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The Common Factor Model 

• In the past two weeks, we introduced the Common Factor Model in 
multiple forms.  

 

• First, we introduced the data model: 

          
 

 



The Common Factor Model 

• After making some assumptions, we derived a covariance structure model 

 

• For correlated factors: 

         
 

 

• For uncorrelated factors: 

         
 



The Common Factor Model 

• And we have seen how the covariance structure model can be transformed 
into a correlation structure model. 

 

• For correlated factors: 

              
 

 

• For uncorrelated factors: 

             
 



The Common Factor Model 

 

 

• You learned a LOT already!  

 

• More than a majority of factor analysis practitioners know about the 
model  (pretty sad, huh?) 



Fitting the model 

• One important thing to note is that these models are intended for a 
population – they are population models, describing how stuff works 
in a population.  

 

• Anyway, at the beginning we learned that there are two sides to 
factor analysis – theory and methodology.  

• What we have covered so far was the theory (the model itself)  

• Now, we will focus on the methodology (how to fit the model on data 
/ how to estimate the unknowns in the model) 



Fitting the model 

• More specifically, we will focus on the theoretical basis for fitting the 
model. Later on in the course, we will cover the actual thing in 
practice (software and examples). 

 

• A model represents some hypothesized structure of data. Different 
methods are available for fitting the model to data and obtaining 
estimates of model parameters (the elements in model matrices) and 
providing us with information on how well the model fits the data.  



Fitting the model 

• For the sake of argument, we will consider the hypothetical scenario 
where the population correlation matrix P is known, and the model 
holds exactly in the population (i.e., the model explains P perfectly) 

 

• This will never ever be the case in practice, but it’s a better starting 
point to begin understanding the principles.  

 

• Later, we will drop these assumptions, no worries.  



The population correlation matrix 

• Last time we talked about the case where the model holds  
exactly and the common factors are uncorrelated (orthogonal). In such a 
case, the population correlation matrix P has the structure: 

          
 

…or, alternatively:          
 

 

•  Strictly speaking, we should use 
  

 and 
   

, but let’s omit the stars now 
for convenience.  



Rotational indeterminacy 

• We have a bit of a “problem”. 

 

• If we can find a single p x m factor loading matrix 
  

 such that           
, and if m > 2 (i.e., we have two or more factors), then 

there are infinitely many other p x m factor loading matrices such that             
 

                   
 

 

• Am I kidding? Nope. Let me show you.  



Rotational indeterminacy 

• Suppose I’m not wrong and it indeed holds that:             
 

        
 

(we’re just considering two solutions now, but there are infinitely many) 

 

• In that case, one solution (
  

) has to be linked in some way with the 
other solution (

  
). To be precise, 

  
 = 

   
 where T is a m x m 

orthogonal matrix (
     

)  

 

 



Rotational indeterminacy 

• In that case, one solution (
  

) has to be linked in some way with the 
other solution (

  
). To be precise, 

  
 = 

   
 where T is a m x m 

orthogonal matrix (
     

)       
 = 

         
      

 = 
        

)      
 = 

      
      

 = 
      

      
 = 

     
 

• See? 
  

 and 
  

 are equally fine solutions.  

 



Rotational indeterminacy 

• In other words, if we can find one solution, we can find other 
alternative solutions. We simply choose any matrix T such that TT’ = I 
and we define 

  
 = 

   
 

• We’ve just seen that 
  

 and 
  

 are equally good solutions, since       
 = 

     
 

 

• This is called rotational indeterminacy. Later, when we learn about 
rotation, we will see that this describes a procedure used to produce 
alternative (and equally good) solutions to 

 
. 



Rotational indeterminacy 

• However, we must resolve this problem somehow if we want to find a 
single, unique solution for 

 
 every time we perform a factor analysis.  

 

• In other words, we need to find a criterion for defining this unique 
solution. 

 

• Luckily, we can arrive at a solution with the help of Eigenvalues and 
Eigenvectors.  



Eigenvalues, eigenvectors, and 
 

 

• Recall what we have learned about eigenvalues and eigenvectors.  

