
Data import and export
Lukáš Lehotský and Petr Ocelík

Summary of the last lesson

• Logical conditions or index positions allow for
object filtering, when inserted into square brackets

• Square brackets must include all object dimensions

• When filtering data frames, filtering condition
usually applies to rows

condition <- df[,3] > 1000000

df[condition ,]

cars type price consumption

1 BMW 3 1200000 6.2

2 Audi A4 1164000 5.9

df.sub <- df[condition ,]

Working directory

• Folder, where all imports and exports are taking
place

• Makes data import and export easier

• Functions setwd() and getwd()

getwd()

[1] "C:/Users/Lukas/...

setwd("C:\\Users\\Lukas\\Documents\\R intro")

setwd("C:/Users/Lukas/Documents/R intro")

Working directory

• There are few issues/limitations

• R does not accept single backslash \ in Win path
• Typically, this is path copied from the Win explorer

• It’s necessary to replace backslash \ with forwardslash /
or double backslash \\

• Sometimes, there’s an issue with non-standard
letters in the path
• Typically, in user-name paths in Win

• Solution is to move R and working directory out

Data import

• R Studio visual import

• Functions
• Structured data (tables)

• Unstructured data

• R native files

Data import: structured data

• Most common format of tabular data
• CSV – comma-separated value

• TSV – tab-separated value

• TXT – plain text file

• Other formats (XLSX, …)

• CSV/TSV are most desired

• Essentially, CSV and TSV files are text files

Data import: structured data

151 153 155 160 162

151 0 2 2 2 2

153 2 0 2 2 2

155 2 2 0 2 3

160 2 2 2 0 2

Data import: structured data

• BALIBOMBING2002_2002.csv
• Matrix

• Stored as a comma-separated value

• First row – column names (note first cell is empty)

• First column – row names

• No missing values/texts

Data import: structured data

• Most common function read.table()

• Import any structured (tabular) data

• Highly customizable – many arguments

• Always imports data as data frame

df <- read.table(file = "BALIBOMBING2002_2002.csv",

header = TRUE,

sep = ",",

row.names = 1,

na.strings = "NA",

stringsAsFactors = FALSE,

fileEncoding = "UTF-8")

Data import: unstructured data

• Most common to use function readLines()

• Can import any unstructured data as a character
vector

• Data conversions/mining must follow

text <- readLines(con = "BALIBOMBING2002_2002.csv",

warn = TRUE,

encoding = "UTF-8")

Data import: RData files

• R has native data format

• Allows to save whole environment (all objects) or
particular object for later use

• Easiest way to access/share previous R work

• Function load()

load(file = "balibombing.rdata")

Data conversions

• Data frame may be converted to other object
types
• Function as.matrix() turns DF to matrix

• Function as.list() will turn DF into list of vectors

• Other object types may be converted to a data
frame as well
• Function as.data.frame()

Data conversions: DF to matrix

• Data are loaded as data frames by default – for
networks, conversion is necessary

• Class of data needs to be considered beforehand
• If text included, the whole matrix will be coerced to

character

• Conversion of data classes after the DF conversion is
painful – needs to be done column by column

mat <- as.matrix(df)

Data conversions: matrix to DF

• Inconvenient process

• Argument stringsAsFactors is important –
otherwise any text becomes factor variable

• Data class of matrix will be preserved
• No automatic recognition built in on conversion

• If matrix is unnamed, column names are assigned
automatically

mat2df <- as.data.frame(mat)

mat2df <- as.data.frame(mat, stringsAsFactors = FALSE)

Names of rows and columns

• Column names are an issue in data frames

• Data frame columns must have proper column
(variable) names
• Names starting with number are not allowed (default

transformation behavior to “X#”)

• Missing column names lead to automatically generated
names (V1, V2, …, Vn)

• Conversion (e.g. from list) might result into crazy column
names

Names of rows and columns

• If issue with names is present, renaming needs to
follow

• Functions rownames() and colnames() allow
to access existing names

• Renaming is counterintuitive – we need to assign
vector with names to the function result

• It must be of a same length as number of columns

colnames(df) <- c("var1" , "var2" , ... , "varN")

Names of rows and columns

• Names may be generated automatically using
paste() or paste0() functions – these
functions collapse text bits together
• Function paste() adds spaces between texts

• Function paste0() collapses texts without spaces

• In case of a matrix, each dimension needs to be
named separately

colnames(mat) <- paste0("actor" , 1:27)

colnames(mat) <- rownames(mat)

colnames(df) <- paste0("actor" , 1:27)

Data export

• Export of entire workspace

• Export of particular objects
• R native files

• Structured data (tables)

• Unstructured data

Data export: saving entire
workspace
• Function save.image()

• Rdata format

• No additional arguments required

save.image(file = "workspace_2018_07_04.rdata")

Data export: saving particular
object as Rdata
• Function save()

• Rdata is R native format
• Preserves the object as is, with its object name

• Allows to avoid export and import issues

save(df,

file = "BALIBOMBING_export.rdata")

Data export: saving tabular data

• Function write.table()

• Object which is exported has to be specified

• Otherwise similar to read.table()

write.table(df,

"BALIBOMBING_export.csv",

sep = ",",

row.names = TRUE,

col.names = TRUE,

fileEncoding = "UTF-8")

Data export: saving unstructured
data
• Function writeLines()

• Similar to readLines()

• Basically no arguments

writeLines(df,

"BALIBOMBING_export.txt")

Other input and output options

• Built-in CSV-specific functions
• read.csv() and write.csv() functions
• read.csv() requires less arguments than
read.table() but has more limited functionality

• Libraries “xlsx” or “openxlsx” for XLSX input
• Both packages contain functions read.xlsx() and
write.xlsx() – similar to read.table()

• Package “readtext” designed to read unstructured
text data (PDFs, Word documents, etc.)

• Other packages for specific formats (XML, HTML,
Json, SQL, …)

Practice 1

• Download the package
“MEB433_434_03A_practice.zip” into your
computer
• Unpack it into any folder
• Set the folder as a working directory

• Import the data “nrg_122a.csv” into R
• Explore and adjust the data set in a text editor, if

necessary
• Achieve the following

• Dataset has proper column names
• Missing values are treated correctly (find function arguments)
• All columns are numeric (there’s a catch here)

Practice 2

• Get rid of the summary rows in the data frame

• Get rid of the missing values for the last year

• Extract only the last 3 years into a separate object

• Export the subset in rdata format

• Export the subset in CSV format

