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Introduction 

• A big aspect of the EFA methodology is rotation.  

• Rotation is a procedure applied to the factor loading matrix 
 

 to 
enhance the interpretability of factor loadings (and, in effect, the 
factors themselves) 

 

• The process and methods of rotation are often not very well 
understood by users.  

• As a result, the rotation process is often inadequate in practice.  



Introduction 

• Back in the early days, rotation was done by hand (!) using graphical 
methods – hence the name rotation 

 

• Nowadays, analytical methods are employed using computers 

 

• …however, it’s kinda funny to think about early factor analysts turning 
things around by hand on a big board (well, it was probably not them, 
but their assistants) [Most computations were done by “computers” – 
largely women, by the way]  



Introduction 

• To begin with, recall what the factor loading is. In the common factor 
model:          

 

 

…the factor loadings are regression coefficients, predicting the value of 
the manifest (dependent) variable from the value of the latent 
(independent) variable(s).  

 

Example from earlier slides:                        
 



Introduction 

• We know from multiple regression analysis that if the factors are 
uncorrelated, the 

 
s can be interpreted as simple correlations 

between the factors and the manifest variables. Therefore, if the 
factors are orthogonal (

    
, the loadings are bounded between  

-1 and +1. 

• When the factors are not orthogonal (
   

), the factor loadings can 
no longer be interpreted as simple correlations, and are no longer 
bounded between -1 and +1 



Introduction 

• When the factors are correlated (oblique), the factor loadings can be 
interpreted as factor weights, representing the linear influence a 
factor has a particular MV, but no longer as simple correlation.  

• This sometimes confuses people when they see a rotated solution 
with correlated factors that contains factor loadings greater than +1 
or smaller than -1.  



Introduction 

• When we formulate a factor analysis model, one of the things we do 
is interpreting the factors – giving them meaning, gaining some sense 
about them.  

• This endeavor is greatly simplified if most of the loadings 
corresponding to a manifest variable j are zero or close to zero. This 
means that the MV is influenced only by a small number of factors.  

• Which is great, because we rely on the structure of loadings to get a 
sense of what the factor might stand for.  



Introduction 

• When we want to understand a factor, we look at the column of 
factor loadings in 

 
 that corresponds to that particular factor, and we 

look at a characteristic or a property that is shared by the manifest 
variables that have high loadings on the factor.  

• This allows us to “name” the factor – infer on its nature or meaning 
through observing which MVs does it strongly affect (…and which 
MVs it does not) 



Introduction 

• You can simply change the sign of all elements in any column of 
 

. 
Doing this simply reverses the meaning of the factor. For instance, a 
factor that we named “spatial reasoning” (because of positive factor 
loadings on test items supposed to measure spatial reasoning) would 
become its opposite, “lack of spatial reasoning” (because of negative 
factor loadings…) 

 

• If factors are orthogonal, no change needs to be done for 
 

. If factors 
are not orthogonal, then if we reverse the sign of factor loadings for 
this factor, we need to reverse the signs of all 

 
 elements in the row 

and column corresponding to the given factor.  



Introduction 

• You can also re-order the columns of 
 

 as you like.  

 

• If factors are orthogonal, no change needs to be done for 
 

. If factors 
are not orthogonal, then re-ordering the columns of 

  
must be 

accompanied by re-ordering the rows and columns of 
 

. 



Orthogonal rotations 

• Previously, we have discussed the issue of rotational indeterminacy. 

 

• If 
            

then we can find other loading matrices:   
 = 

   
 

such that             
 

         
= 

                     
 

where T is an orthogonal matrix (
     

) 



Orthogonal rotations 

• This matrix T is called a transformation matrix and there are infinitely 
many such transformation matrices available.  

 

• Our goal is to find such T so that the resulting 
  

 is interpretable / is 
more easily interpretable than the original 

  
 

 

• However, this is still a mathematical procedure, so we need to find 
some mathematical definition of “interpretable”.  



Orthogonal rotations 

• Remember – because the alternative solutions to 
 

 are equally good 
solutions, rotation does not affect the fit of the model. Neither does it 
affect the communalities.  

