
Text analysis 2
Lukáš Lehotský

R studio layout

Scripting window
Environment (stored objects)

History

Console window

Plots
Packages

Help
Viewer

Scripting window

Console

Environment
History

Plots
Packages

Help
Viewer

Object

• Object is a container which holds data, and can be
manipulated with functions

• The most basic object is called vector

• There are other types of objects – matrix, data
frame, list

one <- 1

Creating/storing objects

Obj. name Object<-

?

Functions

• Pre-defined methods

• To create an object with more than one element,
function c() is used

• Any object may be manipulated with a function
sort(onetofive)

[1] 1 2 3 4 5

onetofive <- c(1,3,5,4,2)

Functions

• To extend functionality, functions have pre-defined
arguments
• Arguments are further options of functions

• Some functions have many arguments, some none

• To keep function result, it must be stored in the
environment as an object

sort(onetofive)

[1] 1 2 3 4 5

sort(onetofive, decreasing = TRUE)

[1] 5 4 3 2 1

onetofive <- sort(onetofive, decreasing = TRUE)

Functions

• Arguments usually require input format
• Boolean input – TRUE or FALSE

• Name of object – onetofive

• Text value – "linear"

• Format of each argument may be found in help
page
• Just add question mark in front of the function name

?sample()

Data export: saving XLSX

• Package “xlsx”

• Function write.xlsx()

• Arguments
• x – object from the environment which you want to

export

• file – name of the file in your working directory

write.xlsx(x = object, file = "mysheet.xlsx")

Quantitative TA in R

(Grimmer & Steweart 2013)

„Be careful what is a result
and what is just a residue of
your data choices“
Jana Diesner, 2018

Text analysis in R

• Package “quanteda” (http://quanteda.io)
• Developed by Ken Benoit (LSE)
• Comprehensive package on text analysis methods

• Package “readtext”
• Ken Benoit & Adam Obeng
• Package which allows data import from text sources
• Easy to work with

• Package “stopwords”
• Ken Benoit, David Muhr & Kohei Watanabe
• Package containing various stopwords for different languages

• …

http://quanteda.io/

Before we start …

• Open the folder “text_analysis_quanti” folder

• Open script file “text_analysis_1.R” in R Studio

• Install all libraries
• quanteda, readtext, stopwords, xlsx

Steps leading to analysis

Set
directory

Load
packages

Read texts

Create
corpus

Extract
tokens

Create
DFM

Set
directory

Load
packages

Read texts

Create
corpus

Extract
tokens

Create
DFM

Set working directory

• Window approach
• Session -> Set Working Directory -> Choose Folder

• Script approach

work.dir <- "C:\\path\\to\\folder\\“

setwd(work.dir)

Set
directory

Load
packages

Read texts

Create
corpus

Extract
tokens

Create
DFM

Load packages

• Window approach
• Session -> Set Working Directory -> Choose Folder

• Script approach

library(readtext)

library(quanteda)

library(stopwords)

library(xlsx)

Set
directory

Load
packages

Read texts

Create
corpus

Extract
tokens

Create
DFM

Reading texts into R

• readtext() function loads all text files into R
• Very easy to use – reads everything in any specified folder
• Supports various document types

• TXT
• PDF
• DOC
• Twitter data format JSON
• …

• Just need to insert a path to a specific folder

• Arguments
• file

• Path to specific source file or path to folder containing files

• encoding

Reading texts into R

• Encoding
• Text files are usually stored in certain computer-

readable format

• Consider text “Príklad zlého kódovania”
• ASCII/ISO-8859-1: “PrÃklad zlÃ©ho kÃ³dovania”

• UTF-8: “Príklad zlého kódovania”

• As a rule of thumb, UTF-8 encoding is desired

Reading texts into R

text.dir <- "C:\\path\\to\\folder\\with\\texts\\"

texts <- readtext(file = text.dir, encoding = "UTF-8")

Reading texts into R

text.dir <- "C:\\path\\to\\folder\\texts\\"

texts <- readtext(file = text.dir, encoding = "UTF-8")

