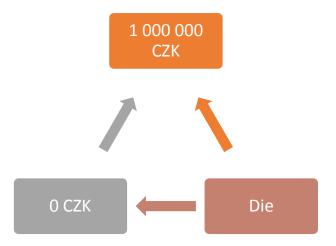


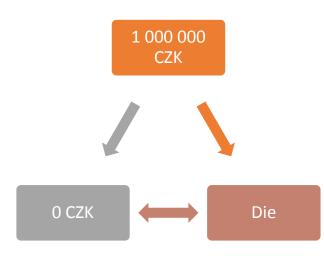
Transitivity

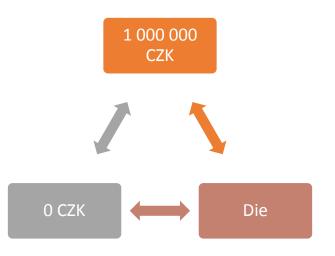
• For any three outcomes X, Y and Z, if X is preferred to Y and Y is preferred to Z, X must be preferred to Z





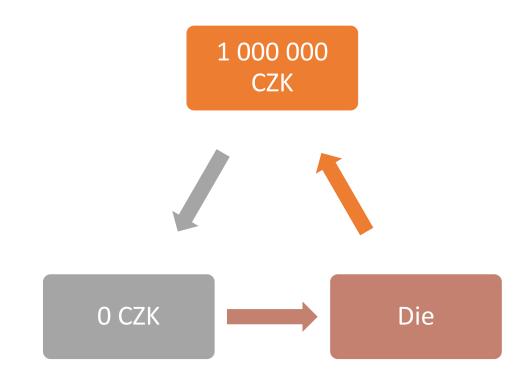






Intransitive preferences

- Prefer X to Y, Y to Z and Z to X
- Doesn't make sense



Other notions about preferences

- Preferences over outcomes are stable and do not change in the time of making decision – are fixed
- Preferences are ordinal they order actions but the difference between the two values has no meaning unless they state utility
- Compare two situations
 - u(C₁) = 1, u(C₂) = 2, u(C₃) = 0
 - u(C₁) = 1, u(C₂) = 200, u(C₃) = -50
- Both situations have same preference ordering
 - C₂ p C₁ p C₃

Other notions about rationality

- Rational choice theory is not attempting to explain cognitive processes happening in individuals
- Rationality tells nothing about preferences over outcomes
- Rational actors may differ in choices in same situation
- Rational actors can err

Types of games

Types of games

- Games of perfect information
- Games of imperfect information
- Cooperative games
- Non-cooperative games
- Constant-sum game
- Positive-sum game

Games of perfect/imperfect information

Perfect information games

- All players know other players' strategies available to them
- All players know payoffs over actions
- All players know what other players know

Imperfect information games

 Some information about other players' actions is not known to a player

Cooperative/non-cooperative games

Cooperative games

- Actors are allowed to make enforceable contracts
- Players do not need to cooperate, but cooperation is enforceable by an outside party

Non-cooperative games

- Actors unable to make enforceable contracts outside of those specifically modelled in the game
- Players might cooperate, but any cooperation must be selfenforcing

Constant-sum/Positive-sum games

Constant sum games

- Sum of all players' payoffs is the same for any outcome
- Gain for one participant is always at the expense of another
- Special case of zero-sum game where all outcomes involve a sum of all player's payoffs of 0

Positive-sum games

- Combined payoffs of all players are not the same in every outcome of the game
- Positive-sum game implies that players may have interests in common, to achieve an outcome that maximizes total payoffs.

Introducing a game

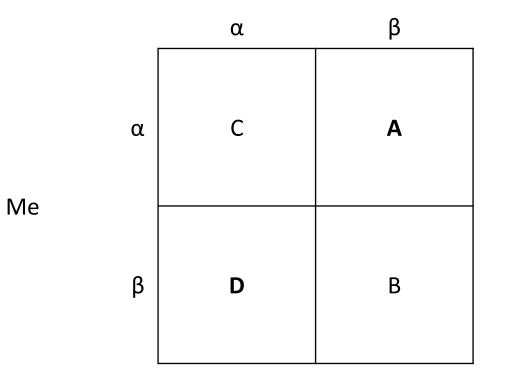
What makes a game the game

- Players
- Actions
- Strategies
- Outcomes
- Payoffs of player

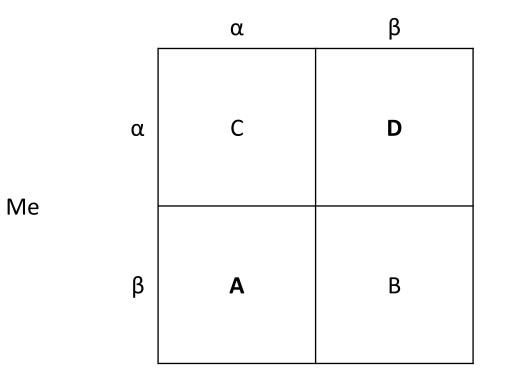
Game of grades

- Each pair can choose 2 actions: α or β
- If both choose $\alpha,$ both will receive \boldsymbol{C}
- If both choose β , both will receive **B**
- If one chooses α and other β , one will receive **A** and other **D**

