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Prologue 

• Matrix algebra is a framework for manipulating collections of 
numbers or algebraic symbols. 

 

• Factor model is an algebraic system. If you understand the way it is 
communicated, you gain a better appreciation of what is going on.  

 

• We have already seen the common factor model representing the 
structure of score xij – this model applies to every xij in the data 
matrix X. Matrix algebra will allow us to express that.  



Definitions 

• Scalar: A single value, e.g., k = 3, z = 0.7 

• Matrix: A rectangular table of elements (numbers, symbols…): 

 

A =

                                

 

 

aij = element in row i and column j of matrix A 

a11 = 1.0, a21 = 0.2 

An uppercase letter (like A) names the matrix and stands for all the elements 



Definitions 

• Data matrix: Each element is a score for an individual on a variable 

 

 

X =

                            

 

 

• xij  = score for the i-th individual on the j-th variable 

p = 3 manifest variables  

N = 4 subjects 



Definitions 

• Order: The size of a matrix.  

• A matrix with N rows and p columns is of order N x p 

 

• Square matrix: A matrix with the same number of rows and columns 

• Vector: A matrix with a single column (column vector) or a single row (row 
vector) 

 

v = 

         

    m x 1 column vector 

 
1 x m row vector 

w = 
         

 



Definitions 

• Transpose of matrix A is a new matrix, A’, formed by writing the rows 

of A as the columns of A’: 

 

If A = 

                  

 then the transpose is      A’ = 

                  

 

 

• The transpose of a P x M matrix A is a M x P matrix A’ (or AT) 

• Equality of matrices: Two matrices are equal if and only if they are of 
the same order and all their corresponding elements are equal. 

 



Arithmetic operations 

• Addition and subtraction: Only possible if matrices are of the same 
order (conformable for addition) 

• Corresponding elements of A and B are summed to form C.  

• C = A + B ; cij = aij + bij  for all i and j 

               
 

Commutative law: A + B = B + A 

Associative law: (A + B) + C = A + (B + C) 

The transpose of a sum is the sum of the transposes: (A + B)’ = A’ + B’ 

 

 



Multiplication 

• Scalar multiplication: 

 

C = Ba = aB ; cij = a∙bij 

 

2

               

 



Multiplication 

• Matrix multiplication is not what you might think it is! 

• Matrix multiplication: A and B have to be conformable for multiplication. 
Matrices are conformable if the number of columns in the first matrix 
equals the number of rows in the second.  

 

A          B     = AB =      C 
              n x p         p x m  n x m 

• The product matrix has as many rows as the first matrix and as many 
columns as the second matrix.  

• In this case, B was being pre-multiplied by A (and A was being post-
multiplied by B) 



Multiplication 

• Matrix multiplication: cij equals the sum of products of elements in 
the i-th row of A and the j-th column of B. 

 

                   

 

 

cij = ai1 b1j + ai2 b2j + ... + aip bpj  



Multiplication 

• For instance, if A is a 2x2 matrix and B is a 2x3 matrix, then AB = C is a 
2x3 matrix: 

 

                  
 

                  
 

 

• Note again that order matters here! AB = C, but BA is undefined.  

   A          B  C 



Multiplication 

• Matrix multiplication is associative: A(BC) = AB(C) 

• Matrix multiplication is not commutative: AB ≠ BA 

• Matrix multiplication is distributive: A(B+C) = AB + AC; (B+C)A = BA + CA 

• The transpose of a product of matrices equals the product of the 
transposes in reverse order: (AB)’ = B’ A’ 



Kinds of matrices 

• Symmetric matrix: A square matrix S is symmetric if it’s equal to its 
transpose 

 

 

S = 

    

 = S’ 



Kinds of matrices 

• Triangular matrix: A square matrix S is lower triangular if all the 
elements above the diagonal are zero. A square matrix R is upper 
triangular if all the elements below the diagonal are equal to zero.  

 

S = 

         

 

 

R = 

         

 

 



Kinds of matrices 

• Diagonal matrix: A square matrix D is diagonal if all the off-diagonal 
elements are zero.  

 

D = 

            

 

 

 

 



Kinds of matrices 

• Pre-multiplication by a diagonal matrix scales rows: 

 

DA = 

                                                 

 

• Post-multiplication by a diagonal matrix scales columns: 

 

BD = 

                                                 

 



Kinds of matrices 

• Identity matrix is a diagonal matrix with all diagonal elements = 1 

 

 

I = 

         

 

 

• Multiplication of a matrix by an identity matrix does not change the 
matrix (it’s like multiplying a scalar by 1) 



Kinds of matrices 

• Orthogonal matrix: A square matrix T is orthogonal if TT’ = I or T’T = I 

 

• Correlation matrix is a square, symmetric matrix with unit diagonals 
and off-diagonal elements that satisfy -1 ≤ rij ≤ 1. Also, it has to be 
nonnegative definite (we will define that later) 



Functions of matrices 

• The Determinant of a square matrix A is a scalar function of the 
elements of A. It is denoted as |A| or det(A) and is a single number 
(scalar).  

• The determinant has many functions which we will not cover here 
(neither will we cover the definition or computation) 

• If a matrix has determinant equal to zero, the matrix is called singular. 
This is an indication that there is redundancy among the rows / columns 
of the matrix – if the determinant is zero, some columns (or rows) of the 
matrix can be expressed as linear combinations of other columns 
(rows). In other words, the columns (rows) are linearly dependent.  

