
9 Multiple Regression: The Basics

OVERVIEW

Despite what we have learned in the preceding chapters on hypothesis

testing and statistical significance, we have not yet crossed all four of our

hurdles for establishing causal relationships. Recall that all of the techniques

we have learned in Chapters 8 and 9 are simply bivariate,X- andY-type anal-

yses. But, to fully assess whether X causes Y, we need to control for other

possible causes of Y, which we have not yet done. In this chapter, we show

how multiple regression – which is an extension of the two-variable model

we covered in Chapter 9 – does exactly that. We explicitly connect the for-

mulae that we include to the key issues of research design that tie the entire

book together. We also discuss some of the problems in multiple regression

models when key causes of the dependent variable are omitted, which ties

this chapter to the fundamental principles presented in Chapters 3 and 4.

Lastly, we will incorporate an example from the political science literature

that uses multiple regression to evaluate causal relationships.

9.1 MODELING MULTIVARIATE REALITY

From the very outset of this book, we have emphasized that almost all
interesting phenomena in social reality have more than one cause. And yet
most of our theories are simply bivariate in nature.

We have shown you (in Chapter 4) that there are distinct methods for
dealing with the nature of reality in our designs for social research. If we are
fortunate enough to be able to conduct an experiment, then the process of
randomly assigning our participants to treatment groups will automatically
“control for” those other possible causes that are not a part of our theory.

But in observational research – which represents the vast majority
of political science research – there is no automatic control for the other
possible causes of our dependent variable; we have to control for them
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198 Multiple Regression: The Basics

statistically. The main way that social scientists accomplish this is through
multiple regression. The math in this model is an extension of the math
involved in the two-variable regression model you just learned in Chapter 9.

9.2 THE POPULATION REGRESSION FUNCTION

We can generalize the population regression model that we learned in
Chapter 9,

bivariate population regression model: Yi = α +βXi +ui,

to include more than one systematic cause of Y, which we have been calling
Z throughout this book:

multiple population regression model: Yi = α +β1Xi +β2Zi +ui.

The interpretation of the slope coefficients in the three-variable model is
similar to interpreting bivariate coefficients, with one very important differ-
ence. In both, the coefficient in front of the variableX (β in the two-variable
model, β1 in the multiple regression model) represents the “rise-over-run”
effect of X on Y. In the multiple regression case, though, β1 actually rep-
resents the effect of X on Y while holding constant the effects of Z. If this
distinction sounds important, it is. We show how these differences arise in
the next section.

9.3 FROM TWO-VARIABLE TO MULTIPLE REGRESSION

Recall from Chapter 9 that the formula for a two-variable regression line
(in a sample) is

Yi = α̂ + β̂Xi + ûi.

And recall that, to understand the nature of the effect that X has on Y, the
estimated coefficient β̂ tells us, on average, how many units of change in Y
we should expect given a one-unit increase in X. The formula for β̂ in the
two-variable model, as we learned in Chapter 9, is

β̂ =
∑n

i=1(Xi − X̄)(Yi − Ȳ)∑n
i=1(Xi − X̄)2

.

Given that our goal is to control for the effects of some third variable,
Z, how exactly is that accomplished in regression equations? If a scatter plot
in two dimensions (X and Y) suggests the formula for a line, then adding a
third dimension suggests the formula for a plane. And the formula for that
plane is

Yi = α +β1Xi +β2Zi.
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That might seem deceptively simple. A formula representing a plane simply
adds the additional β2Zi term to the formula for a line.1

Pay attention to how the notation has changed. In the two-variable
formula for a line, there were no numeric subscripts for the β coefficient –
because, well, there was only one of them. But now we have two inde-
pendent variables, X and Z, that help to explain the variation in Y, and
therefore we have two different coefficients β, and so we subscript them β1

and β2 to be clear that the values of these two effects are different from one
another.2

The key message from this chapter is that, in the preceding formula,
the coefficient β1 represents more than the effect of X on Y; in the multiple
regression formula, it represents the effect of X on Y while controlling for
the effect of Z. Simultaneously, the coefficient β2 represents the effect of Z
on Y while controlling for the effect of X. And in observational research,
this is the key to crossing our fourth causal hurdle that we introduced all
the way back in Chapter 3.

How is it the case that the coefficient for β1 actually controls for Z?
After all, β1 is not connected to Z in the formula; it is, quite obviously,
connected to X. The first thing to realize here is that the preceding multiple
regression formula for β1 is different from the two-variable formula for β

from Chapter 9. (We’ll get to the formula shortly.) The key consequence
of this is that the value of β derived from the two-variable formula, rep-
resenting the effect of X on Y, will almost always be different – perhaps
only trivially different, or perhaps wildly different – from the value of β1

derived from the multiple regression formula, representing the effect of X
on Y while controlling for the effects of Z.

But how does β1 control for the effects of Z? Let’s assume that X and
Z are correlated. They need not be related in a causal sense, and they need
not be related strongly. They simply have to be related to one another –
that is, for this example, their covariance is not exactly equal to zero. Now,
assuming that they are related somehow, we can write their relationship
just like that of a two-variable regression model:

Xi = α̂′ + β̂ ′Zi + êi.

1 All of the subsequent math about adding one more independent variable, Z, generalizes
quite easily to adding still more independent variables. We use the three-variable case for
ease of illustration.

2 In many other textbooks on regression analysis, just as we distinguish between β1 and
β2, the authors choose to label their independent variables X1, X2, and so forth. We have
consistently used the notation of X, Y, and Z to emphasize the concept of controlling for
other variables while examining the relationship between an independent and a dependent
variable of theoretical interest. Therefore we will stick with this notation throughout this
chapter.
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Note some notational differences here. Instead of the parameters α̂ and β̂,
we are calling the estimated parameters α̂′ and β̂ ′ just so you are aware
that their values will be different from the α̂ and β̂ estimates in previous
equations. And note also that the residuals, which we labeled ûi in previous
equations, are now labeled êi here.

