
The Common Factor Model 
PSY544 – Introduction to Factor Analysis 

 

Week 4 

 



Homework! 

• Homework assignment 1 will be out this week 

 

• I’ll send you an email, along with the deadline 

 



The data model in factor analysis 

• Recall the way we formulated the Common Factor Model earlier – we 
expressed the MVs as a linear function of the common factors and the 
unique factors: 

                            
 

  Mean +      Common factor part            + Unique factor part     

    
= 

                 
 



The data model in factor analysis 
   

= 
                 

 

 
Where:   

 is the score of person i on manifest variable j   
 is the mean of manifest variable j    
 is the common factor score of person i on factor k    
 is the factor loading of manifest variable j on factor k   
 is the unique factor score of person i on unique factor j; and 

        
   

 is the factor score of person i on specific factor j   
 is the error term for person i on manifest variable j 



The data model in factor analysis 

• We will consider the model as operating in a population, and thus we will 
consider the data model for a typical individual by omitting the subscript i: 

                            
    

= 
                

 

 

• Here we actually have p equations, one for each manifest variable 

  

, but we can 
express it all as a single equation using matrix notation: 

          
 

 



The data model in factor analysis 
         

 

 

Where: 

x is a p x 1 vector of typical scores on the p manifest variables 

μ is a p x 1 vector of population means of the p manifest variables 

Λ is a p x m matrix of factor loadings, where p > m (rectangular matrix) 

z is a m x 1 vector of (unobservable) common factor scores  

u is a p x 1 vector of (unobservable) unique factor scores 

 

 

 



The data model in factor analysis 
         

 

• For illustration, let’s extract the equation for the third manifest variable. Let’s 
assume that m = 3 (there are three common factors): 

                      

 

                        
 



The data model in factor analysis 

• The data model represents a typical observation in the population. It is intended 
to explain the structure of the raw data (i.e., the scores on manifest variables) 

 

• The data model is accompanied by assumptions about the joint distribution of 
the elements in z and u and implies a model for the population covariance matrix. 
The model for the covariance matrix is known as the covariance structure and is 
intended to explain the variances and covariances of the manifest variables, not 
the raw data.  

 

• Before we proceed to derive the covariance structure model, we’ll talk about the 
important distributional assumptions and lay down some notational rules.  



Assumptions 

• We will make the following assumptions about the common factors z and unique 
factors u: 

1. The common factors and the unique factors are independently distributed. 
As such, the common factors are uncorrelated with the unique factors. In 
other words, 

        
 

2. The unique factors are mutually independent. As such, the unique factors 
for different MVs are uncorrelated with each other. This implies that the 
covariance matrix 

  
 is diagonal.  

3. The common factors and the unique factors are standardized to have means 
of zero. 

4. The common factors are also standardized to have unit variances (variances 
of 1). 



Notation 

• We will use the following notation: 

 

The manifest variable covariance matrix: 
     

 

The common factor covariance matrix: 
     

 

The unique factor covariance matrix: 
      

 

 

• Note that (because of the assumptions we made), the diagonal elements of 
 

 
are required to be equal to 1. Thus, 

 
 is a factor correlation matrix.  



Deriving the mean and covariance structures 

• The mean and covariance structures are derived from the data model: 

          
 

• Let’s derive the mean structure first. We want an equation that represents the 
mean vector μ of the manifest variables. If we take the expectation of both sides 
of the equation above, we get:              

 

• Given the assumptions we previously talked about, this follows:            
      

 

 

 

 

 



Deriving the mean and covariance structures 

• This implies that the means of the MVs are not restricted by the model.  

 

• Alright. Let’s consider the derivation of the covariance structure. What we want is to 
obtain an equation for 

     
, the covariance matrix of the MVs.  

 

• Let us subtract the mean vector from both sides of the data model:          
 

        
 

 

...this equation expresses deviations of individual scores from population means as 
functions of factor scores, factor loadings and unique factor scores.  

 

 

 



Deriving the mean and covariance structures 

• Now, we will post-multiply both sides of the equation by a transpose:              
 

     
’ 

…because the transpose of a sum equals the sum of the transposes:              
 

         
 

…because the transpose of a product is equal to the product of the transposes in 
reverse order:              

 
       

 

…expanding, we get:                         
 

  
 

 

 

 

 

 



Deriving the mean and covariance structures 
                        

 
  

 

…then, we take the expectations of both sides:                                       
 

      
 

 

We can simplify, because all the expectations represent a covariance matrix of 
some sort:                     

 

 

 

 

 

 

 



Deriving the mean and covariance structures 

                     
 

 

• However, we assumed that both 
  

 and 
   

 are zero – the common factors are 
not correlated with the unique factors: 

                   
 

 

• And using the notation we defined previously: 

         
 

 

 

 

 



Deriving the mean and covariance structures 

         
 

 

• Ta-daaaaah! The equation above is the factor analysis covariance structure. It 
represents the factor structure of the population covariance matrix of the 
manifest variables. The variances and covariances in 

 
 are functions of the 

common factor loadings (
 

), common factor correlations (
 

) and unique factor 
variances (

  
). This equation is super-important.  