 

• Back to the definition of „interpretable“ – again, a solution that would 
be easy to interpret would be one with some loadings close to zero, 
some of high magnitude and an overall detectable pattern of 
loadings. 

• The zero loadings are important – if all the elements in the first 
column are high and all others are close to zero, that would not be 
easy to interpret.  



Thurstone’s “simple structure” 

 

• Thurstone (1947) has defined requirements of a factor loading matrix 
with so-called simple structure to be more easily interpretable 

 

• The requirements are phrased in terms of the number and location of 
zero (or very small) factor loadings in the 

 
 matrix 



Thurstone’s “simple structure” 

• For a p x m factor loading matrix: 

1. Each row of 
 

 should contain at least one zero 

2. Each column of 
 

 should contain at least m zeros 

3. Every pair of columns of 
 

 should have a couple of rows with a zero 
in one column but not the other 

4. If m ≥ 4, every pair of columns of 
 

 should have several rows with 
zeros in both columns 

5. Every pair of columns of 
 

 should have few rows with nonzero 
loadings in both columns 



Thurstone’s “simple structure” 

• In general, Thurstone’s criteria suggest that each factor should be 
represented by relatively high loadings for a distinct subset of MVs 
and relatively low loadings for the remaining MVs.  

• In addition, these subsets defining different factors should not 
overlap too much.  

• Furthermore, each MV should only be influenced by some subset of 
the common factors.  

• The criteria do not imply that each MV should only be influenced by a 
single factor, which is a common misconception.  



Analytic rotation 

• In the 1950s, researchers began developing automated procedures 
for rotation. The guiding principle was to establish an objective, 
mathematical definition of simple structure.  

• Generally, this is achieved by defining a function of the elements in 
the factor loading matrix (

 
) that expresses the degree of simple 

structure numerically. We refer to such a function as a simplicity 
function or a simplicity criterion. This is a scalar-valued function with a 
matrix-valued argument, f(

 
). 

 



Analytic rotation 

 

 

• The transformation matrix is then found as the matrix which 
maximizes the simplicity function (or, rather, yields such a 

 
 which 

maximizes the simplicity function).  

• This general approach is called analytic rotation. Analytic rotation 
requires no user judgement or subjective input (unlike the earlier 
methods for manual rotation) 

 



Analytic rotation 

 

• Sometimes, it is convenient not to maximize a function that measures 
the simplicity of 

 
, but to minimize a function that measures the 

complexity of 
 

. Such a function would be called a complexity 
function. The idea is the same.  

 

• Because the signs of the factor loadings depend on arbitrary choices 
for scoring the latent variables, it is convenient to base the simplicity 
or complexity functions on squared factor loadings, 

   
. Then, the 

criterion is unaffected by the signs of factor loadings.  

 



Quartimax 

• The first suggested simplicity criterion. It’s the sum of the fourth 
powers of factor loadings: 

                  

 

• This is equivalent to the overall variance of squared factor loadings.  

• Given an unrotated factor loading matrix 
 

, choose a transformation 
matrix T such that Q(

 
) is maximized with the rotated  

loading matrix 
 

T 



Varimax 

• It turned out that Quartimax tended to provide a 
 

 with a single 
column of large loadings and small loadings in other columns. In most 
cases, that’s not desirable.  

• The Varimax criterion was suggested instead. Varimax is the sum of 
the m within-column variances of squared factor loadings:                         

 

 

• where 

              

   is the within-column mean squared loading. 

 



Varimax 

• As simple structure improves, the squared loadings on factors 
become more variable (some loadings high, the rest low). Summing 
the variances of the squared loadings over all m factors provides a 
measure of simplicity.  

• The described criterion is known as raw Varimax because it is applied 
to the raw factor loadings. Kaiser found that it works well, but 
sometimes, in rows with small communalities, it does not. He 
therefore standardized rows of the factor matrix by dividing factor 
loadings by the square roots of communalities before rotation. This is 
usually called normal Varimax or Varimax with Kaiser normalization.  

 



Varimax 

• Varimax tends to work well as an orthogonal rotation.  

