Advanced indexing
techniques

Lukas Lehotsky and Petr Ocelik

Selecting: operators

Selection type Applicable to Operator
integer/logical vector, matrix, df, list [index]
integer/logical vector, matrix, df, list [[index]]
variable name vector, matrix, df, list "name"
variable name df, list Sname
variable name df, list @name

special operator vector, matrix, df, list %in%

Selecting: indexes

* [] accesses an object’s internal structure
» Accesses whole “data container”

* Particular data elements in case of vectors, matrices and data frames,
accesses

 Particular object with its wrapper in case of lists

* [[1] accesses a nested “single item” in the internal data
structure
* Access to one item in the object’s internal structure
» Useful to access objects within lists

Selecting: indexes

vect <- c(2, 6, 9)
str (vect)
num [1:3] 2 6 9

Selecting: indexes

vect <- c(2, 6, 9)
str (vect)
num [1:3] 2 6 9

vect [3]
[1] 9

vect[[3]]
[1] 9

Selecting: indexes

vect <- ¢ (2, 6, 9)
str (vect)
num [1:3] 2 6 9

vect [3]
[1] 9

vect[[3]]
[1] 9

vect[1:3]
[1] 2 6 9

vect[[1:3]]
Error in v/[[1:3]]

Selecting: indexes of nested objects — a list

ls <= 1list(c(0,1,2,3),
c("car", "bike"),
"single object")

Selecting: indexes of nested objects — a list

ls <= 1list(c(0,1,2,3),
c("car", "bike"),
"single object")

1s[2]
[[1]]

[l] Hcar" "bike"

Selecting: indexes of nested objects — a list

ls <= 1list(c(0,1,2,3),
c("car", "bike"),
"single object")

1s[2] — Parent object wrapper
[[1]] €
[1] "car" "bike" < Data elements

Selecting: indexes of nested objects — a list

ls <= 1list(c(0,1,2,3),
c("car", "bike"),
"single object")

1s[2]
[[1]]

[l] "Car" "bike"

1s[[2]]
[1] "car" "bike" Data elements only

Selecting: indexes of nested objects — a list

ls <= 1list(c(0,1,2,3),
c("car", "bike"),
"single object")

1s[2]
[[1]]

[l] "Car" "bike"

1s[[2]]
[l] "Car" "bike"

Is[[2]11[2] @« Single element
[1] "bike"

Selecting: indexes of nested objects — a list

1s[2:3]
[[1]]

[1] "car" "Hhike"

[[2]]
[1] "single object"”

1s[[2:3]1]
FError in 1s/[[2:3]] : subscript out of bounds

Advanced use of indexes: vectors

* Indexing accepts any result that provides either numeric
indexes or logical values
* Existing objects containing index information
* Vectors of TRUE/FALSE values from logical evaluations
* Functions generating index information/providing logical evaluations

e Useful to subset data

Advanced use of indexes: logical statement

* A logical test applied to a vector will create a vector of
logical values (TRUE/FALSE)

* Such vector may serve as an index

vect <- c (2, 6, 9)

vect ==
[1] FALSE FALSE TRUE

index <- vect ==

vect [index]
[1] 9

Advanced use of indexes: logical operators

Operator Description

< Left is smaller than right

> Left is larger than right

<= Left is smaller or equal than right

>= Left is larger or equal than right

== Left is equal than right

1= Left is not equal than right

! Negation

& AND — allows test combinations, all logical statements must be true

OR — allows test combinations, at least one statement must be true

Source: Adler, J. (2012). R in a nutshell. Pp. 86.

Advanced use of indexes: function results

* Most basic use case — locating missing values on variables

* We can get either rows with missing data or contrary, get rid
of them

* Function 1s.na ()

* Logical test on presence/absence of “NA” value
 Returns vector of logical values TRUE/FALSE

vect.na <- ¢(1,0,1,2,2,NA,NA,2,1)

Advanced use of indexes: function results

vect.na <- ¢(1,0,1,2,2,NA,NA,2,1)

is.na (vect.na)
[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE

Advanced use of indexes: function results

vect.na <- ¢(1,0,1,2,2,NA,NA,2,1)

is.na(vect.na)
[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE

index <= is.na(vect.na)

vect.na[lndex]
[1] NA NA

Advanced use of indexes: function results

vect.na <- ¢(1,0,1,2,2,NA,NA,2,1)

is.na(vect.na)
[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE

index <= is.na(vect.na)

vect.na[index] ‘p
[1] NA NA .