• We have just derived a model that explains the variances and covariances of the 
MVs. Note that this model does not contain any factor scores, common or 
unique. We don’t need them – the variances and covariances of manifest 
variables do not depend on them.  

 

 

 

 



Deriving the mean and covariance structures 

         
 

 

 

...yes, the equation is so important that I have included it again in a separate slide, 
just so you can admire it.  

 

 

 

 

 



Deriving the mean and covariance structures 

         
 

 

 

• As you can see, the model equation assumes the common factors can be 
potentially correlated (

 
). In unrestricted (exploratory) factor analysis it is 

sometimes (at least initially) assumed that they are uncorrelated, so that 
 

 = I. In 
that case, the covariance structure becomes:  

         
 

 

 

 



Deriving the mean and covariance structures 

• The j-th diagonal element ψjj of 
  

 is the j-th unique variance. The j-th 
communality (proportion of variance of MV j due to common factors) can be 
written as:                   

 

 

• If the factors are uncorrelated, then: 

                   

 

 

...that is, the sum of squares of row j of 
 

 divided by the variance of the j-th MV.  

 

 

 



Correlation structure 

• In the covariance structure, factor loadings are regression coefficients (weights) 
that represent the linear effect of an LV on a particular MV. The latent factor acts 
like an independent variable, and the MV acts like a dependent variable.  

 

• We have seen that the common factor covariance matrix (
 

) is standardized to 
have units on the diagonals (= the variance of the LVs is set to 1). As such, the 
common factor covariances (off-diagonal elements) are, in fact, correlations.  

 

• Sometimes (well, a LOT of times) it is useful to standardize the manifest variables 
as well – so that the factor loadings are standardized regression coefficients, and 
that we are working with a correlation matrix of MVs rather than a covariance 
matrix.  

 

 



Correlation structure 

• How do we convert a covariance matrix (say, 
 

) into a correlation matrix (say, P)? 

 

• Let’s create a diagonal matrix Dσ which contains the diagonal elements of 
 

: 

        
 

 

…the diagonal elements of Dσ are the variances of the manifest variables. 

 

 



Correlation structure 

• If we would want to transform these into standard deviations of the MVs, we 
would have to take the square root of each element. We’ll go a little further and 
define a new diagonal matrix Dσ

-1/2 which contains the reciprocals of standard 
deviations of the elements in Dσ 

 

• The manifest variable covariance matrix 
 

 can be transformed into a manifest 
variable correlation matrix P in the following way: 

                 
 

 

 



Correlation structure 

• For example:                   

 

                                                     

 



Correlation structure 

 

                                                            

 

 

• Remember - pre-multiplication by a diagonal matrix scales rows,  
post-multiplication scales columns. Can you see it in there?  

 



Correlation structure 

                                                           

 

 

• In this matrix, the diagonal entries will be 1 and the off-diagonal entries will be 
correlation coefficients (covariance divided by the standard deviations of both 
variables) 

 



Correlation structure 

• So, what we have now is the covariance structure:         
 

 

• …and a way of transforming the covariance matrix 
 

 into a correlation matrix P: 

 

                

 

 

• We can substitute:                       
              

 

 

 



Correlation structure 
                      

 

              
 

 

• Where:    

 

      

     

 

     

 

  

 

      

 

    

 

  

  

 



Correlation structure 
   

 
      

     

 

     

 

  

 

      

 

    

 

  

  

 

• The factor loadings for the correlation structure are equal to the factor loadings 
for the covariance structure divided by the standard deviation of the given MV 

• The unique variances for the correlation structure are equal to the unique 
variances for the covariance structure divided by the variance of the given MV. 
This means that the unique variances for the correlation structure are really the 
proportions of variance of the particular MV that is not explained by the common 
factors 



Correlation structure 

• The communalities (proportion of variance of MV j due to common factors), 
then, can be written as:                     

 

 

• If the factors are uncorrelated, then: 

                       

 

 



Correlation structure 

• Consider the correlation structure for uncorrelated (orthogonal) factors to better 
understand the relationship between elements of P and the elements of 

  
 and 

   
. An 

example:                                                                                           

 

 

• This shows us that 
                  

 

• Also, 
                   

 

 

• So here, the correlation between two MVs is the sum of the products of their loadings on 
the common factors 



An example 

• Remember the example correlation matrix I have shown earlier?  

(4 performance measures: paragraph comprehension, vocabulary, 
arithmetic skills, and mathematical problem solving) 

 

 



An example 

• The factor loading matrix is: 

 

 

 

 

 

• Let’s compute the communality and the unique variance of PC by hand 

• The correlation between PC and VO:                                       
 

 

 