Game of grades – my grades



Game of grades – my opponent's grades



Game of grades – normal form

Me

	α	β
α	<mark>C</mark> ,C	<mark>A</mark> , D
β	D , A	В,В

Games in normal form

Normal form representation of a game

- Called also "strategic form" or "matrix form"
- Visualized as a matrix
- Represents a game as if agents were acting **simultaneously**

Utilities (Payoffs)

- Grades are not utilites
- Utilities for game:
 - EU(A) = 3
 - EU(B) = 2
 - EU(C) = 1
 - EU(D) = 0
- Preference over outcomes: A > B > C > D -> APBPCPD

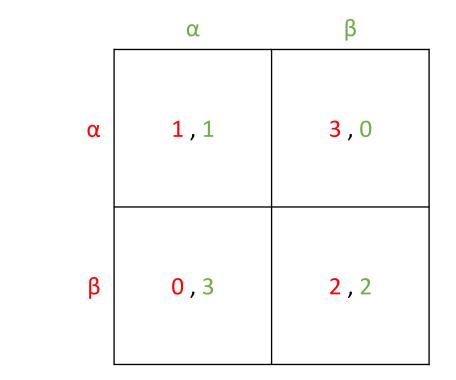
Game of grades with payoffs

Me

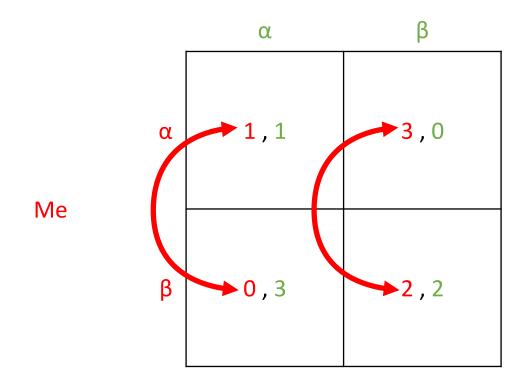
	α	β
α	<mark>1</mark> ,1	<mark>3</mark> ,0
β	<mark>0</mark> ,3	<mark>2</mark> ,2

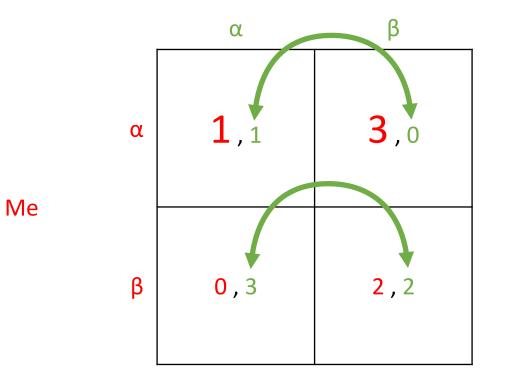
Solution concepts

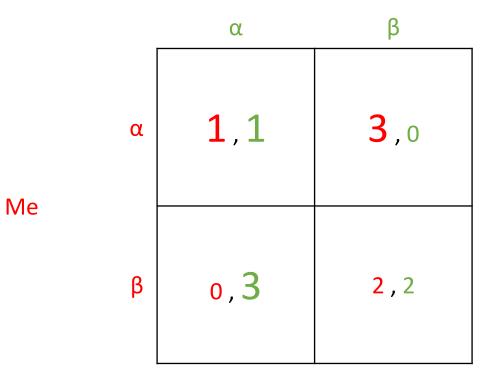
- Nash Equilibrium
 - Dominant Strategy Equilibrium
 - Pure Strategy Equilibrium
 - Mixed Strategy Equilibrium
- Subgame Perfect Equilibrium
- Bayesian Equilibrium
- Weak Perfect Bayesian Equilibrium

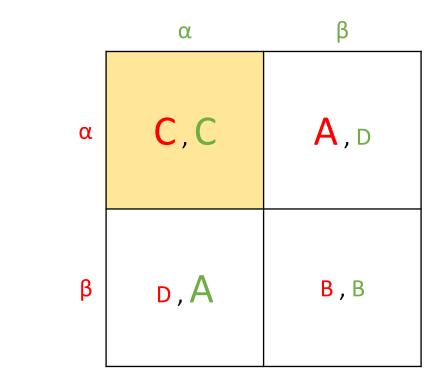


Me









Me

Prisoner's dilemma

- Both players are tempted to defect, since cooperate is strictly dominated by defect
- The outcome of the game is that both players \mbox{betray} the other one and end up choosing α
- Both will end up with outcome that is less preferred than the "optimal" outcome β, β by seeking maximal gain from own action

