
Introduction to R
Lukáš Lehotský and Petr Ocelík





Courses’ objectives

• Introduction to basic concepts and techniques of 
quantitative data analysis / social network analysis with R

• Not a course on general methodology or research design

• Not a course on programing in R, but includes programming 
introduction (6 sessions)



R: advantages

• Extremely powerful

• Freeware and open source

• Integrated

• Transparent/easy to find errors

• Modular (re-usability of codes)

• Fast compared to “point-and-click” programs



R: disadvantages

• Steep learning curve compared to “point-and-click” 
programs

• Data preparation possibly demanding

• Inconsistencies across packages

• Package-dependent (some particular operations not 
implemented)

• Slower compared to other programming languages in large 
operations



Learning curves of popular stats programs



R community / resources

• R package / library manuals

• R site: http://cran.r-project.org

• Community forums
• http://stackoverflow.com

• http://www.statmethods.net

• http://www.r-bloggers.com

• Youtube videos
https://www.youtube.com/watch?v=qHfSTRNg6jE

http://cran.r-project.org/
http://stackoverflow.com/
http://www.statmethods.net/
http://www.r-bloggers.com/
https://www.youtube.com/watch?v=qHfSTRNg6jE


R libraries / packages

• Can be though of as a mobile application that adds new 
functionality

• Libraries must be installed (just before the first use) and 
loaded (and sometimes updated)

• Sometimes there can be conflicts among libraries (e.g. 
different functions with same names)

• Often there are dependencies among libraries (some 
libraries use functions from other libraries)



R: not a silver bullet 

• Some tasks are cumbersome in R

• Other software much better in some particular tasks

• Sophisticated scripting does not offset poor research design



R: focus on logic

• Any programming language is just very condensed and 
formalized speech

• The most complicated part is designing the procedure of 
what needs to be done, scripting is fairly easy



Source: https://xkcd.com/1319/



Introduction to R

• You should have two programs installed on computer
• R

• R Studio

• Both have to be installed to run R Studio

• We are going to use R Studio
• More convenient to work with





Console

Environment
History

Plots
Packages

Help
Viewer





Introduction to R: console vs. script

• Console provides instant input
• Short bits of code executed one by one

• Very similar to other console programs (e.g. Linux)

• Enter runs the command

• Faster

• Does not contain history

• Scripts
• Complete piece of code

• Executed at once

• Executed bit by bit

• CTRL + SHIFT + N creates new script in R Studio

• Ctrl + Enter runs the selected piece of code



Scripting window (CTRL + SHIFT + N)

Console

Environment
History

Plots
Packages

Help
Viewer



Object-oriented programming



Object

• object: instance of a certain data class that can be 
manipulated according set of procedures (methods)

one <- 1









Object: what is it?

• Object is container

• Element is anything in container – a peach

• To reuse elements, they must be stored as objects
• Any name defined by user

• Remain the same unless overwritten

• Must be removed by user as well



Object: creating/storing objects

Object
(container)

Element
(peach)

<-



Object: use

• Once objects exist, you may use it as whole or its elements
for various operations

• It may be reused again and again

• Functions may be applied

one <- 1

one + one

[1] 2 





?



Object: use

• Any output of any operation needs to be stored
• new object may be created

• existing object may be rewritten

one <- 1

one + one

[1] 2

two <- one + one

two

[1] 2







Function



Function

• Pre-defined methods which allow operations over objects

• To create an object with more than one element, function 
c() is used

• Any object may be manipulated with a function

sort(onetofive)

[1] 1 2 3 4 5

onetofive <- c(1,3,5,4,2)



Function: arguments

• To extend functionality, functions have pre-defined 
arguments
• Arguments extend the functionality of function

• Some functions have many arguments, some none

• Results of the function must always be stored in the 
environment

sort(onetofive)

[1] 1 2 3 4 5

sort(onetofive, decreasing = TRUE)

[1] 5 4 3 2 1

onetofive <- sort(onetofive, decreasing = TRUE)



Function: syntax

• functionname() indicates function

• Structure is function(arg1, arg2, …)

• If help is necessary, just add question mark or use function 
help() in front of the function name

sqrt(9)

[1] 3

sample(0:100, 10, rep = FALSE)

[1] 48 50 37 94 42 39 21 19 63 95

?sample()

help(sample)



10.27



Data class

• Properties of elements inside the object

• Numeric – continuous numeric data 
• -1, 0.5, 10.27

• Integer – discrete numeric data 
• -1, 0, 1

• Character – string values
• "anythingWithinQuotes"

• Logical – boolean output of logical operation
• TRUE/FALSE, NA

• Factor
• “agree”, “disagree”, “neutral”



Data class



Data class

• Sometimes, data elements are ambiguous

• Distinctions important for computer

• It is useful to explore data class of any object
• This is not a necessary step

• R comes with pre-defined behavior on classes – sometimes 
counterintuitive (e.g. in data sets, character variables are by default 
converted to factors)

• Useful in debugging the code

• If necessary, class can be converted/changed

class(10.27) 

[1] "numeric"



Data class: conversion of classes

as.numeric(10.27) 

[1] 10.27 

as.integer(10.27) 

[1] 10 

as.character(-1) 

[1] "-1" 

as.numeric("anything") 

[1] NA

Warning message: NAs introduced by coercion

5 > 10

[1] FALSE 

as.character(5 > 10) 

[1] "FALSE"



Practice

• Create a new script

• Define 5 objects of your own liking (including object with 
more than one element)

• Get a class of each of the following items: 5, "5", NA, 
TRUE, "true", NULL

• Calculate the equation 
5.5∗4 +(7.5∗2.12)

12

7

using R objects

• Try to get a square root of number 254



Source: https://xkcd.com/664/