 

• The eigenstructure of a symmetric matrix S is the following: 

        
 

 

...where the columns of U are eigenvectors and the diagonal 
 elements of 
  

 are eigenvalues (this is a diagonal matrix). 

 

 



Eigenvalues, eigenvectors, and 
 

 

• So, a symmetric matrix S may be expressed as the product of some 
matrix (

 
) which has some vectors for columns (these are the 

eigenvectors) and some diagonal matrix (
  

) which has some values on 
its diagonal (these are the eigenvalues) 

 

• Thus, we can basically decompose a symmetric matrix S into two other 
matrices (one of them is a diagonal matrix) that, when multiplied in 
some way, give you back your S matrix.  

• We’re not trying to understand why that is or what exactly do the two 
matrices (

 
 and 

  
) represent. We don’t care at the moment. All we 

need to know is that this is possible and (as you will see) useful for FA.  

 

 



Eigenvalues, eigenvectors, and 
 

 

• Alright. For now, we will take the matrix 
     

) 

 

• Remember, this is the population correlation matrix 
 

 with unique 
variances (in 

  
) subtracted from the diagonal (because 

  
 is diagonal) 

 

• This matrix is also square and symmetric, just like S from the previous 
slide.  

 

 



Eigenvalues, eigenvectors, and 
 

 

• The factor model says that 
           

 

 

• So, what we want is to find a unique matrix 
 

 that satisfies this model. 

 

• Given our rotational indeterminacy problem, we really want to find a 
unique solution in some way, so that we would get this same solution 
every time we would run a factor analysis.   

 

 



Eigenvalues, eigenvectors, and 
 

 

• Okay, so how do we use the eigen-stuff to find this unique solution? 

 

• Some smart folks have invented the following: 

 

• The eigen-decomposition of 
      

 yields some 
 

 and some 
  

 

• If 
 

 and 
  

 satisfy the common factor model 
         

 for m 
factors, then a loading matrix 

 
 can be constructed from the m largest 

eigenvalues of 
  

 and the corresponding m standardized eigenvectors of  
 (remember, each eigenvalue is associated with some eigenvector, 

hence the word “corresponding”) 

 

 



Eigenvalues, eigenvectors, and 
 

 

• The eigen-decomposition of 
      

 yields some 
 

 and some 
  

 

• If 
 

 and 
  

 satisfy the common factor model 
         

 for m 
factors, then a loading matrix 

 
 can be constructed from the m largest 

eigenvalues of 
  

 and the corresponding m standardized eigenvectors of  
  

• Actually, the rest of the eigenvalues in 
  

 (p – m largest eigenvalues) are 
all zero.  

• Anyway, if we take the eigenvalues in 
  

, take their square roots and put 

them back again into a matrix we will call 
     

, then 
        

 

 

 



Eigenvalues, eigenvectors, and 
 

 

• Magic.  

 

• Remember, we don’t care about why this works or how it works. All we 
care about now is that this procedure allows us to come up with a 
unique solution to 

 
 

 

• For the procedure to work, we need to know 
  

, or the unique factor 
variances.  

 

 



Eigenvalues, eigenvectors, and 
 

 

• Let’s look at an example, using the example data we have seen before. 

 

• The matrix P is given as follows: 

 

 

 

 

 



Eigenvalues, eigenvectors, and 
 

 

• Assume the unique variances are known: 

             

 

• So the matrix P with communalities in the diagonal is given by: 

 

   

                         

 



Eigenvalues, eigenvectors, and 
 

 

• We can obtain the eigenvalues and eigenvectors of 
    

 

• The non-zero eigenvalues are:         

 

 

• And the corresponding eigenvectors: 

 

    

                    

 



Eigenvalues, eigenvectors, and 
 

 

• The factor loading matrix can be obtained:
         

 

 

    

                    

 

 

• Wait…that’s not the loading matrix I have shown you last time for the 
example data, is it?  



Eigenvalues, eigenvectors, and 
 

 

• It’s a transformation of the matrix I have shown you earlier, in the 
rotational indeterminacy sense, 

  
 = 

   
 

 

                                               

 

 

• Both 
 

 matrices provide an exact solution to the model. The procedure 
involving eigen-stuff allowed us to identify the unique solution, though. 