Dominance

Dominant Strategy Equilibrium

• Strategy might be dominant

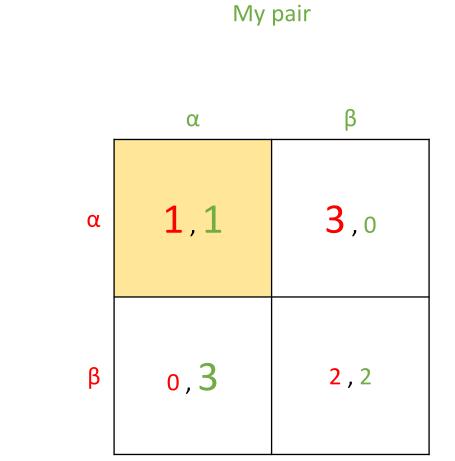
Two types of dominance

- Strict (strong) dominance
- Weak dominance

Strict dominance

- Player i
- Payoff u_i
- Dominant strategy s_i
- Dominated strategy s'
- Strategy of all other players s_{-i}
- Player i's strategy $s_i^{\,\prime}$ is strictly dominated by player i's strategy $s_i^{\,}$ if and only if
- $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$ for **all** s_{-i}
- utility of playing s_i against others' strategies s_{-i} is greater than utility of playing s_i' against others's strategies s_{-i} for all others' strategies s_{-i}

Game of grades – strict dominance

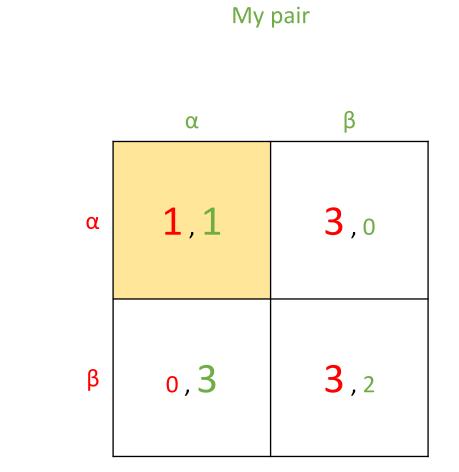


Me

Weak dominance

- Player i
- Payoff u_i
- Dominant strategy s_i
- Dominated strategy s_i'
- Strategy of all other players s_{-i}
- Player i's strategy s_i' is weakly dominated by player i's strategy s_i if
- $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$ for **all** s_{-i} and
- $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$ for **some** s_{-i}
- utility of playing s_i against others' strategies s_{-i} is greater or equal to utility of playing s_i' against others's strategies s_{-i} for all others' strategies s_{-i} and greater for some others' strategies s_{-i}

Game of grades – weak dominance



Me

Never play dominated strategies

- Dominated strategy brings lesser payoffs than dominant strategy
- Dominated strategy brings lesser payoffs no matter what strategy is selected by other player
- Can't control minds of others to force them not to play dominant strategy
- Event if **could** control minds of others and be sure they'll play dominated strategy, than **rational to play dominant strategy anyway**

http://bit.ly/game-id

Choosing numbers

- Choose integer between 1 100 incl.
- All numbers will be averaged
- Winner is the one who will be closest to the 2/3 of the group's average

Choosing numbers

- Average = 100
- 2/3 of average = ~ 66.66
- X > 67 is strictly dominated strategy
 - Even if everyone else selected 100
 - One selected 67
 - I selected 68
 - Outcome 68 is dominated by 67
- What is the rational choice for this game?

If all players were strictly rational, result is 1

I know you know

- I know
 - Numbers above 67 are never rational
- You know that I know
 - You'll never select number above 67, therefore numbers above 46 are never rational either
- I know You know that I know
 - I know that You'll never select above 46, hence I should never select number higher than 30
- You know that I know that You know that I know
 - You know that I won't select above 30, therefore I should never select number above 20

Get into opponent's shoes

Real life results

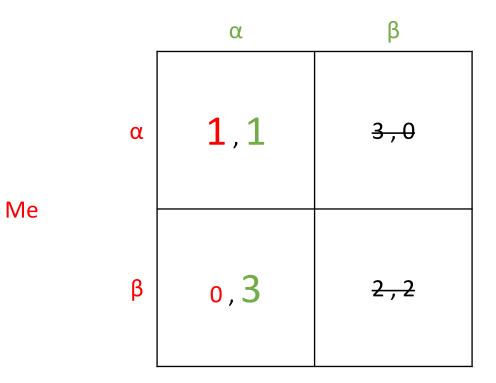
- 2012 Game theory online course
- 10 000 + players
- Mean 34
- Mode 50
- Median 33
- Winner 23
- Spikes: 50, 33, 20, 1