If we use Z to predict X, then the predicted value of X (or X̂) based
on Z is simply

X̂i = α̂′ + β̂ ′Zi,

which is just the preceding equation, but without the error term, because it
is expected (on average) to be zero. Now,we can just substitute the left-hand
side of the preceding equation into the previous equation and get

Xi = X̂i + êi

or, equivalently,
êi =Xi − X̂i.

These êi, then, are the exact equivalents of the residuals from the two-
variable regression of Y on X that you learned from Chapter 9. So their
interpretation is identical, too. That being the case, the êi are the portion
of the variation in X that Z cannot explain. (The portion of X that Z can
explain is the predicted portion – the X̂i.)

So what have we done here? We have just documented the relationship
between Z and X and partitioned the variation in X into two parts – the
portion that Z can explain (the X̂i) and the portion that Z cannot explain
(the êi). Hold this thought.

We can do the exact same thing for the relationship between Z and Y
that we just did for the relationship betweenZ andX. The process will look
quite similar, with a bit of different notation to distinguish the processes.
So we can model Y as a function of Z in the following way:

Yi = α̂∗ + β̂∗Zi + v̂i.

Here, the estimated slope is β̂∗ and the error term is represented by v̂i.
Just as we did withZ andX, if we useZ to predictY, then the predicted

value of Y (or Ŷ) (which we will label Ŷ∗) based on Z is simply

Ŷi
∗ = α̂∗ + β̂∗Zi,

which, as before, is identical to the preceding equation, butwithout the error
term, because the residuals are expected (on average) to be zero. And again,
as before, we can substitute the left-hand side of the preceding equation into
the previous equation, and get

Yi = Ŷi
∗ + v̂i
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or, equivalently,

v̂i = Yi − Ŷi
∗
.

These v̂i, then, are interpreted in an identical way to that of the preceding
êi. They represent the portion of the variation in Y that Z cannot explain.
(The portion of Y that Z can explain is the predicted portion – the Ŷi

∗
.)

Now what has this accomplished? We have just documented the rela-
tionship betweenZ andY and partitioned the variation inY into two parts –
the portion that Z can explain and the portion that Z cannot explain.

So we have now let Z try to explain X and found the residuals (the êi
values); similarly, we have also now let Z try to explain Y, and found those
residuals as well (the v̂i values). Now back to our three-variable regression
model that we have seen before, with Y as the dependent variable, and X
and Z as the independent variables:

Yi = α̂ + β̂1Xi + β̂2Zi + ûi.

The formula for β̂1, representing the effect of X on Y while controlling for
Z, is

β̂1 =
∑n

i=1 êiv̂i∑n
i=1 ê

2
i

.

Now, we know what êi and v̂i are from the previous equations. So,
substituting, we get

β̂1 =
∑n

i=1(Xi − X̂i)(Yi − Ŷ∗
i )∑n

i=1(Xi − X̂i)2
.

Pay careful attention to this formula. The “hatted” components in
these expressions are from the two-variable regressions involving Z that
we previously learned about. The key components of the formula for the
effect ofX on Y, while controlling for Z, are the êi and v̂i, which, as we just
learned, are the portions of X and Y (respectively) that Z cannot account
for. And that is how, in the multiple regression model, the parameter β1,
which represents the effects of X on Y, controls for the effects of Z. How?
Because the only components of X and Y that it uses are components that
Z cannot account for – that is, the êi and v̂i.

Comparing this formula for estimating β1 with the two-variable for-
mula for estimating β is very revealing. Instead of using the factors (Xi−X̄)

and (Yi − Ȳ) in the numerator, which were the components of the two-
variable regression of Y on X from Chapter 8, in the multiple regression
formula that controls for Z the factors in the numerator are (Xi − X̂i) and
(Yi − Ŷi

∗
), where, again, the hatted portions represent X as predicted by Z

and Y as predicted by Z.
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Note something else in the comparison of the two-variable formula
for estimating β and the multiple regression formula for estimating β1.
The result of β̂ in the two-variable regression of Y and X and β̂1 in the
three-variable regression of Y on X while controlling for Z will be different
almost all the time. In fact, it is quite rare – though mathematically possible
in theory – that those two values will be identical.3

And the formula for estimating β2, likewise, represents the effects of Z
on Y while controlling for the effects of X. These processes, in fact, happen
simultaneously.

It’s been a good number of chapters – five of them, to be precise –
between the first moment when we discussed the importance of controlling
for Z and the point, just above, when we showed you precisely how to do
it. The fourth causal hurdle has never been too far from front-and-center
since Chapter 3, and now you know the process of crossing it.

Don’t get too optimistic too quickly, though. As we noted, the three-
variable setup we just mentioned can easily be generalized to more than
three variables. But the formula for estimating β1 controls only for the
effects of the Z variable that are included in the regression equation. It does
not control for other variables that are not measured and not included in
the model. And what happens when we fail to include a relevant cause of Y
in our regression model? Bad things. Those bad things will come into focus
a bit later in this chapter. Next, we turn to the issues of how to interpret
regression tables using our running example of U.S. presidential elections.

9.4 INTERPRETING MULTIPLE REGRESSION

For an illustration of how to interpret multiple regression coefficients, let’s
return to our example from Chapter 8, in which we showed you the results
of a regression of U.S. presidential election results on the previous year’s
growth rate in the U.S. economy (see Figure 8.4). The model we estimated,
you will recall, was Vote= α+(β ×Growth), and the estimated coefficients
there were α̂ = 51.51 and β̂ = 0.62. For the purposes of this example, we
need to drop the observation from the presidential election of 1876. Doing
this changes our estimates slightly so that α̂ = 51.67 and β̂ = 0.65.4 Those
results are in column A of Table 9.1.