Eigenvalues, eigenvectors, and 
 

 

• Okay, so, I have just shown you how to obtain the solution (
 

) if: 
• You know the population correlation matrix, P 

• You know the contents of 
  

, so you know the unique variances or 
(conversely) the communalities 

• The model holds exactly in the population 

 

• Huh. Putting the “model holds exactly” thing aside, you will never know 
P and you will never know 

  
, so this is a theoretical scenario.  

• That’s true, but this serves as a basis for things to come.  



The communality problem 

• As I said, the solution obtained by doing the  
eigen-decomposition of 

    
 requires that you know either the 

unique variances or the communalities (once you know one, you know 
the other one, right?) 

 

• But we don’t know these, since finding out what they are is a part of the 
problem we face.  

 

• When factor analysis was young, this was called the “Communality 
problem” 



The communality problem 

• Many solutions were suggested to the communality problem. 

 

• The one that “won” (was and is the most widely used) was suggested by 
Louis Guttman in 1940.  

 

• Guttman suggested squared multiple correlations (SMCs) as the initial 
approximations to communalities.  



The communality problem 

• Just what is a squared multiple correlation (SMC)?  

 

• Imagine you have p manifest variables. You can try to predict the j-th 
manifest variable from the other (p - 1) manifest variables, linear 
regression-style.  

 

• This prediction will be imperfect. You can correlate these predicted 
values of the j-th manifest variable with the actual values of the variable. 
What you will get is a correlation coefficient, the multiple correlation 
coefficient. Square it and you get the SMC.  



The communality problem 

• Guttman has shown that if the factor model applies to the population 
correlation matrix P, then the squared multiple correlation of the j-th 
manifest variable on the other (p – 1) manifest variables is the lower 
bound for the communality of the j-th manifest variable.  

 

• So, not knowing the contents of 
  

, one might approximate the 
manifest variable communalities with manifest variable SMCs, computed 
from P. These approximations can then be substituted into the diagonal 
of P and one can, again, use the eigenvalue-eigenvector approach on this 
modified P matrix to obtain 

 
.  



The communality problem 

• However, in order to obtain the population SMCs, we need to know P in 
the first place. Most often, we don’t.  

 

• In practice, we can apply the same procedure to a sample correlation 
matrix, R, in order to obtain sample SMCs. Since, in reality, we usually 
work with sample correlation matrices, let’s slowly shift the gear 
towards thinking more about a sample correlation matrix R and less 
about the population correlation matrix, P.   



Working with a sample correlation matrix 

• So far, we have studied factor analysis limiting ourselves to the ideal 
scenario in which we know the population correlation matrix, P. Moreover, 
we only considered the case where the model holds exactly in the 
population.  

 

• Now, let’s consider the real world in which we do not have access to P but 
we do have access to R. In this real world scenario, we are not even sure 
the sample correlation matrix R is drawn from a population with a 
correlation matrix P for which the model holds.   

 

• As before, let’s just consider the uncorrelated / orthogonal model for now. 



Working with a sample correlation matrix 

• First of all, we should tone down the optimism. In our hypothetical 
scenarios, we could select 

 
 and 

  
 to reconstruct P perfectly:  

          
 

 

• In reality, our estimates of 

 

 and 

  

, 

 

 and 

   

, will generally not be 
able to exactly reproduce our sample correlation matrix R: 

         
 



Working with a sample correlation matrix 

• So, what we want is a parsimonious model (m << p) that provides a 
relatively good approximation to the data we have observed.  

 

• This degree of approximation (how well the model fits the data) is 
reflected in the residual matrix, defined as 

        
 

 

• The residual matrix tells us how far away the correlation matrix R we 
have observed is from the correlation matrix the model predicts. In 
other words, how far is the observed correlation matrix from the model-
implied correlation matrix (which is simply 

      
) 



Working with a sample correlation matrix 

• Every element in the residual matrix tells us how far is the model-implied 
(predicted) value of this element from its observed value. 

 

• Alright, so – again, we don’t have a population correlation matrix P 
which we used for all the computations and methods covered before. 
What are we going to do?  

 

• Of course, we’re going to pretend like the problem isn’t there and we’ll 
start by doing things in the exact same way.   