Iterated deletion of dominated strategies

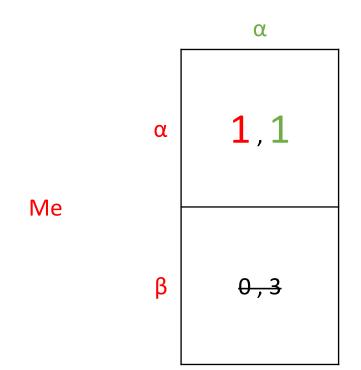
Iterated deletion of dominated strategies

- Can delete dominated strategies as if they were not present in the game
- Game becomes simpler than the original one
- Can find equilibriums quickly games are dominance-solvable

Game of grades

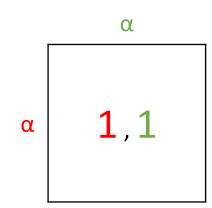


My pair



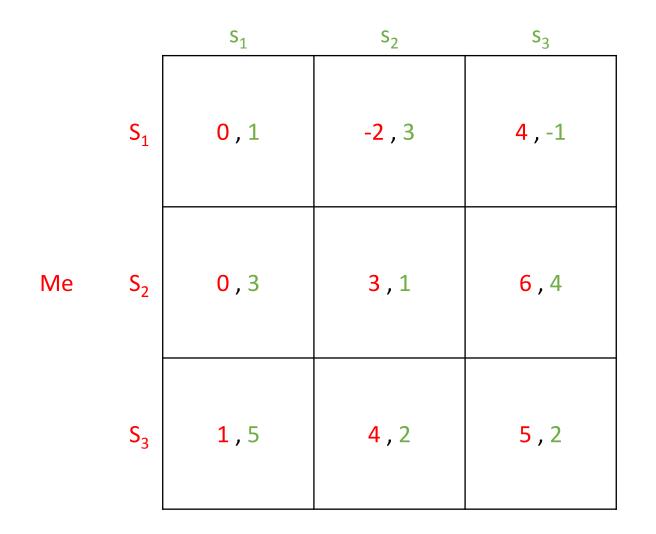
My pair

Me



This game is dominance-solvable

Opponent



 $S_1 vs S_2$

		S ₁	S ₂	S ₃
	S ₁	<mark>0</mark> ,1	-2,3	4,-1
Me	S ₂	<mark>0</mark> ,3	3 , 1	<mark>6</mark> ,4
	S ₃	1,5	4,2	5 <i>,</i> 2

 $S_1 vs S_3$

		S ₁	S ₂	S ₃
	S ₁	<mark>0</mark> ,1	- <mark>2</mark> ,3	<mark>4</mark> ,-1
Me	S ₂	0,3	3,1	6,4
	S ₃	1 ,5	4 , 2	<mark>5</mark> , 2

 $S_2 vs S_3$

		S ₁	S ₂	S ₃
Me	S ₁	0,1	-2 , 3	4,-1
	S ₂	<mark>0</mark> ,3	<mark>3</mark> ,1	<mark>6</mark> ,4
	S ₃	1 ,5	4 , 2	5,2

 $\mathbf{S}_1~\mathbf{VS}~\mathbf{S}_3$

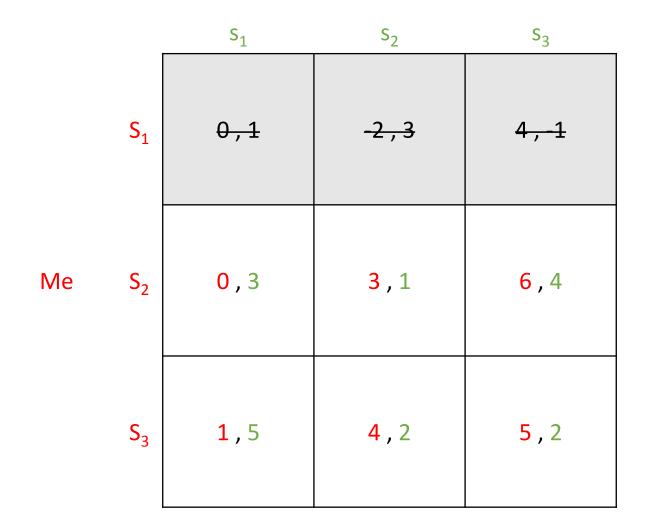
		S ₁	S ₂	S ₃
Me	S ₁	o, 1	-2,3	4,-1
	S ₂	0,3	3,1	6 <i>,</i> 4
	S ₃	1,5	4,2	5,2

 $\mathbf{S}_1 \; \mathbf{VS} \; \mathbf{S}_2$

		S ₁	S ₂	S ₃
	S ₁	0,1	-2 , 3	4,-1
Me	S ₂	o , 3	3,1	6,4
	S ₃	1, 5	4,2	5,2

 $S_2 VS S_3$

		S ₁	S ₂	S ₃
	S ₁	0,1	-2,3	4,-1
Me	S ₂	0,3	3,1	6 <i>,</i> 4
	S ₃	1,5	4 , 2	5 <i>,</i> 2

