ceitec_PPT_podklad_uvod CEITEC_logo_pos_RGB OPVaVpI_loga-eu_pos_H_EN Connectivity and Networks in the Brain Mgr. Beáta Špiláková Selected topics from contemporary neuroscience 16.11.2017 beata.spilakova@ceitec.muni.cz • CEITEC_logo_neg_RGB Overview * Historical perspective * Motivation * Levels and types of connectivity * Methods * Graph theory and network elements * Selected brain networks in humans * Altered connectivity • •2/28 CEITEC_logo_neg_RGB Historical perspective * Phrenology (up until 1808) * Lesion studies, electrical stimulation experiments §Fritsch, Hitzig (1870), and Ferrier (1873-75) §Broca, Wernicke * Localization of Function in the Cortex Cerebri (1881) * Golgi & Ramón y Cajal (1888-) * Early applications of network science to the brain (90’s-00’s) * * * 3/28 CEITEC_logo_neg_RGB Motivation * Segregation & functional localisation approach is reductionistic * * 4/ 28 https://legacy.lib.utexas.edu/maps/czech_republic.html CEITEC_logo_neg_RGB Levels and types of connectivity * * * Three basic levels: * MICROSCALE * MESOSCALE * MACROSCALE * Specific techniques for each of them * • 5/ 28 Sporns, 2011 CEITEC_logo_neg_RGB MICROSCALE * * * Single neurons and synapses * Electron or light microscopy * Optogenetics * https://www.youtube.com/watch?v=I64X7vHSHOE • 6/28 CEITEC_logo_neg_RGB MESOSCALE * Neuronal populations and their interconnecting circuitry * Tracing of axonal projections, histological sectioning * * Zhong et al., 2018 7/28 CEITEC_logo_neg_RGB MACROSCALE * Anatomically distinct brain regions and pathways * Non-invasive, whole brain imaging techniques * 8/28 Van Overwalle, 2009 CEITEC_logo_neg_RGB Types of Connectivity * * * * Structural * Functional * Effective 9/28 CEITEC_logo_neg_RGB Methods * Histology * DTI * Functional imaging + subsequent analysis: §Correlations/coherence §ICA, gICA §Phase-locking value §PPI, DCM §… 10/28 CEITEC_logo_neg_RGB Graph theory * Need to describe the network * Graphs=models of real systems, their elements and their links * Elements à NODES * Links à EDGES * • 11/celkem Mears and Pollard, 2016 CEITEC_logo_neg_RGB Graph theory * Edges: • 12/28 Mears and Pollard, 2016 CEITEC_logo_neg_RGB Graph theory * Local metrics •Degree •Clustering coefficient •Path length •… * Global metrics •Rich club * • 13/28 CEITEC_logo_neg_RGB Graph theory * Nodes: • 14/28 van den Heuvel and Sporns, 2013 CEITEC_logo_neg_RGB Graph theory * Rich club: • 15/28 van den Heuvel and Sporns, 2011 CEITEC_logo_neg_RGB Graph theory * Small world networks: * High clustering coefficients, similar to regular graphs, and short average path lengths, similar to random graphs • 16/28 Watts and Strogatz, 1998 CEITEC_logo_neg_RGB Graph theory * Milgram’s experiment (no, not THAT one) * Many real world phenomena (social, biological, technological) * …and in brain as well • * • 17/28 Liao et al., 2017 CEITEC_logo_neg_RGB Selected brain networks * * * * Default mode network * Salience network * Reward network * • * 18/28 Název prezentace - doplnit CEITEC_logo_neg_RGB Default mode network * Freethinking, remembering the past, envisioning future events… * Consistent set of regions in different methodologies * Brain areas: •Ventral medial prefrontal cortex •Posterior cingulate cortex •Inferior parietal lobule •Lateral temporal cortex •Dorsal medial prefrontal cortex •Hippocampal formation 19/celkem Buckner et al., 2008 CEITEC_logo_neg_RGB Default mode network * Infants do not show the structured interactions between the default network regions * Disrupted in autism, schizophrenia, and Alzheimer’s disease and at old age • 20/28 Buckner et al., 2008 CEITEC_logo_neg_RGB Default mode network * * Function? * * Constructing dynamic mental simulations based on personal past experiences * Supporting exploratory monitoring of the external environment when focused attention