Reading texts into R

text.dir <- "C:\\path\\to\\folder\\texts\\"

texts <- readtext(file = text.dir, encoding = "UTF-8")

Function

Argument specifying
location of texts (object input)

Argument specifying
character encoding
(text input = quotes)

Name of
a new object

Set
directory

Load
packages

Read texts

Create
corpus

Extract
tokens

Create
DFM

Corpus

• Simple function corpus()
• Creates corpus from all imported texts from the previous

step

• Arguments
• x

• Imported text files

• docnames

• Optional specification of document names

Corpus

• All sorts of statistics may be acquired once corpus is
generated

• summary()
• Provides overview of corpus documents

• ndoc()
• Counts number of documents in the corpus

ndoc(corp)

summary(corp)

corp <- corpus(x = texts)

Set
directory

Load
packages

Read texts

Create
corpus

Extract
tokens

Create
DFM

From corpus to DFM

• Two-step process

• Tokenization of corpus
• A step necessary to apply some pre-processing choices which

are not text-based (removal of noise)
• Remove numbers
• Remove punctuation
• Remove white space (separators)

• DFM generation from tokens
• Furthter pre-processing choices (because of bag-of-words)

• Stemming
• Lowercasing
• Stopwords removal

• Dictionary application

Tokenization

• Function tokens()

• Tokenization arguments
• what – word, character, sentence
• ngrams – ngramization of the corpus

• Pre-processing arguments
• remove_numbers – numerals
• remove_punct – punctuation
• remove_symbols – special “Unicode” symbols

(encoding residues)
• remove_separators – white space, line ends, etc.
• remove_hyphens – remove hyphens between words

Tokenization

tokenization <- tokens(x = corp,

what = "word",

ngrams = 1,

remove_numbers = TRUE,

remove_punct = TRUE,

remove_separators = TRUE,

remove_hyphens = FALSE)

tokenization.bigrams <- tokens(x = corp,

what = "word",

ngrams = c(1:2),

remove_numbers = TRUE,

remove_punct = TRUE,

remove_separators = TRUE,

remove_hyphens = FALSE)

Set
directory

Load
packages

Read texts

Create
corpus

Extract
tokens

Create
DFM

Document-feature matrix

• Function dfm()
• Documents in rows, features (tokens) in columns

• Preprocessing arguments
• tolower – converts words to lowercase
• stem – implement stemmer
• remove – list of words to be dropped from the DFM

• Application arguments
• dictionary – applies dictionary and converts

features from tokens to dictionary dimensions
• groups – allows to add another dimension by which

the corpus can be grouped/split

Document-feature matrix

basic.matrix <- dfm(x = tokenization,

tolower = TRUE)

bigram.matrix <- dfm(x = tokenization.bigrams,

tolower = TRUE)

stem.matrix <- dfm(x = tokenization,

tolower = TRUE,

stem = TRUE)

prep.matrix <- dfm(x = tokenization,

tolower = TRUE,

stem = TRUE,

remove = stopwords(language = "en"))

DFM weighting

• DFM frequencies are displayed in absolute
numbers
• Document size bias

• dfm_weight()
• Weighting of terms according to document size or other

rules
• Useful to offset the effect of the document size

• dfm_tfidf()
• Incidence of term in document divided by number of

documents in which it occurs
• Useful to find term importance within document

DFM weighting

weight.matrix <- dfm_weight(prep.matrix,

scheme = "prop")

tfidf.matrix <- dfm_tfidf(prep.matrix)

DFM manipulation

• dfm_trim()
• Reduction in the dimensionality – removal of very sparse

words, very frequent words, etc.

• dfm_subset()
• Subsetting of the the DFM – extraction of DFM portion

• dfm_sample()
• Random sampling from the DFM

• Useful in various computation-intensive tests

DFM manipulation

red.matrix <- dfm_trim(prep.matrix,

min_termfreq = 5)

sample.matrix <- dfm_sample(prep.matrix,

size = 5)

Analysis

Analysis

• Corpus-based
• Require full texts

• E.g. KWIC

• DFM-based
• Require frequencies

• Bag-of-words assumption

• E.g. token frequencies, correspondence analysis,
wordfish …

Keywords in context

• kwic() function

• Modifying arguments
• pattern

• A term of interest or multiple terms of interest wrapped in
function c()

• window

• Length of text part extracted before and after the keyword
term

• case.insensitive

• Binary – should function take term case into account?