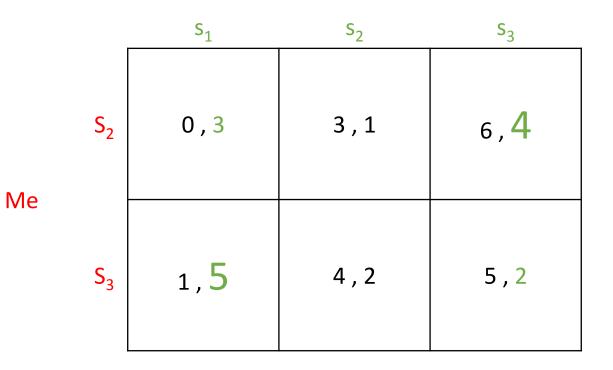


Opponent

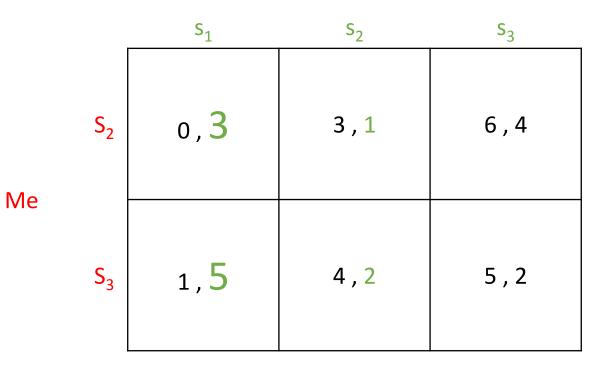
	S ₁	S ₂	s ₃
S ₂	0,3	3,1	<mark>6,</mark> 4
S ₃	1, 5	4,2	5,2

Me

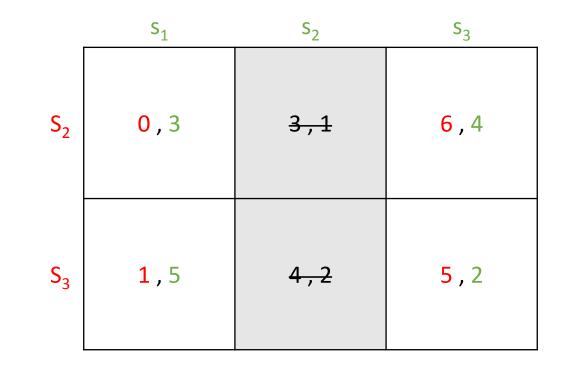
$s_1 vs s_3$ after deletion



$s_1 vs s_2$ after deletion



s_2 vs s_3 after deletion



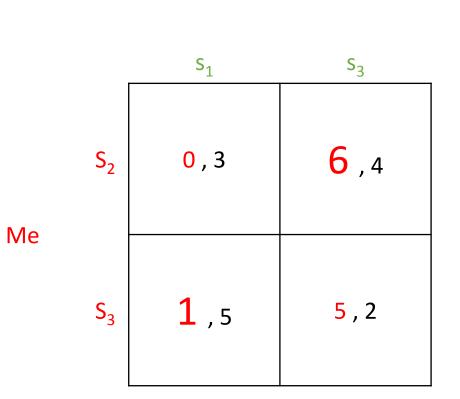
Me

Opponent

S_1 **S**₃ S₂ <mark>0</mark>,3 <mark>6</mark>,4 S₃ 5,2 1,5

Opponent

Me



Opponent

S_1 **S**₃ S₂ 0,3 6,**4** S₃ 5,<mark>2</mark> 1,5

Opponent

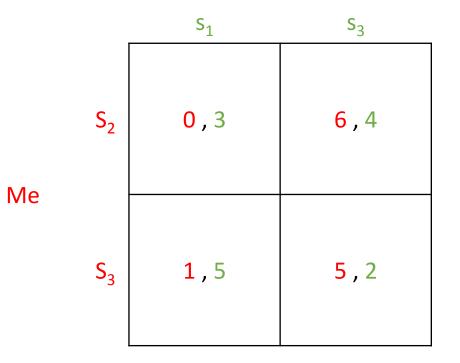
Me

Games sometimes not dominance solvable, but simplified

Limits of iterated deletion of dominated strategies

- Strictly dominated strategies may be deleted in a random order
- Deleting **weakly** dominated strategies in some order **might delete** equilibriums
- This solution concept is not always applicable sometimes game simply don't have dominance

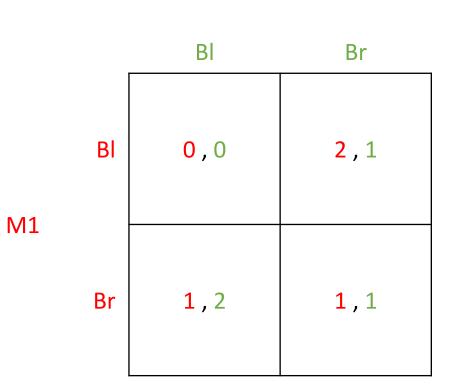
How to solve the game without dominance?