Advanced use of indexes: function results

vect.na <- ¢(1,0,1,2,2,NA,NA,2,1)

is.na(vect.na)
[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE

index <= is.na(vect.na)

vect.na[lndex]

[1] NA NA
Index.o0l <= 'is.na(vect.na) # option 1
Index.02 <= is.na(vect.na) == FALSE # option 2

vect.na[lindex.ol]
[1] 1 0 1 2 2 2 1

Advanced use of indexes: combining tests

index <= lis.na(vect.na) & vect.na >= 1.5

vect.na[lndex]
[1] 2 2 2

Advanced use of indexes: combining tests

index <= l!is.na(vect.na) & vect.na >= 1.5

vect.na[lndex]
[1] 2 2 2

index <- 1is.na(vect.na) | vect.na >= 1.5

vect.na[lndex]
[1] 2 2 NA NA 2

Advanced use of indexes: logical tests on data
frames

* Logical tests may be used to filter data frames

« TRUE/FALSE statements index row dimension (unless
specifically intended to subset columns)

cars type price consumption
1 BMW 3 1200000 6.2
2 Audi A4 1164000 5.9
3 Vv Passat 950500 5.9

Advanced use of indexes: logical tests on data
frames

* Problem at hand — filter the data set by cars costing more
than 1 000 000 units

* Select column containing price
* Find values over 1 000 000
* Use the result of logical test to filter the data frame

cars type price consumption
1 BMW 3 1200000 6.2
2 Audi A4 1164000 5.9
3 Vv Passat 950500 5.9

Advanced use of indexes: logical tests on data
frames

* Select column containing price
* We know it is the third column
* We may use index to extract the third column
* We get vector of the column price (downgrade as default behavior)

df[, 3]
[1] 1200000 1164000 950500

Advanced use of indexes: logical tests on data
frames

 Use logical function to evaluate the car price
* We use the indexed column and add logical evaluation
* The result of evaluation is a vector of logical TRUE/FALSE values

df[, 3]
[1] 1200000 1164000 950500

df[,3] > 1000000
[1] TRUE TRUE FALSE

Advanced use of indexes: logical tests on data
frames

* The vector provides information over rows

df[,3] > 1000000
[1] TRUE TRUE FALSE

df
cars type price consumption
1 BMW 3 1200000 6.2
2 Audi A4 1164000 5.9
3 Vv Passat 950500 5.9

df[,3,drop = FALSE] > 1000000 # just a demonstration

price
[1,] TRUE
[2,] TRUE

[3,] FALSE

Advanced use of indexes: logical tests on data
frames

* The vector provides information over rows

df[,3] > 1000000
[1] TRUE TRUE FALSE

df
cars type price consumption
1 BMW 3 1200000 6.2
2 Audi A4 1164000 5.9
3 Vv Passat 950500 5.9

df[,3,drop = FALSE] > 1000000 # just a demonstration

price
[1,] TRUE
[2,] TRUE

[3,] FALSE

Advanced use of indexes: logical tests on data
frames

* The vector provides information over rows

df[,3] > 1000000
[1] TRUE TRUE FALSE

df
cars type price consumption
1 BMW 3 1200000 6.2
2 Audi A4 1164000 5.9
3 Vv Passat 950500 5.9

df[,3,drop = FALSE] > 1000000 # just a demonstration

price
[1,] TRUE
[2,] TRUE

[3,] FALSE

Advanced use of indexes: logical tests on data
frames

* The vector provides information over rows

df[,3] > 1000000
[1] TRUE TRUE FALSE

df
cars type price consumption
1 BMW 3 1200000 6.2
2 Audi A4 1164000 5.9
3 VIV Passat 950500 5.9

df[,3,drop = FALSE] > 1000000 # just a demonstration

price
[1,] TRUE
[2,] TRUE

[3,] FALSE

Advanced use of indexes: logical tests on data

frames

* Use the result of logical test to create the condition for data-

frame filtering
* The condition thus applies to rows

df[,3] > 1000000
[1] TRUE TRUE FALSE

condition <- df[,3] > 1000000

df [condition ,]

cars type price
1 BMW 3 1200000
2 Audi A4 1164000

consumption
6.2
5.9

Advanced use of indexes: logical tests on data

frames

» Use the result of logical test to create the condition for data-

frame filtering
* The condition applies to rows

df[,3] > 1000000
[1] TRUE TRUE FALSE |
condition <-jdf[,3] > 1000000

df [condition ,]

cars type price
1 BMW 3 1200000
2 Audi A4 1164000

consumption
6.2
5.9

Advanced use of indexes: logical tests on data
frames

» Use the result of logical test to create the condition for data-
frame filtering