3 Later in this chapter, you will see that there are two situations in which the two-variable
and multiple regression parameter estimates of β will be the same.

4 We had to drop 1876 because Fair’s data do not include a measure for the new variable that
we are adding in this example, “Good News,” for that year. As we discuss in more detail
in Section 12.4.1, when making comparisons across different models of the same data, it is
extremely important to have exactly the same cases.
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Table 9.1. Three regression models of U.S.
presidential elections

A B C

Growth 0.65* — 0.57*
(0.16) — (0.15)

Good News — 0.92* 0.67*
— (0.33) (0.28)

Intercept 51.67* 47.29* 48.24*
(0.86) (1.94) (1.64)

R2 0.36 0.20 0.46
n 33 33 33

Notes: The dependent variable is the percentage of the two
major parties’ vote for the incumbent party’s candidate.
Standard errors are in parentheses.
*= p< 0.05 (two-tailed t-test).

In column A, you see the parameter estimates for the annual growth
rate in the U.S. economy (in the row labeled “Growth”), and the stan-
dard error of that estimated slope, 0.16. In the row labeled “Intercept,”
you see the estimated y-intercept for that regression, 51.67, and its asso-
ciated standard error, 0.86. Both parameter estimates are statistically
significant, as indicated by the asterisk and the note at the bottom of the
table.

Recall that the interpretation of the slope coefficient in a two-variable
regression indicates that, for every one-unit increase in the independent
variable, we expect to see β units of change in the dependent variable. In
the current context, β̂ = 0.65 means that for every extra one percentage
point in growth rate in the U.S. economy, we expect to see, on average, an
extra 0.65% in the vote percentage for the incumbent party in presidential
elections.

But recall our admonition, throughout this book, about being too quick
to interpret any bivariate analysis as evidence of a causal relationship. We
have not shown, in column A of Table 9.1, that higher growth rates in the
economy cause incumbent-party vote totals to be higher. To be sure, the
evidence in column A is consistent with a causal connection, but it does
not prove it. Why not? Because we have not controlled for other possible
causes of election outcomes. Surely there are other causes, in addition to
how the economy has (or has not) grown in the last year, of how well
the incumbent party will fare in a presidential election. Indeed, we can even
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imagine other economic causes thatmight bolster our statistical explanation
of presidential elections.5

Consider the fact that the growth variable accounts for economic
growth over the past year. But perhaps the public rewards or punishes
the incumbent party for sustained economic growth over the long run. In
particular, it does not necessarily make sense for the public to reelect a party
that has presided over three years of subpar growth in the economy but a
fourth year with solid growth. And yet, with our single measure of growth,
we are assuming – rather unrealistically – that the public would pay atten-
tion to the growth rate only in the past year. Surely the public does pay
attention to recent growth, but the public might also pay heed to growth
over the long run.

In column B of Table 9.1, we estimate another two-variable regression
model, this time using the number of consecutive quarters of strong eco-
nomic growth leading up to the presidential election – the variable is labeled
“GoodNews” – as our independent variable.6 (Incumbent-Party Vote Share
remains our dependent variable.) In the row labeled “Good News,” we see
that the parameter estimate is 0.92, which means that, on average, for every
additional consecutive quarter of good economic news, we expect to see a
0.92% increase in incumbent-party vote share. The coefficient is statistically
significant.

Our separate two-variable regressions each show a relationship
between the independent variable in the particular model and incumbent-
party vote shares. But none of the parameter estimates in columns A or
B controls for the other independent variable. We rectify that situation in
column C, in which we estimate the effects of both the Growth and Good
News variables on vote shares simultaneously.

Compare column C with columns A and B. In the row labeled “Good
News,” we see that the estimated parameter of β̂ = 0.67 indicates that, for
every extra quarter of a year with strong growth rates, the incumbent party
should expect to see an additional 0.67% of the national vote share, while
controlling for the effects of Growth. Note the additional clause in the inter-
pretation as well as the emphasis that we place on it. Multiple regression
coefficients always represent the effects of a one-point increase in that par-
ticular independent variable on the dependent variable, while controlling
for the effects of all other independent variables in themodel. The higher the

5 And, of course, we can imagine variables relating to success or failure in foreign policy, for
example, as other, noneconomic causes of election outcomes.

6 Fair’s operationalization of this variable is “the number of quarters in the first 15 quarters
of the administration in which the growth rate of real per capita GDP is greater than 3.2
percent.”
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number of quarters of continuous strong growth in the economy, the higher
the incumbent-party vote share should be in the next election, controlling
for the previous year’s growth rate.

But, critical to this chapter’s focus on multiple regression, notice in
column C how including the “Good News” variable changes the estimated
effect of the “Growth” variable from an estimated 0.65 in column A to
0.57 in column C. The effect in column C is different because it controls
for the effects of Good News. That is, when the effects of long-running
economic expansions are controlled for, the effects of short-term growth
falls a bit. The effect is still quite strong and is still statistically significant,
but it is more modest once the effects of long-term growth are taken into
account.7 Note also that the R2 statistic rises from .36 in column A to
.46 in column C, which means that adding the “Good News” variable
increased the proportion of the variance of our dependent variable that we
have explained by 10%.8

In this particular example, the whole emphasis on controlling for other
causes might seem like much ado about nothing. After all, comparing the
three columns in Table 9.1 did not change our interpretation of whether
short-term growth rates affect incumbent-party fortunes at the polls. But
we didn’t know this until we tested for the effects of long-term growth.
And later in this chapter, we will see an example in which controlling for
new causes of the dependent variable substantially changes our interpreta-
tions about causal relationships. We should be clear about one other thing
regarding Table 9.1: Despite controlling for another variable, we still have
a ways to go before we can say that we’ve controlled for all other possible
causes of the dependent variable. As a result, we should be cautious about

7 And we can likewise compare the bivariate effect of Good News on Vote shares in column
B with the multivariate results in column C, noting that the effect of Good News, in the
multivariate context, appears to have fallen by approximately one-fourth.