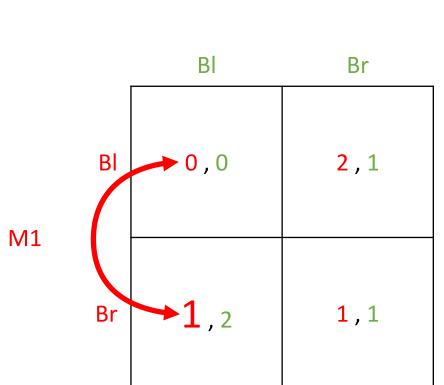


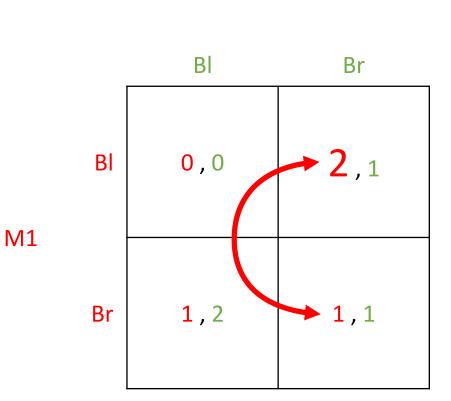
Nash Equilibrium

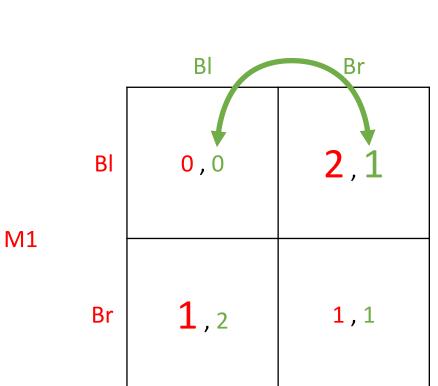
Nash Blonde Game

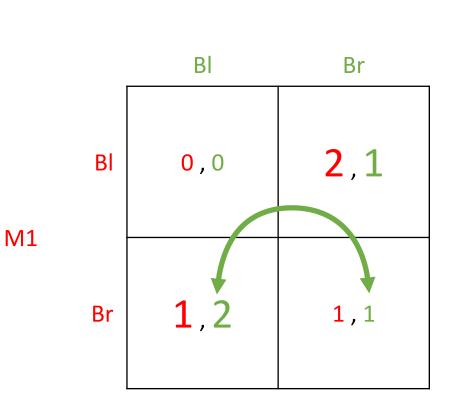
- 2 or more lusty males
- Several interested females
- At least one more female than male
- Just one female blonde
- Every male prefers blonde to brunette and brunette to no companion