• You can save it using write.xlsx() function

Keywords in context

kewords.in.context <- kwic(corp,

pattern = "energy",

window = 5)

kewords.in.context.2 <- kwic(corp,

pattern = c("energy", "russia"),

window = 5)

write.xlsx(x = kewords.in.context,file = "kwic.xlsx")

Keywords in context

Docname From To Pre Keyword Post

2007-2008-CZ.txt.proc.txt 3784 3784 current issues related to renewable energy sources , cooperation in EU

2007-2008-CZ.txt.proc.txt 3805 3805 The V4 working group on energy meets regularly . The European

2007-2008-CZ.txt.proc.txt 3842 3842 cooperation in the field of energy with Nordic Council countries .

2008-2009-PL.txt.proc.txt 101 101 in early 2009 the Russian-Ukrainian energy crisis broke out , with

2008-2009-PL.txt.proc.txt 1195 1195 progress , the issue of energy security became the prime topic

2008-2009-PL.txt.proc.txt 1269 1269 group of governmental plenipotentiaries for energy security . On June 3rd

2008-2009-PL.txt.proc.txt 1580 1580 . September 5th 2008 - Energy Expert Group meeting . The

2008-2009-PL.txt.proc.txt 1613 1613 Agency for the Co-operation of Energy Regulations [ACER] ,

Keywords in context

• May be plotted easily

• textplot_xray()
• Function for plotting

• One or several KWIC objects may be passed (each must
be passed separately)

• Argument scale allows to plot absolute or weighted
positions (normalized by document length)

Keywords in context

textplot_xray(

kwic(corp, pattern = "energy", window = 5),

kwic(corp, pattern = "security", window = 5),

sort = TRUE

)

textplot_xray(

kwic(corp, pattern = "energy", window = 5),

kwic(corp, pattern = "security", window = 5),

sort = TRUE,

scale = "absolute"

)

Frequencies

• Frequency of features in the DFM
• Absolute token frequencies

• Dictionary category frequencies

• topfeatures()
• General function to extract number of tokens

Frequencies

freq.basic <- textstat_frequency(x = basic.matrix, n = 20)

freq.stem <- textstat_frequency(x = stem.matrix, n = 20)

freq.prep <- textstat_frequency(x = prep.matrix, n = 20)

write.xlsx(x = freq.prep, file = "frequencies.xlsx")

Wordcloud

• Function textplot_wordcloud()

Argument Description

x Terms

max_words Maximum number of words rendered

min_size Size of smallest category

max_size Size of largest category

rotation Percentage of terms placed vertically

color Color or color palette

... Many other arguments available (use help)

Wordcloud

textplot_wordcloud(x = basic.matrix,

max_words = 50,

min_size = 1,

max_size = 4,

rotation = 0,

color = "steelblue2")

textplot_wordcloud(x = prep.matrix,

max_words = 50,

min_size = 1,

max_size = 4,

rotation = 0,

color = "red3")

Dictionaries

• Two step process

• Requires a dictionary object
• Manually constructed dictionary

• Dictionary in the external location
• File “LaverGarry.cat” in your folder

• Dictionary included in a package
• Package “tidytext”

• Sentiments dictionary

• Dictionary has to be applied in a DFM construction
process

Dictionaries

CULTURE

CULTURE-HIGH

ART (1)

ARTISTIC (1)

DANCE (1)

GALLER* (1)

MUSEUM* (1)

MUSIC* (1)

OPERA* (1)

THEATRE* (1)

CULTURE-POPULAR

MEDIA (1)

SPORT

ANGLER* (1)

PEOPLE (1)

WAR_IN_IRAQ (1)

CIVIL_WAR (1)