Working with a sample correlation matrix 

• First, we will obtain some initial communality estimates and plug them 
into the diagonal of R. We can use the SMCs.  

 

• This way, we will arrive at our 

    

 matrix just as we did arrive 
previously at the 

    
 matrix. [Oh, by the way, did I ever call this a 

reduced correlation matrix? I didn’t? Well, now I do.] 

 

• We get the eigenvalues and eigenvectors for this reduced [see?] sample 
correlation matrix.  

 

 



Working with a sample correlation matrix 

• Again, we will obtain some eigenvalues and some eigenvectors. 
However, in this case (not having a population correlation matrix, not 
being sure the model holds exactly in the population), we will generally 
not obtain an eigen-solution where the (p – m) smallest eigenvalues are 
zero.  

 

• Thus, we cannot rely on the number of non-zero eigenvalues to show us 
the “true” number of factors (m). Thus, we will have to choose m 
ourselves beforehand, based on our best judgement (more on that later) 

 

 



Working with a sample correlation matrix 

• Thus, having chosen the number m beforehand, we will take the m 
largest eigenvalues and their corresponding m eigenvectors.  

 

• Just like before, we will take the square root of the eigenvalues, sort 

them by size and place them in a diagonal matrix 
     

 

 

• And, just like before, we will create a matrix 
  

 with the corresponding 
eigenvectors as columns.  

 

 



Working with a sample correlation matrix 

• Then, we can use the eigenvalues and eigenvector matrices to compute 
our estimate of factor loadings: 

          
 

• The 
 

 obtained in this way minimizes the residual sum of squares (RSS): 

                         

 

• Let me illustrate the formula for RSS now on the board 



Working with a sample correlation matrix 

• This 
 

 results in minimum sum of squared residuals, conditional on the 
given set of prior communality estimates. 

 

• This method is known as the principal factor method using prior 
communality estimates (whoa, that’s a LONG name) 

 

• Let’s look at an example.  



Example 

• Previously, we used the population correlation matrix for the 
four-tests-data for examples. Assume we have a sample correlation 
matrix R from the same data, different from the population matrix P: 

                   

  

 

• We would like to estimate the model, but we do not know the true 
communalities. Also, we do not know if the model holds in the 
population.  



Example 

• We can, however, compute the SMCs as approximations to the true 
communalities.  

 

• In this case, we would get the following SMCs: .29, .377, .156 and .39 
(respectively). We will replace the diagonal elements in R with the 
communality estimates to get our reduced sample correlation matrix: 

                            

  

 



Example 

• Choosing m = 2, we get the following m eigenvalues and m eigenvectors: 

         

  

 

                     

 



Example 

• …and we compute 
 

: 

 

 

                            

 

 

• Interesting point: the sums of squares of each column correspond to the 
eigenvalues. 

  



Example 

• Then, we can compute the model-implied reduced correlation matrix: 

                         

 

  

• On the diagonal of this matrix are the communalities for this solution. 
These values are the sums of squares of factor loading in each row of 

 
 

• Off the diagonal are the correlations between the MVs as reconstructed 
by this particular model solution.  



Example 

• Compare the model-implied reduced correlation matrix to the observed 
reduced correlation matrix: 

                         

 

 

 

                           

  

 



Example 

• They don’t match – the model does not fit the data perfectly.  

                         

 

 

 

                           

  

 



Example 

• This lack of fit is represented in the residual matrix: 

 

 

                                      

 

 

  



Example 

• The solution produced a residual matrix with minimum sum of squares, 
conditional on the prior communality estimates. If the prior 
communality estimates would be different, a different residual matrix 
would satisfy the RSS criterion.  