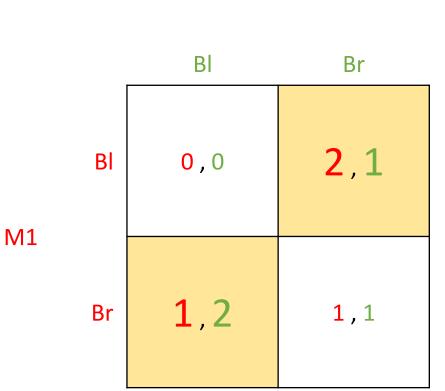








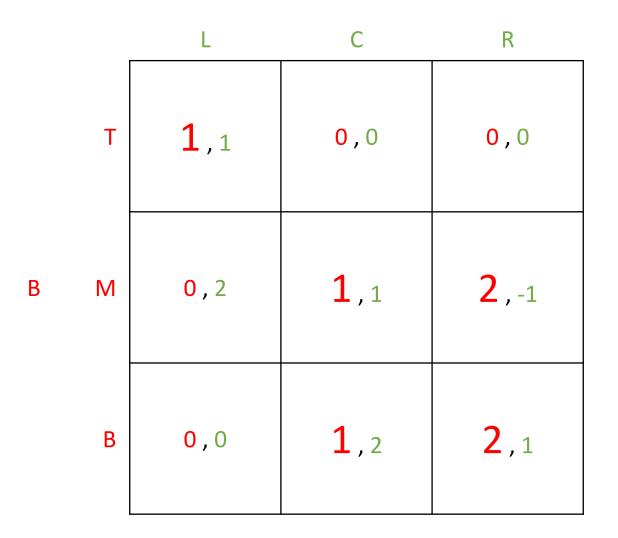


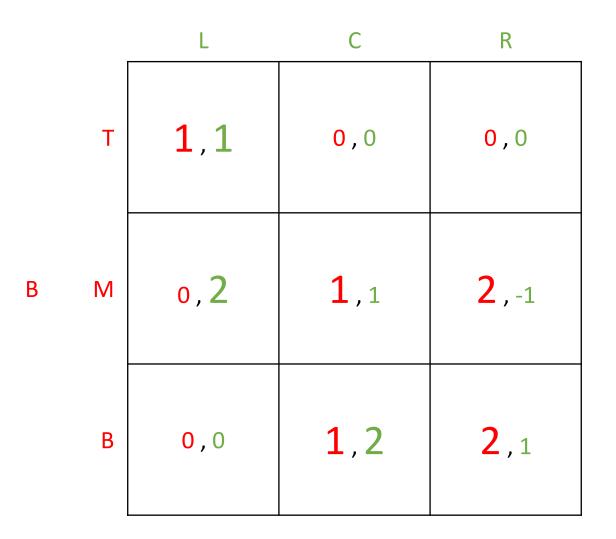


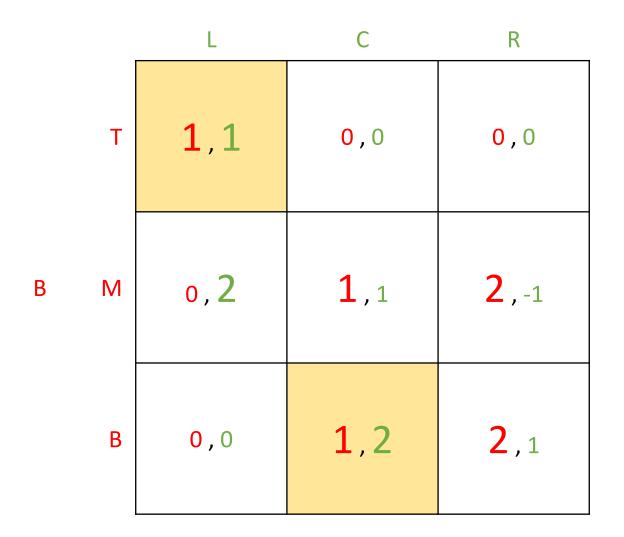
Nash Equilibrium

- Set of strategies, one for each player, such that no player has incentive to unilaterally change her action
- Players are in equilibrium if a change in strategies by any one of them would lead player to earn less (considering strategies of others') than if she remained with her current strategy
- Mutual best response to others' choices

		L	С	R
	Т	1,1	<mark>0</mark> ,0	<mark>0</mark> ,0
В	Μ	0,2	<mark>1</mark> ,1	<mark>2</mark> ,-1
	В	<mark>0</mark> ,0	<mark>1</mark> ,2	<mark>2</mark> ,1







Games might have more NE

Pure strategy equilibrium

- Two equilibriums in this game
- (T , L)
 - u(A) = 1
 - u(B) = 1
- (<mark>C</mark> , B)
 - u(A) = 1
 - u(B) = 2
- These are pure strategy equilibriums

Other basic games

Chicken

Α

В h S <mark>5</mark>,5 S <mark>0</mark>,10 10,0 -10 , -10 Η

Chicken NE

- Pure strategies NE
 - (H,s)
 - EU(A) = 10
 - EU(B) = 0
 - (<mark>S</mark> , h)
 - EU(A) = 0
 - EU(B) = 10
- Mixed strategies NE
 - (1/2 S, 1/2 s)
 - EU(A) = 5/2
 - EU(B) = 5/2

	S	h
S	5 ,5	<mark>0</mark> ,10
Н	10 ,0	- 10 ,-10

Α

Stag hunt

Α

S r <mark>5</mark>,5 S <mark>0</mark>,3 3,0 <mark>3</mark>,3 R

Stag hunt NE

- Pure strategies NE
 - (<mark>S</mark>,s)
 - EU(A) = 5
 - EU(B) = 5
 - (<mark>R</mark> , r)
 - EU(A) = 3
 - EU(B) = 3
- Mixed strategies NE
 - (<mark>3/5 S</mark> , 3/5 s)
 - EU(A) = 3
 - EU(B) = 3

	S	R
S	<mark>5</mark> ,5	<mark>0</mark> ,3
R	3,0	3 ,3

Α

	S	r
S	<mark>5</mark> ,5	<mark>0</mark> ,7
R	7,0	<mark>3</mark> ,3

Α

Stag hunt

Α

S r <mark>5</mark>,5 S <mark>0</mark>,3 3,0 <mark>3</mark>,3 R

Mixed-strategy Nash equilibrium

Matching pennies

- Two players
- Players choose heads or tails
- If players match heads/tails, I (Player 1) win both coins
- If players don't match heads/tails, opponent (Player 2) wins both coins

Matching pennies

		Heads	Tails
Me	Heads	<mark>1</mark> ,-1	- 1 ,1
	Tails	-1 , 1	1 ,-1

Matching pennies – mixed strategy

My pair

		Heads (0.5)	Tails (0.5)
Me	Heads (0.5)	<mark>1</mark> ,-1	-1,1
	Tails (0.5)	-1 , 1	<mark>1</mark> ,-1