8 It is important to be cautious when reporting contributions to R2 statistics by individual
independent variables, and this table provides a good example of why this is the case. If
we were to estimate Model A first and C second, we might be tempted to conclude that
Growth explains 36% of Vote and Good News explains 10%. But if we estimated Model
B and then C, we might be tempted to conclude that Growth explains 26% of Vote and
Good News explains 20%. Actually, both of these sets of conclusions are faulty. The R2

is always a measure of the overall fit of the model to the dependent variable. So, all that
we can say about the R2 for Model C is that Growth, Good News, and the intercept term
together explain 46% of the variation in Vote. So, although we can talk about how the
addition or subtraction of a particular variable to a model increases or decreases the model’s
R2, we should not be tempted to attribute particular values of R2 to specific independent
variables. If we examine Figure 9.1, we can get some intuition on why this is the case.
The R2 statistic for the model represented in this figure is f+d+b

a+f+d+b . It is the presence of

area d that confounds our ability to make definitive statements about the contribution of
individual variables to R2.
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interpreting those results as proof of causality. However, as we continue
to add independent variables to our regression model, we inch closer and
closer to saying that we’ve controlled for every other possible cause that
comes to mind. Recall that, all the way back in Chapter 1, we noted that
one of the “rules of the road” of the scientific enterprise is to always be
willing to consider new evidence. New evidence – in the form of controlling
for other independent variables – can change our inferences about whether
any particular independent variable is causally related to the dependent
variable.

9.5 WHICH EFFECT IS “BIGGEST”?

In the preceding analysis, we might be tempted to look at the coefficients in
column C of Table 9.1 for Growth (0.57) and for Good News (0.67) and
conclude that the effect for Good News is roughly one-third larger than the
effect for Growth. As tempting as such a conclusion might be, it must be
avoided for one critical reason: The two independent variables aremeasured
in different metrics, which makes that comparison misleading. Short-run
growth rates are measured in a different metric – ranging from negative
numbers for times during which the economy shrunk, all the way through
stronger periods during which growth exceeded 5% per year – than are the
number of quarters of consecutive strong growth – which ranges from 0 in
the data set through 10. That makes comparing the coefficients misleading.

Because the coefficients in Table 9.1 each exist in the native metric of
each variable, they are referred to as unstandardized coefficients. Although
they are normally not comparable, there is a rather simplemethod to remove
the metric of each variable to make them comparable with one another.
As you might imagine, such coefficients, because they are on a standard-
ized metric, are referred to as standardized coefficients. We compute them,
quite simply, by taking the unstandardized coefficients and taking out the
metrics – in the forms of the standard deviations – of both the independent
and dependent variables:

β̂Std = β̂
sX
sY

,

where β̂Std is the standardized regression coefficient, β̂ is the unstandard-
ized coefficient (as in Table 9.1), and sX and sY are the standard deviations
of X and Y, respectively. The interpretation of the standardized coeffi-
cients changes, not surprisingly. Whereas the unstandardized coefficients
represent the expected change in Y given a one-unit increase in X, the stan-
dardized coefficients represent the expected standard deviation change in
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Y given a one-standard-deviation increase in X. Now, because all parame-
ter estimates are in the same units – that is, the standard deviations – they
become comparable.

Implementing this formula for the unstandardized coefficients in
column C of Table 9.1 produces the following results. First, for Growth,

β̂Std = 0.5704788
(
5.496239
6.01748

)
= 0.52.

Next, for Good News,

β̂Std = 0.673269
(
2.952272
6.01748

)
= 0.33.

These coefficients would be interpreted as follows: For a one-standard-
deviation increase in Growth, on average, we expect a 0.52-standard-
deviation increase in the incumbent-party vote share, controlling for the
effect of Good News. And for a one-standard-deviation increase in Good
News, we expect to see, on average, a 0.33-standard-deviation increase in
the incumbent-party vote shares, controlling for the effect of Growth. Note
how, when looking at the unstandardized coefficients, we might have mis-
takenly thought that the effect of Good News was larger than the effect of
Growth. But the standardized coefficients (correctly) tell the opposite story:
The estimated effect of Growth is just over 150% of the size of the effect
of Good News.9

9.6 STATISTICAL AND SUBSTANTIVE SIGNIFICANCE

Related to the admonition about which effect is “biggest,” consider the
following, seemingly simpler, question: Are the effects found in column C
of Table 9.1 “big”? A tempting answer to that question is “Well of course
they’re big. Both coefficients are statistically significant. Therefore, they’re
big.”