 

• However, Varimax almost monopolized the entire enterprise of 
orthogonal rotations in applied research (bluntly – everyone uses 
Varimax all the time) 

 

• Let’s take a look at our example data, before and after a Varimax 
rotation.  

 



Varimax 

• Unrotated factor loadings: 

 

1 2 3 

WrdMean 0.68 0.53 -0.27 

SntComp 0.72 0.38 -0.23 

OddWrds 0.70 0.49 -0.16 

MxdArit 0.90 -0.34 -0.03 

Remndrs 0.84 -0.20 0.03 

MissNum 0.86 -0.13 0.00 

Gloves 0.42 0.09 0.43 

Boots 0.48 0.25 0.54 

Hatchts 0.48 0.30 0.67 



Varimax 

• Rotated factor loadings: 

  

 

 

 

(note the deviations from 

simple structure) 

1 2 3 

WrdMean 0.15 0.87 0.22 

SntComp 0.16 0.75 0.34 

OddWrds 0.24 0.79 0.25 

MxdArit 0.18 0.25 0.91 

Remndrs 0.26 0.29 0.77 

MissNum 0.26 0.36 0.75 

Gloves 0.56 0.09 0.23 

Boots 0.72 0.19 0.17 

Hatchts 0.86 0.17 0.12 



Analytic rotation 

• I suggest you perform rotations for various number of extracted 
factors when exploring the factor structure using EFA. This can also 
help you in determining the number of factors.  

• Under-factoring tends to result in multiple factors collapsed into one, 
which can manifest as a solution that heavily violates simple structure 
or that is not easily interpretable. 

• Over-factoring can result into a solution which has a column(s) of 
loadings with only a single non-zero element, or a column(s) of 
loadings with all elements very small.  

  

 

 

 

 



Orthogonal rotation? 

 

• As we know, orthogonal rotations require the rotated factors to 
be orthogonal. In other words, we impose the constraint that the 
transformation matrix T has to be an orthogonal matrix.  

 

• Is this reasonable, though? With exploratory factor analysis, the 
goal is, after all, to explore the number and nature of the major 
common factors. How do we know a priori that the factors are 
uncorrelated?  

  

 

 

 

 



Orthogonal rotation? 

 

• In reality, this restriction is mostly uncalled for. In the domains 
we frequently use FA (mental abilities, attitudes, personality, 
consumer research, public health), we would on the contrary 
expect the factors to be a priori correlated.  

 

• Orthogonal rotations are, however, still used very often in 
practice. Why is that? 

  

 

 

 

 



Orthogonal rotation? 

 

• It’s what everyone is doing, so I’ll do it, too.  

• It’s simple.  

• It’s the default setting in the program I use.  

• Lack of understanding of rotation. 

• Desire for the factors to be uncorrelated.  

• “Varimax” sounds cool.  

  

 

 

 

 



Orthogonal rotation? 

 

• Does any of that matter? Of course not.  

• Orthogonal rotations were made for times when computers were 
the size of a room and computations were slow.  

• We should be using oblique rotations instead. Imposing the 
constraint of uncorrelated factors is, by large, unjustified.  

• Moreover – if the best solution (in terms of simple structure) is a 
one with uncorrelated factors, oblique rotation will find it as such 
(with oblique rotation, factors are allowed to correlate, not 
required to)  

 

 

 

 



Orthogonal rotation? 

 

• With oblique rotations, we can expect the solutions to be more 
easily interpretable with a simpler structure – just because we 
have accounted for the potential systematic relationships 
between the latent variables.  

 

• It’s just more realistic. Keep it real, man.  

 

 

 

 



Oblique rotations 

• With oblique rotation, we still have a transformation matrix T, we just 
don’t require it to be orthogonal. Instead, we require that: 

          
 

…has unit diagonals. The reason is (simply put) the following: 

            
 

…so we have our full model with a factor correlation matrix 
 

:         
 

 

 

 

 



Oblique rotations 

• Communalities remain unchanged (because 
  

 remains unchanged) 

 

• Setting aside some of the more historic methods of oblique rotation, 
two approaches are relevant today – the Oblimin family and the 
Crawford-Ferguson family.  

