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• You learned a LOT already!  

 

• More than a majority of factor analysis practitioners know about the 
model  (pretty sad, huh?) 



Fitting the model 

• One important thing to note is that these models are intended for a 
population – they are population models, describing how stuff works 
in a population.  

 

• Anyway, at the beginning we learned that there are two sides to 
factor analysis – theory and methodology.  

• What we have covered so far was the theory (the model itself)  

• Now, we will focus on the methodology (how to fit the model on data 
/ how to estimate the unknowns in the model) 



Fitting the model 

• More specifically, we will focus on the theoretical basis for fitting the 
model. Later on in the course, we will cover the actual thing in 
practice (software and examples). 

 

• A model represents some hypothesized structure of data. Different 
methods are available for fitting the model to data and obtaining 
estimates of model parameters (the elements in model matrices) and 
providing us with information on how well the model fits the data.  



Fitting the model 

• For the sake of argument, we will consider the hypothetical scenario 
where the population correlation matrix P is known, and the model 
holds exactly in the population (i.e., the model explains P perfectly) 

 

• This will never ever be the case in practice, but it’s a better starting 
point to begin understanding the principles.  

 

• Later, we will drop these assumptions, no worries.  



The population correlation matrix 
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• Let’s look at an example, using the example data we have seen before. 

 

• The matrix P is given as follows: 
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The communality problem 

• Many solutions were suggested to the communality problem. 

 

• The one that “won” (was and is the most widely used) was suggested by 
Louis Guttman in 1940.  

 

• Guttman suggested squared multiple correlations (SMCs) as the initial 
approximations to communalities.  



The communality problem 

• Just what is a squared multiple correlation (SMC)?  

 

• Imagine you have p manifest variables. You can try to predict the j-th 
manifest variable from the other (p - 1) manifest variables, linear 
regression-style.  

 

• This prediction will be imperfect. You can correlate these predicted 
values of the j-th manifest variable with the actual values of the variable. 
What you will get is a correlation coefficient, the multiple correlation 
coefficient. Square it and you get the SMC.  
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The communality problem 

• However, in order to obtain the population SMCs, we need to know P in 
the first place. Most often, we don’t.  

 

• In practice, we can apply the same procedure to a sample correlation 
matrix, R, in order to obtain sample SMCs. Since, in reality, we usually 
work with sample correlation matrices, let’s slowly shift the gear 
towards thinking more about a sample correlation matrix R and less 
about the population correlation matrix, P.   



Working with a sample correlation matrix 

• So far, we have studied factor analysis limiting ourselves to the ideal 
scenario in which we know the population correlation matrix, P. Moreover, 
we only considered the case where the model holds exactly in the 
population.  

 

• Now, let’s consider the real world in which we do not have access to P but 
we do have access to R. In this real world scenario, we are not even sure 
the sample correlation matrix R is drawn from a population with a 
correlation matrix P for which the model holds.   

 

• As before, let’s just consider the uncorrelated / orthogonal model for now. 
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Working with a sample correlation matrix 

• Every element in the residual matrix tells us how far is the model-implied 
(predicted) value of this element from its observed value. 

 

• Alright, so – again, we don’t have a population correlation matrix P 
which we used for all the computations and methods covered before. 
What are we going to do?  

 

• Of course, we’re going to pretend like the problem isn’t there and we’ll 
start by doing things in the exact same way.   
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Working with a sample correlation matrix 

• Again, we will obtain some eigenvalues and some eigenvectors. 
However, in this case (not having a population correlation matrix, not 
being sure the model holds exactly in the population), we will generally 
not obtain an eigen-solution where the (p – m) smallest eigenvalues are 
zero.  

 

• Thus, we cannot rely on the number of non-zero eigenvalues to show us 
the “true” number of factors (m). Thus, we will have to choose m 
ourselves beforehand, based on our best judgement (more on that later) 

 

 



Working with a sample correlation matrix 



Working with a sample correlation matrix 



Working with a sample correlation matrix 



Example 



Example 



Example 



Example 



Example 



Example 



Example 



Example 



Example 

• The solution produced a residual matrix with minimum sum of squares, 
conditional on the prior communality estimates. If the prior 
communality estimates would be different, a different residual matrix 
would satisfy the RSS criterion.  

  



Short review 
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Iterative procedure 

• That’s really all there is (in principle) about OLS.  
 

• By the way, the RSS function (the formula we have seen before) is a 
discrepancy function – it quantifies the distance between the observed 
and model-implied correlation matrices. In other words, it expresses the 
degree of lack of model fit.  
 

• Being a discrepancy function, it is always greater than or equal to zero 
and is zero only when the observed and model-implied correlation 
matrices are the same.  
 

 
  



Heywood cases 

• One nasty thing can happen when using OLS estimation 

 

• That is, some communalities can, in the course of the iterations, be 
greater than one. Conversely, the unique variances can become less than 
zero (because in a standardized solution, the communality and the 
unique variance of an MV add up to one) 

 

• But there’s no such thing as negative variance. Thus, such a solution 
would be nonsensical and unacceptable. We call these occurrences 
Heywood cases 



Heywood cases 

• If you’re using smart software, you should be notified whenever a 
Heywood case occurs 

 

• If you’re using smart software, it can help you circumvent the problem 
by placing a constraint on the associated unique variance such that it can 
only be greater than or equal to zero.  
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