Calculation of mixed-strategy NE

Modified Matching pennies

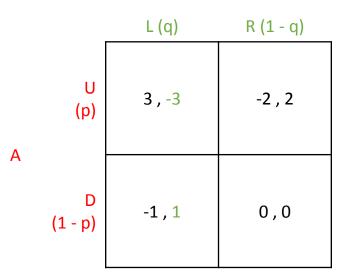
 $\begin{array}{c|c}
L(q) & R(1-q) \\
U(p) & 3, -3 & -2, 2 \\
\end{array}$ $\begin{array}{c|c}
D \\
(1-p) & -1, 1 & 0, 0 \\
\end{array}$

Mixed strategy game – Player A

- Player A plans to mix Up and Down strategy at a certain ratio
- Player B might play Left or Right
- Player A must find such a probability of playing U and D that makes Player B indifferent to selecting L or R
- Player B has to gain same utility from B's choice Left and Right
 EU_L = EU_R
- Expected utility of Player B chosing Left:
 - EU_L = f(p)
- Expected utility of Player B chosing Right:
 - EU_R = f(p)

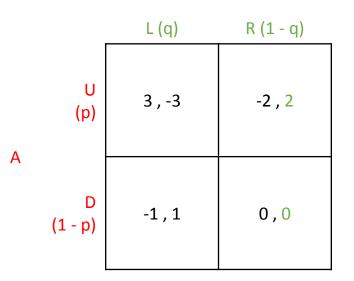
MS game - Player A's strategy

- EU_L = f(p)
- Some % of time (p) gets B utility -3
- Rest of the time (1 p) gets B utility 1
- $EU_L = (p)^*(-3) + (1 p)^*(1)$
- EU_L = -3p + 1 p
- EU_L = 1 4p



MS game - Player A's strategy

- EU_R = f(p)
- Some % of time (p) gets B utility 2
- Rest of the time (1 p) gets B utility 0
- $EU_R = (p)^*(2) + (1 p)^*(0)$
- EU_R = 2p + 0 0p
- EU_R = 2p



Comparison of EU_L with EU_R

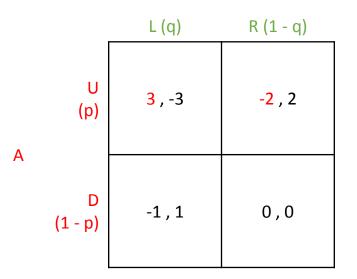
- EU_L = 1 4p
- EU_R = 2p
- EU_L = EU_R • 1 - 4p = 2p +4p • 1 = 6p /6 • p = 1/6

- We've found the ideal mixed strategy for Player A
- If Player A plays Up 1/6 of time and Down 5/6 of time, Player B is indifferent to choosing Left or Right
- We need to do the same for player B

• **1** - **p** = 1 - 1/6 = **5/6**

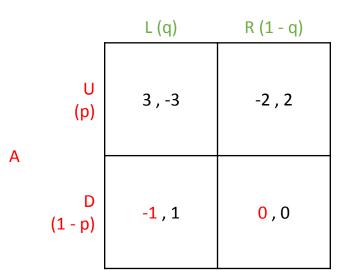
MS game - Player B's strategy

- EU_U = f(q)
- Some % of time (q) gets A utility 3
- Rest of the time (1 q) gets A utility -2
- $EU_U = (q)^*(3) + (1 q)^*(-2)$
- EU_U = 3q 2 + 2q
- EU_U = 5q 2



MS game - Player B's strategy

- EU_D = f(q)
- Some % of time (q) gets A utility -1
- Rest of the time (1 q) gets A utility 0
- $EU_D = (q)^*(-1) + (1 q)^*(0)$
- EU_D = -1q + 0 0q
- EU_D = -q



Comparison of EU_U with EU_D

- EU_U = 5q 2
- EU_D = -q
- $EU_U = EU_D$
- 5q 2 = -q 5q
- -2 = -6q /-6
 q = 1/3
- 1 q = 1 1/3 = 2/3

- We've found the ideal mixed strategy for Player B
- If Player B plays Left 1/3 of time and Down 2/3 of time, Player A is indifferent to choosing Up or Down

Mixed strategy NE (1/6 U, 1/3 L)

Battle of sexes

- Want to go out together but have no means of communication
- Have 2 choices ballet or box fight
- Player A prefers box fight
- Player B prefers ballet
- Both prefer being together than being alone
- Preferences for player A: F > B > A
- Preferences for player B: B > F > A

Battle of sexes

Battle of sexes

Α

b f B 1,2 0,0 F 0,0 2,1

Battle of sexes – PS equilibriums

Battle of sexes

b f B 1,2 0,0 F 0,0 2,1

В

Α

Equilibriums

- 2 pure-strategies equilibriums
- How would they coordinate?
- Apart from pure strategies equilibriums there is one mixed strategy equilibrium for this game
- (1/3 B, 2/3 b)