That logic, although perhaps appealing, is faulty. Recall the discussion
from Chapter 6 (specifically, Subsection 6.4.2) on the effects of sample size
on the magnitude of the standard error of the mean. And we noted the same

9 Some objections have been raised about the use of standardized coefficients (King 1986).
From a technical perspective, because standard deviations can differ across samples, this
makes the results of standardized coefficients particularly sample specific. Additionally, and
from a broader perspective, one-unit or one-standard-deviation shifts in different indepen-
dent variables have different substantive meanings regardless of the metrics in which the
variables are measured. We might therefore logically conclude that there isn’t much use in
trying to figure out which effect is biggest.
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effects of sample size on the magnitude of the standard error of our regres-
sion coefficients (specifically, Section 8.4). What this means is that, even if
the strength of the relationship (as measured by our coefficient estimates)
remains constant, by merely increasing our sample size we can affect the
statistical significance of those coefficients. Why? Because statistical signifi-
cance is determined by a t-test (see Subsection 8.4.7) in which the standard
error is in the denominator of that quotient. What you can remember is that
larger sample sizes will shrink standard errors and therefore make finding
statistically significant relationships more likely.10 It is also apparent from
Appendix B that, when the number of degrees of freedom is greater, it is
easier to achieve statistical significance.

We hope that you can see that arbitrarily increasing the size of a sample,
and therefore finding statistically significant relationships, does not in any
way make an effect “bigger” or even “big.” Recall, such changes to the
standard errors have no bearing on the rise-over-run nature of the slope
coefficients themselves.

How, then, should you judge whether an effect of one variable on
another is “big?” One way is to use the method just described – using
standardized coefficients. By placing the variances of X and Y on the same
metric, it is possible to come to a judgment about how big an effect is.
This is particularly helpful when the independent variables X and Z, or the
dependent variable Y, or both, are measured in metrics that are unfamiliar
or artificial.

When the metrics of the variables in a regression analysis are intu-
itive and well known, however, rendering a judgment about whether an
effect is large or small becomes something of a matter of interpretation.
For example, in Chapter 11, we will see an example relating the effects of
changes in the unemployment rate (X) on a president’s approval rating (Y).
It is very simple to interpret that a slope coefficient of, say, −1.51, means
that, for every additional point of unemployment, we expect approval to
go down by 1.51 points, controlling for other factors in the model. Is that
effect large, small, or moderate? There is something of a judgment call
to be made here, but at least in this case, the metrics of both X and Y
are quite familiar; most people with even an elementary familiarity with
politics will need no explanation as to what unemployment rates mean or
what approval polls mean. Independent of the statistical significance of that
estimate –which, you should note, we have notmentioned here – discussions
of this sort represent attempts to judge the substantive significance of a

10 To be certain, it’s not always possible to increase sample sizes, and, even when possible,
it is nearly always costly to do so. The research situations in which increasing sample size
is most likely, albeit still expensive, is in mass-based survey research.
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coefficient estimate. Substantive significance is more difficult to judge than
statistical significance because there are no numeric formulae for making
such judgments. Instead, substantive significance is a judgment call about
whether or not statistically significant relationships are “large” or “small”
in terms of their real-world impact.

From time to time we will see a “large” parameter estimate that is
not statistically significant. Although it is tempting to describe such a result
as substantively significant, it is not. We can understand this by thinking
about what it means for a particular result to be statistically significant. As
we discussed in Chapter 8, in most cases we are testing the null hypothesis
that the population parameter is equal to zero. In such cases, even when we
have a large parameter estimate, if it is statistically insignificant this means
that it is not statistically distinguishable from zero. Therefore a parameter
estimate can be substantively significant only when it is also statistically
significant.

9.7 WHAT HAPPENS WHEN WE FAIL TO CONTROL FOR Z?

Controlling for the effects of other possible causes of our dependent variable
Y, we have maintained, is critical to making the correct causal inferences.
Some of you might be wondering something like the following: “How does
omittingZ from a regression model affect my inference of whetherX causes
Y? Z isn’t X, and Z isn’t Y, so why should omitting Z matter?”

Consider the following three-variable regression model involving our
now-familiar trio of X, Y, and Z:

Yi = α +β1Xi +β2Zi +ui.

And assume, for the moment, that this is the correct model of reality.
That is, the only systematic causes of Y are X and Z; and, to some degree,
Y is also influenced by some random error component, u.

Now let’s assume that, instead of estimating this correct model, we fail
to estimate the effects of Z. That is, we estimate

Yi = α +β∗
1Xi +u∗

i .

As we previously hinted, the value of β1 in the correct, three-variable
equation and the value of β∗

1 will not be identical under most circum-
stances. (We’ll see the exceptions in a moment.) And that, right there,
should be enough to raise red flags. For, if we know that the three-variable
model is the correct model – and what that means, of course, is that the
estimated value of β1 that we obtain from the data will be equal to the
true population value – and if we know that β1 will not be equal to β∗

1,



210 Multiple Regression: The Basics

then there is a problem with the estimated value of β∗
1. That problem is a

statistical problem called bias, which means that the expected value of the
parameter estimate that we obtain from a sample will not be equal to the
true population parameter. The specific type of bias that results from the
failure to include a variable that belongs in our regression model is called
omitted-variables bias.

Let’s get specific about the nature of omitted-variables bias. If, instead
of estimating the true three-variable model, we estimate the incorrect two-
variable model, the formula for the slope β∗

1 will be

β̂∗
1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ)∑n

i=1(Xi − X̄)2
.

Notice that this is simply the bivariate formula for the effect ofX on Y. (Of
course, the model we just estimated is a bivariate model, in spite of the fact
that we know that Z, as well as X, affects Y.) But because we know that Z
should be in the model, and we know from Chapter 8 that regression lines
travel through the mean values of each variable, we can figure out that the
following is true:

(Yi − Ȳ) = β1(Xi − X̄)+β2(Zi − Z̄)+ (ui − ū).

We can do this because we know that the plane will travel through each
variable’s mean.