  



Short review 

• So, what was the principle behind the principal factor method using prior 
communality estimates? Let’s do a short recap: 

 

• 1) First, we obtain some communality estimates (like SMCs) and plug 
them into the diagonal of R. Thus, we get our estimate of 

    
 

• 2) Then, we obtain the eigen-solution of 

    

 

• 3) We use the eigen-solution to obtain 
 

 

• 4) What we just got is a solution that minimizes the Residual Sum of 
Squares (RSS) given our initial 

  
 

  



Iterative procedure 

 

• Alternatively, we could try to minimize the RSS criterion by estimating    
 alongside 

 
 and not sticking only with the initial 

  
 

 

• This can be done iteratively, by minimizing RSS with respect to both 
  

 
and 

 
 

 

• This technique is called iterative principal factors or ordinary least 
squares (OLS) or unweighted least squares (ULS) or minres  

 

  



Iterative procedure 

 

• We will start by doing things the same way we did previously, using the 
principal factors method:  
 
 

• 1) First, we obtain some communality estimates (like SMCs) and plug 
them into the diagonal of R. Thus, we get our estimate of 

    
 

• 2) Then, we obtain the eigen-solution of 
    

 
• 3) We use the eigen-solution to obtain 
 

 
 

• …but we won’t end here. We will use the computed 
 

 to obtain new 
communality estimates by summing the squared elements in each row 
of 

 
  (diagonal elements of 

   
) 

 

 

  



Iterative procedure 

• We shall take the new communality estimates and plug them into the 
diagonal of R. Thus, we get a new 

    
 

 

• Again, we obtain the eigen-solution of this new 
    

 and use it to 
compute a new 

 
 

 
• …and repeat (use the newly computed 
 

 to again obtain new 
communality estimates). We continue this process until the 
communalities obtained in successive iterations do not significantly 
differ by some pre-set criterion (convergence criterion). 
 

 

  



Iterative procedure 

• That’s really all there is (in principle) about OLS.  
 

• By the way, the RSS function (the formula we have seen before) is a 
discrepancy function – it quantifies the distance between the observed 
and model-implied correlation matrices. In other words, it expresses the 
degree of lack of model fit.  
 

• Being a discrepancy function, it is always greater than or equal to zero 
and is zero only when the observed and model-implied correlation 
matrices are the same.  
 

 
  



Heywood cases 

• One nasty thing can happen when using OLS estimation 

 

• That is, some communalities can, in the course of the iterations, be 
greater than one. Conversely, the unique variances can become less than 
zero (because in a standardized solution, the communality and the 
unique variance of an MV add up to one) 

 

• But there’s no such thing as negative variance. Thus, such a solution 
would be nonsensical and unacceptable. We call these occurrences 
Heywood cases 



Heywood cases 

• If you’re using smart software, you should be notified whenever a 
Heywood case occurs 

 

• If you’re using smart software, it can help you circumvent the problem 
by placing a constraint on the associated unique variance such that it can 
only be greater than or equal to zero.  



Summary 

• We considered multiple scenarios of fitting the model to data. Let’s do a 
quick review.  

 

• 1) You know P and you know 
  

. You can obtain the eigen-solution of  
(P - 

  
) to compute 

 
.  

 
….however, this will never be the case in practice.  



Summary 

• We considered multiple scenarios of fitting the model to data. Let’s do a 
quick review.  

 

• 2) You know P but you do not know 
  

. You can estimate communalities 
using SMCs and plug them into the diagonal of P to obtain (P - 

  
). 

Afterwards, you obtain the eigen-solution of (P - 
  

) to obtain 
 

. 

 
….however, this will also never be the case in practice.  



Summary 

• We considered multiple scenarios of fitting the model to data. Let’s do a 
quick review.  

 

• 3) You do not know P and you do not know 
  

. All you have is R. You 
can estimate communalities using SMCs and plug them into the diagonal 
of R to obtain (R -

   
). Obtain the eigen-solution of (R -

   
) to get 

 
. 

 
….the solution minimizes RSS given your original 
  

. This can happen very 
often in practice, although we would normally use a better option coming 
up next.  



Summary 

• We considered multiple scenarios of fitting the model to data. Let’s do a 
quick review.  

 

• 4) You do not know P and you do not know 
  

. All you have is R. You 
can estimate communalities using SMCs and plug them into the diagonal 
of R to obtain (R -

   
). Obtain the eigen-solution of (R -

   
) to get 

 
. 

Use the computed 
 

 to obtain new communality estimates from the 
diagonal of 

   
. Return to the beginning with fresh new communality 

estimates, repeat until convergence.  

 
 