is relaxed 21/28 Buckner et al., 2008 CEITEC_logo_neg_RGB Salience network * * Anterior insulae ventrolateral prefrontal cortex, dorsal anterior cingulate cortex * Responds to behaviourally important events * Identifies the most relevant stimuli to guide behaviour * Switching between the CEN and the DMN 22/28 Yuan et al., 2012; Goulden et al., 2014; Chand and Dhamala, 2016 CEITEC_logo_neg_RGB Salience networok * Connected to IQ * Disrupted in fronto-temporal dementia * 23/28 CEITEC_logo_neg_RGB Reward system * Driving incentive-based learning, appropriate responses to stimuli, and the development of goal-directed behaviours * 24/28 https://brainstates.org/tag/reward-circuitry/, CEITEC_logo_neg_RGB Reward system * * * Dopamine neurons * Linked to addiction * Schizophrenia * Mood disorders 25/28 Smith et al., 2009; Haber and Knutson, 2010; Krill and Platek, 2012, Cooper et al., 2017; Keren et al., 2018; Vanes et al., 2018 CEITEC_logo_neg_RGB Altered connectivity in LSD 26/28 Liechti, 2017; Müller et al., 2018 CEITEC_logo_neg_RGB Thank you for listening! Questions? • CEITEC_logo_neg_RGB Sources * Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38 * Chand, G.B., Dhamala, M. (2016). The salience network dynamics in perceptual decision-making. NeuroImage, 134, 85–93 * Cooper, S., Robison, A.J., Mazei-Robison, M.S. (2017). Reward Circuitry in Addiction. Neurotherapeutics, 14, 687–97 * Goulden, N., Khusnulina, A., Davis, N.J., et al. (2014). The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM. NeuroImage, 99, 180–90 * Haber, S.N., Knutson, B. (2010). The Reward Circuit: Linking Primate Anatomy and Human Imaging. Neuropsychopharmacology, 35, 4–26 * van den Heuvel, M.P., Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17, 683–96 * van den Heuvel, M.P., Sporns, O. (2011). Rich-Club Organization of the Human Connectome. Journal of Neuroscience, 31, 15775–86 * Keren, H., O’Callaghan, G., Vidal-Ribas, P., et al. (2018). Reward Processing in Depression: A Conceptual and Meta-Analytic Review Across fMRI and EEG Studies. American Journal of Psychiatry, appi.ajp.2018.1 * Krill, A.L., Platek, S.M. (2012). Working together may be better: Activation of reward centers during a cooperative maze task. PLoS ONE, 7, 1–7 * Liao, X., Vasilakos, A. V., He, Y. (2017). Small-world human brain networks: Perspectives and challenges. Neuroscience & Biobehavioral Reviews, 77, 286–300 * Liechti, M.E. (2017). Modern Clinical Research on LSD. Neuropsychopharmacology, 42, 2114–27 * Mears, D., Pollard, H.B. (2016). Network science and the human brain: Using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease. Journal of Neuroscience Research, 94, 590–605 * Müller, F., Dolder, P.C., Schmidt, A., et al. (2018). Altered network hub connectivity after acute LSD administration. NeuroImage: Clinical, 18, 694–701 * Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30, 829–58 * Smith, K.S., Tindell, A.J., Aldridge, J.W., et al. (2009). Ventral pallidum roles in reward and motivation. Behavioural Brain Research, 196, 155–67 * Sporns, O. (2011). The human connectome: a complex network. Annals of the New York Academy of Sciences, 1224, 109–25 * Vanes, L.D., Mouchlianitis, E., Collier, T., et al. (2018). Differential neural reward mechanisms in treatment-responsive and treatment-resistant schizophrenia. Psychological Medicine, 48, 2418–27 * Watts, D.J., Strogatz, S.H. (1998). Collective dynamics of ‘small-world’ networks. 393, 440–42 * Yuan, Z., Qin, W., Wang, D., et al. (2012). The salience network contributes to an individual’s fluid reasoning capacity. Behavioural Brain Research, 229, 384–90 * Zhong, S., Li, W., Wang, B., et al. (2018). Selection of the best point and angle of lateral ventricle puncture according to DTI reconstruction of peripheral nerve fibers. Medicine, 97, e13095 *