Now notice that the left-hand side of the preceding equation – the
(Yi − Ȳ) – is identical to one portion of the numerator of the slope for β̂∗

1.
Therefore we can substitute the right-hand side of the preceding equation –
yes, that entire mess – into the numerator of the formula for β̂∗

1.
The resulting math isn’t anything that is beyond your skills in alge-

bra, but it is cumbersome, so we won’t derive it here. After a few lines of
multiplying and reducing, though, the formula for β̂∗

1 will reduce to

E(β̂∗
1) = β1 +β2

∑n
i=1(Xi − X̄)(Zi − Z̄)∑n

i=1(Xi − X̄)2
.

This might seem like a mouthful – a fact that’s rather hard to deny – but
there is a very important message in it. What the equation says is that the
estimated effect of X on Y, β̂∗

1, in which we do not include the effects of Z
on Y (but should have), will be equal to the true β1 – that is, the effect with
Z taken into account – plus a bundle of other stuff. That other stuff, strictly
speaking, is bias. And because this bias came about as a result of omitting a
variable (Z) that should have been in the model, this type of bias is known
as omitted-variables bias.
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Obviously, we’d like the expected value of our β̂∗
1 (estimated without

Z) to equal the true β1 (as if we had estimated the equation with Z). And if
the product on the right-hand side of the “+” sign in the preceding equation
equals zero, it will. When will that happen?11 In two circumstances, neither
of which is particularly likely. First, β̂∗

1 = β1 if β2 = 0. Second, β̂∗
1 = β1 if

the large quotient at the end of the equation – the
∑n
i=1(Xi−X̄)(Zi−Z̄)∑n

i=1(Xi−X̄)2
– is

equal to zero. What is that quotient? It should look familiar; in fact, it is
the bivariate slope parameter of a regression of Z on X.

In the first of these two special circumstances, the bias term will equal
zero if and only if the effect of Z on Y – that is, the parameter β2 – is zero.
Okay, so it’s safe to omit an independent variable froma regression equation
if it has no effect on the dependent variable. (If that seems obvious to you,
good.) The second circumstance is a bit more interesting: It’s safe to omit
an independent variable Z from an equation if it is entirely unrelated to the
other independent variableX. Of course, if we omitZ in such circumstances,
we’ll still be deprived of understanding howZ affects Y; but at least, so long
as Z and X are absolutely unrelated, omitting Z will not adversely affect
our estimate of the effect of X on Y.12

We emphasize that this second condition is unlikely to occur in practice.
Therefore, if Z affects Y, and Z and X are related, then if we omit Z from
our model, our bias term will not equal zero. In the end, omitting Z will
cause us to misestimate the effect of X on Y.

This result has many practical implications. Foremost among them is
the fact that, even if you aren’t interested theoretically in the connection
between Z and Y, you need to control for it, statistically, in order to get an
unbiased estimate of the impact of X, which is the focus of the theoretical
investigation.

That might seem unfair, but it’s true. If we estimate a regression model
that omits an independent variable (Z) that belongs in the model, then the
effects of that Z will somehow work their way into the parameter esti-
mates for the independent variable that we do estimate (X) and pollute our
estimate of the effect of X on Y.

The preceding equation also suggests when the magnitude of the bias
is likely to be large and when it is likely to be small. If either or both of the
components of the bias term [β2 and

∑n
i=1(Xi−X̄)(Zi−Z̄)∑n

i=1(Xi−X̄)2
] are close to zero,

then the bias is likely to be small (because the bias term is the product of
both components); but if both are likely to be large, then the bias is likely
to be quite large.

11 To be very clear, for a mathematical product to equal zero, either one or both of the
components must be zero.

12 Omitting Z from our regression model also drives down the R2 statistic.
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Figure 9.1. Venn diagram in which
X, Y, and Z are correlated.

Moreover, the equation also sug-
gests the likely direction of the bias. All
we have said thus far is that the coeffi-
cient β̂∗

1 will be biased – that is, it will
not equal its true value. But will it be
too large or too small? If we have good
guesses about the values of β2 and the
correlation between X and Z – that is,
whether or not they are positive or neg-
ative – then we can suspect the direction
of the bias. For example, suppose that
β1, β2, and the correlation between X

and Z are all positive. That means that our estimated coefficient β̂∗
1 will

be larger than it is supposed to be, because a positive number plus the
product of two positive numbers will be a still-larger positive number.
And so on.13

To better understand the importance of controlling for other possible
causes of the dependent variable and the importance of the relationship
(or the lack of one) between X and Z, consider the following graphical
illustrations. In Figure 9.1, we represent the total variation of Y, X, and Z
each with a circle.14 The covariation between any of these two variables –
or among all three – is represented by the places where the circles overlap.
Thus, in the figure, the total variation in Y is represented as the sum of the
area a+b+d+ f . The covariation between Y and X is represented by the
area b+d.

Note in the figure, though, that the variable Z is related to both Y and
X (because the circle for Z overlaps with both Y and X). In particular, the
relationship between Y and Z is accounted for by the area f + d, and the
relationship between Z and X is accounted for by the area d + e. As we
have already seen, d is also a portion of the relationship between Y and
X. If, hypothetically, we erased the circle for Z from the figure, we would
(incorrectly) attribute all of the area b+d to X, when in fact the d portion
of the variation in Y is shared by both X and Z. This is why, when Z is
related to both X and Y, if we fail to control for Z, we will end up with a
biased estimate of X’s effect on Y.