* The condition applies to rows

df[,3] > 1000000
[1] TRUE TRUE FALSE |

cqiéition <-Jldf[,3] > 1000000

cars type price consumption
1 BMW 3 1200000 6.2
2 Audi A4 1164000 5.9

Advanced use of indexes: logical tests on data
frames

* The filtered data frame needs to be saved to environment

df[,3] > 1000000
[1] TRUE TRUE FALSE

condition <= df[,3] > 1000000

df [condition ,]

cars type price consumption
1 BMW 3 1200000 6.2
2 Audi A4 1164000 5.9

df.sub <-}df[condition ,]

Advanced use of indexes: logical tests on data
frames

* Alternative — use S to call a variable
* Works only when variables have names

df$pricel|> 1000000

[1] TRUE TRUE FALSE
condition <= df$price > 1000000

df [condition ,]

cars type price consumption
1 BMW 3 1200000 6.2
2 Audi A4 1164000 5.9

df.sub <- df[condition ,]

Advanced use of indexes: logical tests on data
frames

* Alternative — use the filter directly in the square brackets
without a dedicated object

* There’s a high risk of getting it wrong

df [df$price > 1000000 ,]

cars type price consumption
1 BMW 3 1200000 6.2
2 Audi A4 1164000 5.9

df[4df[,3] > 1000000 ,]

cars type price consumption
1 BMW 3 1200000 6.2
2 Audi A4 1164000 5.9

Advanced use of indexes: logical tests on data
frames

* Combinations of filters are possible

df[,3] > 1000000
[1] TRUE TRUE FALSE

condition <= df[,3] > 1000000

df [condition , 1]
[1] BMW Audi

df [condition , "consumption"]
[1] 6.2 6.2

Advanced use of indexes: logical tests on data
frames

* Problem at hand — select data with two or more conditions
e Select cars which are BMW or Audi

e Straightforward approach does not work

df$cars == c("BMW" , "Audi")

Warning message:
In df$cars == c("BMW", "Audi") : longer object
length 1s not a multiple of shorter object length

Advanced use of indexes: logical tests on data
frames

* Problem at hand — select data with two or more conditions
e Select cars which are BMW or Audi

* Approach using logical operators
e Operator AND (“&”) — all conditions must be true at once
* Operator OR (“|”) — at least one condition must be true

df$cars == "BMW" | dfScars == "Audi"
[1] TRUE TRUE FALSE

condition <- df$cars == "BMW" | dfScars == "Audi"

df [condition,]

cars type price consumption
1 BMW 3 1200000 6.2
2 Audi A4 1164000 5.9

Advanced use of indexes: logical tests on data
frames

* Problem at hand — select data with two or more conditions
e Select cars which are BMW or Audi

* Alternative — use special operator “%in%"”
* Counterintuitive syntax - left %in% right means left contains right

df$cars %in% c("BMW" , "Audi")
[1] TRUE TRUE FALSE

condition <- df$cars %in% c("BMW" , "Audi")

df [condition,]

cars type price consumption
1 BMW 3 1200000 6.2
2 Audi A4 1164000 5.9

Advanced use of indexes: ordering data frame

* Ordering a data frame is the most common use case of this
logic

* Function order () provides an ordered indexes of rows

* Problem at hand
* Order the data frame alphabetically by car make

cars type price consumption
1 BMW 3 1200000 6.2
2 Audi A4 1164000 5.9
3 Vv Passat 950500 5.9

Advanced use of indexes: ordering data frame

order (dfScars)
[1] 2 1 3

condition <- order (df$cars)

df [condition ,]

cars type price consumption
2 Audi A4 1164000 5.9
1 BMW 3 1200000 6.2
3 Vv Passat 950500 5.9

df.ord <= df[condition ,]

If statistics programs/languages were cars...

ik 'k

Practice 1

* Install and load the package “poliscidata” (or download it
from the IS)

* Create a new object containing the dataset “world”
* Extract countries into separate vector
* Extract the Czech Republic row from the data frame

 Extract all V4 countries (CZ, SK, HU, PL) as a subset of the
world dataset

* Extract only freedom indicators for V4 countries (all column
names starting with “free_” — manual index numbers)

Practice 2

* Load dataset “states” from the “poliscidata” package into
your environment (or download it from the IS)

* Order the dataset according to Obama 2012 election results
(highest to lowest)

* Subset states on variable “gay_policy” — extract only states
which are deemed as “liberal”

 Subset states on variable “gay policy” and “secularism3” —
extract only states which are deemed as “liberal”, but are
neither deemed “secular” nor “religious”

* Extract only names of the states from the previous step

* Find the country which has missing (“NA”) value in the
“secularism_3” variable