ECONOMY

+STATE+

ACCOMMODATION (1)

AGE (1)

AMBULANCE (1)

ASSIST (1)

BENEFIT (1)

CARE (1)

CARER* (1)

CHILD* (1)

CLASS (1)

CLASSES (1)

CLINICS (1)

COLLECTIVE* (1)

Dictionaries

• Using dataset from a file/creating own dictionary
• Function dictionary() allows to load a file as a

dictionary

• Arguments
• file – specifies the path to file (because we are in a working

directory, we have to specify only a file name)

• format – specifies the pre-defined format of dictionary

• The new object will be used in the DFM argument
dictionary

• Useful to weigh the DFM after application

Dictionaries

wordstat.dict <- dictionary(file = "LaverGarry.cat",

format = "wordstat")

dfm.dict <- dfm(tokenization,

dictionary = wordstat.dict)

dfm.dict.w <- dfm_weight(dfm.dict,scheme = "prop")

Second data set

• Parts of UK 2010 election manifestos
• Issue of migration

• English, already pre-formatted, part of quanteda
package

• Just type data_char_ukimmig2010 into script

• Same drill as before
• Texts

• Corpus

• Tokens

• DFM

Distances

• The simplest algorithm to obtain scaling

• Function textstat_dist()

• Creates a distance object which is recognized by
other R packages and functions

• We may use hclust() function which creates a
hierarchical clusters and plot it with plot()
function afterwards

Distances

dist.analysis <- textstat_dist(mig.dfm)

clusters <- hclust(dist.analysis)

plot(clusters)

Keyness

• Useful method to evaluate keywords – finds words
which are specific in relation to the rest of the
corpus

• Function textstat_keyness()
• Argument target

• Specifies the numeric ID of the document, which is compared
to the rest of the corpus

• Can be plotted via textplot_keyness()

Keyness

key.analysis <- textstat_keyness(x = mig.dfm,target = 1)

textplot_keyness(key.analysis)

Models

Correspondence analysis

• Method of singular value decomposition

• Allows to reduce complexity of matrix into low-
dimensional space (2 or 3)

• No underlying assumptions about distributions

• Scaling is a method of capturing the variation in the
observed data
• Not clear what is the variation captured (actual

positions, tone, style, …)

Correspondence analysis

• Function textmodel_ca()

• Arguments
• sparse

• Allows to omit less frequent words in order to reduce the use
of computer memory

• nd
• Default estimates as many dimensions as possible, allows to

limit the number of estimated dimensions

• Useful to explore model with function summary()

Correspondence analysis

model <- textmodel_ca(mig.dfm,sparse = TRUE)

summary(model)

textplot_scale1d(model)

WordFish

• Model based on naïve Bayes classifier

• Estimation of one dominant dimension

• Assumes a word is drawn from a Poisson distribution,
which is based on
• Amount the actor speaks
• Frequency how much the word is used
• Extent how much the word discriminates the underlying

ideological space
• Actors’ underlying position

• Model is estimated given the observed data

• Again, lack of clarity, what the scale captures

WordFish

• Function textmodel_wordfish()
• Arguments allow a further specification of prior assumptions

about the Poisson distribution, model parameters, …

• Result provides also SE for each estimated position

• Function summary() allows to see the estimated
model

• Function textplot_scale1d() allows to visualize
results
• Scaling of actors
• Scaling of words using argument margin
• Word highlight using argument highlight and a word list

wrapped in function c()

WordFish

model <- textmodel_ca(mig.dfm,sparse = TRUE)

summary(model)

textplot_scale1d(model)

Wordfish Correspondence Analysis

Conservative Conservative

Coalition Coalition

Labour SNP

SNP Labour

Liberal Democrats Plaid Cymru

Plaid Cymru Liberal Democrats

Green Party Green Party

UKIP UKIP

British National Party British National Party

WordFish vs. CA

WordFish

textplot_scale1d(model, margin = "features")

textplot_scale1d(model,

margin = "features",

highlighted = c("eu","multicultur"),

highlighted_color = "black"

)