 

• The Oblimin family uses a simplicity criterion which includes a “tuning 
constant”, 

 
, which can be toggled by the user. Different values of the 

constant lead to different rotation criteria.   

 

 

 

 

 



Oblique rotations 

• Whenever you use a rotation from the Oblimin family, make sure to 
report the value of 

 
. The recommended value, however, is 0 (in that 

case, we’re talking about the Direct Quartimin criterion). 

 

• The Crawford-Ferguson family is more satisfactory. Let’s take a closer 
look (the CF family is implemented by CEFA, for instance).  

 

• Note: The CF family can produce oblique as well as orthogonal 
rotations.  

 

 

 

 



Crawford-Ferguson family 

• The CF family uses a complexity function of 
 

: 

                                                     

 

 

•
 

 is a tuning constant between 0 and 1. The function can be 
understood as follows: 

     
 times row parsimony plus 

 
 times 

column parsimony. 

 

 

 

 



Crawford-Ferguson family 

• In CEFA, a couple of criteria within the CF family (such as CF-
Quartimax, CF-Varimax, CF-Equamax, etc…) are already implemented 
without the need for the user to set the value of 

 
. 

 

• I won’t bother you with this much more. I’ll provide a couple of 
practical points at the end of the presentation, and if you’re 
interested, read more about the CF family yourself – you should be 
able to understand even the more technical papers now.  

 

• Let’s use the CF-Quartimax on our example data.  

 



CF-Quartimax 

• Rotated factor loadings: 

  

 

 

• Factor correlations: 

 

1 2 3 

WrdMean -0.05 0.94 -0.03 

SntComp 0.14 0.77 -0.03 

OddWrds 0.00 0.83 0.08 

MxdArit 1.01 -0.05 -0.04 

Remndrs 0.81 0.04 0.06 

MissNum 0.75 0.13 0.06 

Gloves 0.17 -0.07 0.55 

Boots 0.03 0.03 0.73 

Hatchts -0.04 0.00 0.90 

1 2 3 

1 1 

2 0.59 1 

3 0.45 0.43 1 



CF-Quartimax 

 

 

• As can be seen, the pattern of loadings is much simpler and easier to 
interpret.  

• Factors are substantially correlated. 

• Conducting oblique rotation is straightforward in most software.  
Use it!  

  



Target rotation 

• There is one rotation that can be used in a more confirmatory manner 
– the target rotation.  

 

• One can think of the target rotation as standing between exploratory 
and confirmatory factor analysis. It is useful when you already have 
some prior knowledge about the factor loading pattern, but not 
enough to warrant a fully confirmatory model.   

 

• Can be oblique or orthogonal. 



Target rotation 

• The rotation criteria described before are sometimes called blind 
rotation as there is no (or little) room for user input.  

 

• Target rotation, on the other hand, requires input from the user. The 
analyst sets up a hypothesized pattern of factor loadings, and the 
software tries to find a loading matrix that is as close as possible (in a 
least squares sense).  

 

• The target matrix has the same dimensions as the loading matrix 
 

. 



Target rotation 

• Target matrix, CEFA-style: 

 

 

• 0 = loading expected to be small 

• ? = unspecified, not small 

 

• The sum of squares of loadings 
corresponding to the zeros is 
minimized  

 

 

 

1 2 3 

WrdMean ? 0 0 

SntComp ? 0 0 

OddWrds ? 0 0 

MxdArit 0 ? 0 

Remndrs 0 ? 0 

MissNum 0 ? 0 

Gloves 0 0 ? 

Boots 0 0 ? 

Hatchts 0 0 ? 



Some final points 

• Use the CF family, and do oblique rotations. I really don’t see a lot of 
sense in performing orthogonal rotations.  

 

• Try out multiple oblique rotations – CF-Quartimax, CF-Varimax… 

 

• If you have a bit of an idea on what you expect, you might want to try 
using (oblique) target rotation. CEFA can do it, and this method is 
pretty under-utilized in applied research.  


