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18.4.1.    Pearson’s chi-square test 1

If we want to see whether there’s a relationship between two categorical variables (i.e., 
does the number of cats that line-dance relate to the type of training used?) we can use the 
Pearson’s chi-square test (Fisher, 1922; Pearson, 1900). This is an extremely elegant statis-
tic based on the simple idea of comparing the frequencies you observe in certain categories 
to the frequencies you might expect to get in those categories by chance. All the way back 
in Chapters 2, 7 and 10 we saw that if we fit a model to any set of data we can evaluate 
that model using a very simple equation (or some variant of it):

Deviation = observed model)( −∑ 2

This chapter looks at two techniques for doing this. We begin with the simple case of two 
categorical variables and discover the chi-square statistic (which we’re not really discover-
ing because we’ve unwittingly come across it countless times before). We then extend this 
model to look at relationships between several categorical variables.

18.4.  Theory of analysing categorical data 1

We will begin by looking at the simplest situation that you could encounter; that is, analys-
ing two categorical variables. If we want to look at the relationship between two categori-
cal variables then we can’t use the mean or any similar statistic because we don’t have any 
variables that have been measured continuously. Trying to calculate the mean of a categori-
cal variable is completely meaningless because the numeric values you attach to different 
categories are arbitrary, and the mean of those numeric values will depend on how many 
members each category has. Therefore, when we’ve measured only categorical variables, 
we analyse frequencies. That is, we analyse the number of things that fall into each combi-
nation of categories. If we take an example, a researcher was interested in whether animals 
could be trained to line-dance. He took 200 cats and tried to train them to line-dance by 
giving them either food or affection as a reward for dance-like behaviour. At the end of the 
week he counted how many animals could line-dance and how many could not. There are 
two categorical variables here: Training (the animal was trained using either food or affec-
tion, not both) and Dance (the animal either learnt to line-dance or it did not). By combin-
ing categories, we end up with four different categories. All we then need to do is to count 
how many cats fall into each category. We can tabulate these frequencies as in Table 18.1 
(which shows the data for this example), and this is known as a contingency table.

Table 18.1  Contingency table showing how many cats will line-dance after being trained with 
different rewards

Training

Food as reward Affection as reward Total

Could they dance? Yes 28 48 76

No 10 114 124

Total 38 162 200
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This equation was the basis of our sums of squares in regression and ANOVA. Now, 
when we have categorical data we can use the same equation. There is a slight variation 
in that we divide by the model scores as well, which is actually much the same process as 
dividing the sum of squares by the degrees of freedom in ANOVA. So, basically, what we’re 
doing is standardizing the deviation for each observation. If we add all of these standard-
ized deviations together the resulting statistic is Pearson’s chi-square (χ2) given by:

χ
2 =

−( )Σ
observed model

model
ij ij

ij

2

	 (18.1)

in which i represents the rows in the contingency table and j represents the columns. The 
observed data are, obviously, the frequencies in Table 18.1, but we need to work out what 
the model is. In ANOVA the model we use is group means, but as I’ve mentioned we 
can’t work with means when we have only categorical variables so we work with frequen-
cies instead. Therefore, we use ‘expected frequencies’. One way to estimate the expected 
frequencies would be to say ‘well, we’ve got 200 cats in total, and four categories, so the 
expected value is simply 200/4 = 50’. This would be fine if, for example, we had the same 
number of cats that had affection as a reward and food as a reward; however, we didn’t: 
38 got food and 162 got affection as a reward. Likewise there are not equal numbers that 
could and couldn’t dance. To take account of this, we calculate expected frequencies for 
each of the cells in the table (in this case there are four cells) and we use the column and 
row totals for a particular cell to calculate the expected value:

Model E
nij ij

i j= =
×row total column total

where n is simply the total number of observations (in this case 200). We can calculate 
these expected frequencies for the four cells within our table (row total and column total 
are abbreviated to RT and CT respectively):
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Given that we now have these model values, all we need to do is take each value in each 
cell of our data table, subtract from it the corresponding model value, square the result, 
and then divide by the corresponding model value. Once we’ve done this for each cell in 
the table, we just add them up!
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This statistic can then be checked against a distribution with known properties. All we 
need to know is the degrees of freedom and these are calculated as (r − 1)(c − 1) in which 
r is the number of rows and c is the number of columns. Another way to think of it is the 
number of levels of each variable minus one multiplied. In this case we get df = (2 − 1)
(2 − 1) = 1. If you were doing the test by hand, you would find a critical value for the chi-
square distribution with df = 1 and if the observed value was bigger than this critical value 
you would say that there was a significant relationship between the two variables. These 
critical values are produced in the Appendix, and for df = 1 the critical values are 3.84 (p = 
.05) and 6.63 (p = .01), and so because the observed chi-square is bigger than these values 
it is significant at p < .01. However, if you use R, it will simply produce an estimate of the 
precise probability of obtaining a chi-square statistic at least as big as (in this case) 25.35 if 
there were no association in the population between the variables.

18.4.2.    Fisher’s exact test 1

There is one problem with the chi-square test, which is that the sampling distribution of 
the test statistic has an approximate chi-square distribution. The larger the sample is, the 
better this approximation becomes, and in large samples the approximation is good enough 
to not worry about the fact that it is an approximation. However, in small samples the 
approximation is not good enough, making significance tests of the chi-square distribution 
inaccurate. This is why you often read that to use the chi-square test the expected frequen-
cies in each cell must be greater than 5 (see section 18.5). When the expected frequencies 
are greater than 5, the sampling distribution is probably close enough to a perfect chi-
square distribution for us not to worry. However, when the expected frequencies are too 
low, it probably means that the sample size is too small and that the sampling distribution 
of the test statistic is too deviant from a chi-square distribution to be of any use.