Consider the alternative scenario, in which both X and Z affect Y, but
X andZ are completely unrelated to one another. That scenario is portrayed

13 With more than two independent variables, it becomes more complex to figure out the
direction of the bias.

14 Recall from Chapter 8 how we introduced Venn diagrams to represent variation (the
circles) and covariation (the overlapping portion of the circles).
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Figure 9.2. Venn diagram in which
X and Z are correlated with Y, but
not with each other.

graphically in Figure 9.2. There, the cir-
cles for both X and Z overlap with the
circle for Y, but they do not overlap at all
with one another. In that case – which,
we have noted, is unlikely in applied
research – we can safely omit considera-
tion of Z when considering the effects of
X on Y. In that figure, the relationship
between X and Y – the area b – is unaf-
fected by the presence (or absence) of Z in
the model.15

9.7.1 An Additional Minimal Mathematical Requirement in
Multiple Regression

We outlined a set of assumptions and minimal mathematical requirements
for the two-variable regression model in Chapter 9. In multiple regression,
all of these assumptions are made and all of the sameminimal mathematical
requirements remain in place. In addition to those, however, we need to
add one more minimal mathematical requirement to be able to estimate
our multiple regression models: It must be the case that there is no exact
linear relationship between any two or more of our independent variables
(which we have called X and Z). This is also called the assumption of
no perfect multicollinearity (by which we mean that X and Z cannot be
perfectly collinear, with a correlation coefficient of r= 1.0).

What does it mean to say that X and Z cannot exist in an exact linear
relationship? Refer back to Figure 9.1. If X and Z had an exact linear rela-
tionship, instead of having some degree of overlap – that is, some imperfect
degree of correlation – the circles would be exactly on top of one another.
In such cases, it is literally impossible to estimate the regression model,
as separating out the effects of X on Y from the effects of Z on Y is
impossible.

This is not to say that we must assume that X and Z are entirely
uncorrelated with one another (as in Figure 9.2). In fact, in almost all
applications, X and Z will have some degree of correlation between them.
Things become complicated only as that correlation approaches 1.0; and
when it hits 1.0, the regression model will fail to be estimable with both X
and Z as independent variables. In Chapter 10 we will discuss these issues
further.

15 For identical reasons, we could safely estimate the effect of Z on Y – the area f – without
considering the effect of X.
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9.8 AN EXAMPLE FROM THE LITERATURE: COMPETING THEORIES OF
HOW POLITICS AFFECTS INTERNATIONAL TRADE

What are the forces that affect international trade? Economists have long
noted that there are economic forces that shape the extent to which two
nations trade with one another.16 The size of each nation’s economy, the
physical distance between them, and the overall level of development have
all been investigated as economic causes of trade.17 But in addition to
economic forces, does politics help to shape international trade?

Morrow, Siverson, and Tabares (1998) investigate three competing
(and perhaps complementary) political explanations for the extent to which
two nations engage in international trade. The first theory is that states with
friendly relations are more likely to trade with one another than are states
engaged in conflict. Conflict, in this sense, need not be militarized disputes
(though itmay be).18 Conflict, they argue, can dampen trade in severalways.
First, interstate conflict can sometimes produce embargoes (or prohibitions
on trade). Second, conflict can reduce trade by raising the risks for firms
that wish to engage in cross-border trading.

The second theory is that trade will be higher when both nations are
democracies and lower when one (or both) is an autocracy.19 Because
democracies have more open political and judicial systems, trade should
be higher between democracies because firms in one country will have
greater assurance that any trade disputes will be resolved openly and
fairly in courts to which they have access. In contrast, firms in a demo-
cratic state may be more reluctant to trade with nondemocratic countries,
because it is less certain how any disagreements will be resolved. In addi-
tion, firms may be wary of trading with nondemocracies for fear of having
their assets seized by the foreign government. In short, trading with an
autocratic government should raise the perceived risks of international
trade.

The third theory is that states that are in an alliance with one another
are more likely to trade with one another than are states that are not in

16 Theories of trade and, indeed, many theories about other aspects of international trade
are usually developed with pairs of nations in mind. Thus all of the relevant variables, like
trade, are measured in terms of pairs of nations, which are often referred to as “dyads” by
international relations scholars. The resulting dyadic data sets are often quite large because
they encompass each relevant pair of nations.

17 Such models are charmingly referred to as “gravity models,” because, according to these
theories, the forces driving trade resemble the forces that determine gravitational attraction
between two physical objects.

18 See Pollins (1989) for an extended discussion of this theory.
19 See Dixon and Moon (1993) for an elaboration of this theory.
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Table 9.2. Excerpts from Morrow, Siverson, and
Tabares’s table on the political causes of international
trade

A B C D

Peaceful relations 1.12* — — 1.45*
(0.22) — — (0.37)

Democratic partners — 1.18* — 1.22*
— (0.12) — (0.13)

Alliance partners — — 0.29* −0.50*
— — (0.03) (0.16)

GNP of exporter 0.67* 0.57* 0.68* 0.56*
(0.07) (0.07) (0.07) (0.08)

R2 0.77 0.78 0.77 0.78
n 2631 2631 2631 2631

Note: Standard errors are in parentheses.
* = p< 0.05.
Other variables were estimated as a part of the regression model but
were excluded from this table for ease of presentation.

such an alliance.20 For states that are not in an alliance, one nation may
be reluctant to trade with another nation if the first thinks that the gains
from trade may be used to arm itself for future conflict. In contrast, states
in an alliance stand to gain from each other’s increased wealth as a result
of trade.

To test these theories, Morrow, Siverson, and Tabares look at trade
among all of the major powers in the international system – the United
States, Britain, France, Germany, Russia, and Italy – during most of the
twentieth century. They consider each pair of states – called dyads – sep-
arately and examine exports to each country on an annual basis.21 Their
dependent variable is the amount of exports in every dyadic relationship in
each year.

Table 9.2 shows excerpts from the analysis of Morrow, Siverson,
and Tabares.22 In column A, they show that, as the first theory predicts,

20 See Gowa (1989) and Gowa and Mansfield (1993) for an extended discussion, including
distinctions between bipolar and multipolar organizations of the international system.

21 This research design is often referred to as a time-series cross-section design, because it
contains both variation between units and variation across time. In this sense, it is a hybrid
of the two types of quasi-experiments discussed in Chapter 3.