 



Functions of matrices 

• A singular matrix: 

 

 

 

A = 

         

 

 

(The last column is the sum of the first two columns) 

 



Functions of matrices 

• Trace: The trace of a square matrix A, tr(A), is the sum of its diagonal 
elements.  

 

• Rank: The column rank of A is equal to the total number of linearly 
independent columns of A. The row rank of A is equal to the total 
number of linearly independent rows of A. 

   The rank of an N x K matrix is at most the minimum of N or K, min(N,K) 

• A matrix whose rank is equal to min(N,K) is full rank 

• A matrix whose rank is less than min(N,K) is rank deficient   



Functions of matrices 

• Inverse: If A is a square matrix and is not singular (i.e., its determinant is 
non-zero), then it has a unique inverse A-1 such that: 

 

AA-1 = A-1A = I 

 

• The inverse of a matrix plays a role similar to that of a reciprocal in 

scalar algebra:  x * 
  

 = 1 

• Post-multiplying A by the inverse of B is analogous to „dividing“ A by B 
(assuming the matrices are conformable for multiplication) 



Functions of matrices 

• Solving equations: 

 

Consider the equation  Ax = b, where A is a N x N non-singular matrix, b is 
a N x 1 vector and x is a N x 1 vector. We know the elements of A and b 
and wish to solve for x: 

Ax = b 

A-1Ax = A-1b 

Ix = A-1b 

x = A-1b 

 

 



Functions of matrices 

• Solving equations: 

4x + 5y = 4 

3x + 1y = 3 

• In matrix form:          
 

solving:                            

 



Functions of matrices 

• Eigenvalues and Eigenvectors 

• Suppose that S is a square symmetric matrix of order p. If u is a column 
vector of order p and v is a scalar, such that: 

Su = vu 

...then v is said to be an eigenvalue (or characteristic root) of S and u is 
said to be an eigenvector (or characteristic vector) of S.  

 

• S will have p eigenvalues and p associated eigenvectors.  



Functions of matrices 

• Eigenvalues and Eigenvectors 

 

• If all p eigenvalues are positive, the matrix is positive definite. If one or 
more eigenvalues are zero and the rest is positive, the matrix is 
nonnegative definite. If one or more eigenvalues are negative, the 
matrix is negative definite.  

 

• The determinant of S, det(S), equals the product of the eigenvalues of S 
Thus, if one or more eigenvalues are zero, the matrix is singular.  

 



Functions of matrices 

• Eigenvalues and Eigenvectors 

 

• The eigenvalues can be arranged in descending order as the diagonal 
elements in a diagonal matrix D, and the corresponding eigenvectors 
can be arranged as columns of matrix U. Then: 
 
U is orthogonal, that is, U’U = I 
The “eigenstructure” of S can be given in this form: SU = UD 
It also holds that S = UDU’ 

 



Linear combinations of random variables 

• Matrix equations are handy for representing linear combinations of 
random variables 

• Let x be a column vector of order p containing scores for a random 
individual on variables x1, x2, …, xp 

• Let z be a column vector of order m containing scores for a random 
individual on variables z1, z2, …, zm 

• We will represent the variables in x as linear functions of the variables in z. 
Let A be a matrix of order p x m containing coefficients ajk representing the 
linear effects of zk on xj  

• Let μ be a column vector of order p containing fixed constants μ1, μ2, …, μp 



Linear combinations of random variables 

• Then, we can represent the variables in x as linear functions of the 
variables in z and the constants in μ using the following matrix equation: 

x = μ + Az 

                                                 

 

…thus:                       
 

• The matrix equation actually contains the whole set of linear equations 



An intermezzo – expected values 

• Wiki: “The expected value of random variable is the long-run average value 
of repetitions of the experiment it represents” 

 
...so, the expected value is the variable’s mean. 

 

• E[X] = μ 



An intermezzo – expected values 

• Now, consider the (scalar) formula for the variance of a random variable: 

           

 

 

…which is the “mean squared deviation from the mean”, right?  

 

• As an expected value: E[(X – μ)2]  



An intermezzo – expected values 

• Now consider the (scalar) formula for covariance 

                  

 

 

…which is the “mean cross-product of deviations from the mean” (sorta)  

 

• As an expected value: E[(X – μx)(Y - μy)]  



Covariance matrix 

• Now suppose that x is a vector of order p containing scores on p variables 
for a random individual selected from some population, and μ is a vector 
of order p containing the population means of these p variables.  

• Then, vector (x – μ) stands for the vector x with the population means 
subtracted (it represents deviations from the mean) 

 

• Let’s multiply this vector by its transpose: 

(x – μ) (x – μ)’ 



Covariance matrix 

• Let’s multiply this vector by its transpose: 

(x – μ) (x – μ)’ 

 

• …and take the expectation: 

E[(x – μ) (x – μ)’] 

 

 



Covariance matrix 

E[(x – μ) (x – μ)’] 

 

• Expanding, we get the expectation of:  
                                             

 

 

 

• …which gives us the variance/covariance matrix of the manifest variables 



Covariance matrix 

E[(x – μ) (x – μ)’] 

 

• The variance-covariance matrix is a p x p symmetric matrix with variances 
on the diagonal and covariances off the diagonal 