Fisher came up with a method for computing the exact probability of the chi-square sta-
tistic that is accurate when sample sizes are small. This method is called Fisher’s exact test 
(Fisher, 1922) even though it’s not so much a test as a way of computing the exact probabil-
ity of the chi-square statistic. This procedure is normally used on 2 × 2 contingency tables 
(i.e., two variables each with two options) and with small samples. However, it can be used 
on larger contingency tables and with large samples, but on larger contingency tables it 
becomes computationally intensive and you might find R taking a long time to give you an 
answer. In large samples there is really no point because it was designed to overcome the 
problem of small samples, so you don’t need to use it when samples are large.

18.4.3.    The likelihood ratio 2

An alternative to Pearson’s chi-square is the likelihood ratio statistic, which is based on 
maximum-likelihood theory. The general idea behind this theory is that you collect some 
data and create a model for which the probability of obtaining the observed set of data is 
maximized, then you compare this model to the probability of obtaining those data under 
the null hypothesis. The resulting statistic is, therefore, based on comparing observed fre-
quencies with those predicted by the model:

L ij

ij

χ
2 2=









∑observed ln

observed

modelij 	 (18.2)
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in which i and j are the rows and columns of the contingency table and ln is the natural 
logarithm (this is the standard mathematical function that we came across in Chapter 8, 
and you can find it on your calculator, usually labelled as ln or loge). Using the same model 
and observed values as in the previous section, this would give us:

Lχ
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. . . .

.

As with Pearson’s chi-square, this statistic has a chi-square distribution with the same 
degrees of freedom (in this case 1). As such, it is tested in the same way: we could look 
up the critical value of chi-square for the number of degrees of freedom that we have. As 
before, the value we have here will be significant because it is bigger than the critical values 
of 3.84 (p = .05) and 6.63 (p = .01). For large samples this statistic will be roughly the same 
as Pearson’s chi-square, but is preferred when samples are small.

18.4.4.    Yates’s correction 2

When you have a 2 × 2 contingency table (i.e., two categorical variables each with two 
categories) then Pearson’s chi-square tends to produce significance values that are too 
small (in other words, it tends to make a Type I error). Therefore, Yates suggested a cor-
rection to the Pearson formula (usually referred to as Yates’s continuity correction). The 
basic idea is that when you calculate the deviation from the model (the observedij − mod-
elij in equation (18.1)) you subtract 0.5 from the absolute value of this deviation before 
you square it. In plain English, this means you calculate the deviation, ignore whether it 
is positive or negative, subtract 0.5 from the value and then square it. Pearson’s equation 
then becomes:

χ
2

2
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model
ij ij
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∑

For the data in our example this just translates into :
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The key thing to note is that it lowers the value of the chi-square statistic and, therefore, 
makes it less significant. Although this seems like a nice solution to the problem there is a 
fair bit of evidence that this overcorrects and produces chi-square values that are too small! 
Howell (2006) provides an excellent discussion of the problem with Yates’s correction for 
continuity, if you’re interested; all I will say is that, although it’s worth knowing about, it’s 
probably best ignored.
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18.5.  Assumptions of the chi-square test 1

It should be obvious that the chi-square test does not rely on assumptions such as having 
continuous normally distributed data like most of the other tests in this book (categorical 
data cannot be normally distributed because they aren’t continuous). However, the chi-
square test still has two important assumptions:

MM Pretty much all of the tests we have encountered in this book have made an assump-
tion about the independence of data and the chi-square test is no exception. For 
the chi-square test to be meaningful it is imperative that each person, item or entity 
contributes to only one cell of the contingency table. Therefore, you cannot use a chi-
square test on a repeated-measures design (e.g., if we had trained some cats with food 
to see if they would dance and then trained the same cats with affection to see if they 
would dance, we couldn’t analyse the resulting data with Pearson’s chi-square test).

MM The expected frequencies should be greater than 5. Although it is acceptable in larger 
contingency tables to have up to 20% of expected frequencies below 5, the result is a 
loss of statistical power (so the test may fail to detect a genuine effect). Even in larger 
contingency tables no expected frequencies should be below 1. Howell (2006) gives 
a nice explanation of why violating this assumption creates problems. If you find 
yourself in this situation consider using Fisher’s exact test (section 18.4.2).

Finally, although it’s not an assumption, it seems fitting to mention in a section in which 
a gloomy and foreboding tone is being used that proportionately small differences in cell 
frequencies can result in statistically significant associations between variables if the sample 
is large enough (although it might need to be very large indeed). Therefore, we must look 
at row and column percentages to interpret any effects we get. These percentages will 
reflect the patterns of data far better than the frequencies themselves (because these fre-
quencies will be dependent on the sample sizes in different categories.

18.6.  Doing the chi-square test using R 1

There are two ways in which categorical data can be entered: enter the raw scores, or enter 
weighted cases. We’ll look at both in turn.

18.6.1.    Entering data: raw scores 1

If we input the raw scores, it means that every row of the data editor represents each entity 
about which we have data (in this example, each row represents a cat). So, you would  
create two codings (Training and Dance). Training would contain two values – one to indi-
cate food was a reward, and one to indicate affection was a reward. Dance would contain 
Yes, or No, depending on whether the cat danced. There were 200 cats in all and so there are 
200 rows of data. This is how the data are stored in cats.dat. You can load this data file by 
setting your working directory to the location of the file (see section 3.4.4) and executing:

catData<-read.delim("cats.dat", header = TRUE)

The resulting data look like this (heavily edited because you don’t need to see all 200 rows 
to get the idea):
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