22 Interpreting the precise magnitudes of the parameter estimates is a bit tricky in this case,
because the independent variables were all transformed by use of natural logarithms.
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increases in interstate peace are associated with higher amounts of trade
between countries, controlling for economic factors. In addition, the larger
the economy in general, the more trade there is. (This finding is consistent
across all estimation equations.) The results in column B indicate that pairs
of democracies trade at higher rates than do pairs involving at least one
nondemocracy. Finally, the results in column C show that trade is higher
between alliance partners than between states that are not in an alliance
with one another. All of these effects are statistically significant.

So far, each of the theories received at least some support. But, as
you can tell from looking at the table, the results in columns A through
C do not control for the other explanations. That is, we have yet to see
results of a fully multivariate model, in which the theories can compete
for explanatory power. That situation is rectified in column D, in which all
three political variables are entered in the same regression model. There, we
see that the effects of reduced hostility between states is actually enhanced
in the multivariate context – compare the coefficient of 1.12 with the mul-
tivariate 1.45. Similarly, the effects of democratic trading partners remains
almost unchanged in the fully multivariate framework. However, the effect
of alliances changes. Before controlling for conflict and democracy, the
effect of alliances was (as expected) positive and statistically significant.
However, in column D, in which we control for conflict and democracy,
the effect flips signs and is now negative (and statistically significant), which
means that, when we control for these factors, states in an alliance are less
(not more) likely to trade with one another.

The article by Morrow, Siverson, and Tabares represents a case
in which synthesizing several competing explanations for the same phe-
nomenon – international trade – produces surprising findings. By using a
data set that allowed them to test all three theories simultaneously, Mor-
row, Siverson, and Tabares were able to sort out which theories received
support and which did not.

9.9 IMPLICATIONS

What are the implications of this chapter? The key take-home point of this
chapter – that failing to control for all relevant independent variables will
often lead tomistaken causal inferences for the variables that domake it into
our models – applies in several contexts. If you are reading a research article
in one of your other classes, and it shows a regression analysis between two
variables, but fails to control for the effects of some other possible cause of
the dependent variable, then you have some reason to be skeptical about
the reported findings. In particular, if you can think of another independent
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variable that is likely to be related to both the independent variable and the
dependent variable, then the relationship that the article does show that fails
to control for that variable is likely to be plagued with bias. And if that’s
the case, then there is substantial reason to doubt the findings. The findings
might be right, but you can’t know that from the evidence presented in the
article; in particular, you’d need to control for the omitted variable to know
for sure.

But this critical issue isn’t just encountered in research articles. When
you read a news article from your favorite media web site that reports a
relationship between some presumed cause and some presumed effect –
news articles don’t usually talk about “independent variables” or “depen-
dent variables” – but fails to account for some other cause that you can
imagine might be related to both the independent and dependent variables,
then you have reason to doubt the conclusions.

It might be tempting to react to omitted-variables bias by saying,
“Omitted-variables bias is such a potentially serious problem that I don’t
want to use regression analysis.” That would be a mistake. In fact, the logic
of omitted-variables bias applies to any type of research, no matter what
type of statistical technique used – in fact, no matter whether the research
is qualitative or quantitative.

Sometimes, as we have seen, controlling for other causes of the depen-
dent variable changes the discovered effects only at the margins. That
happens on occasion in applied research. At other times, however, failure
to control for a relevant cause of the dependent variable can have serious
consequences for our causal inferences about the real world.

In Chapters 10 and 11, we present you with some crucial extensions
of the multiple regression model that you are likely to encounter when
consuming or conducting research.

CONCEPTS INTRODUCED IN THIS CHAPTER

• bias – a statistical problem that occurs when the expected value of the
parameter estimate that we obtain from a sample will not be equal to
the true population parameter.

• dyadic data – data that reflect the characteristics of pairs of spatial
units and/or the relationships between them.

• omitted-variables bias – the specific type of bias that results from the
failure to include a variable that belongs in our regression model.

• perfect multicollinearity – when there is an exact linear relation-
ship between any two or more of a regression model’s independent
variables.
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Table 9.3. Bias in β̂1 when the true popu-
lation model is Yi = α+β1Xi+β2Zi+ui but
we leave out Z

β2

∑n
i=1(Xi−X̄)(Zi−Z̄)
∑n
i=1(Xi−X̄)2

Resulting bias in β̂1

0 + ?
0 – ?
+ 0 ?
– 0 ?
+ + ?
– – ?
+ – ?
– + ?

• standardized coefficients – regression coefficients such that the rise-
over-run interpretation is expressed in standard-deviation units of each
variable.

• substantive significance – a judgment call about whether or not statis-
tically significant relationships are “large” or “small” in terms of their
real-world impact.

• unstandardized coefficients – regression coefficients such that the rise-
over-run interpretation is expressed in the original metric of each
variable.

EXERCISES

1. Identify an article from a prominent web site that reports a causal relationship
between two variables. Can you think of another variable that is related to both
the independent variable and the dependent variable? Print and turn in a copy
of the article with your answers.

2. In Exercise 1, estimate the direction of the bias resulting from omitting the third
variable.

3. Fill in the values in the third column of Table 9.3.

4. In your own research you have found evidence froma bivariate regressionmodel
that supports your theory that your independent variableXi is positively related
to your dependent variable Yi (the slope parameter for Xi was statistically
significant and positive when you estimated a bivariate regression model). You
go to a research presentation in which other researchers present a theory that
their independent variable Zi is negatively related to their dependent variable
Yi. They report the results from a bivariate regression model in which the slope
parameter for Zi was statistically significant and negative. Your Yi and their


