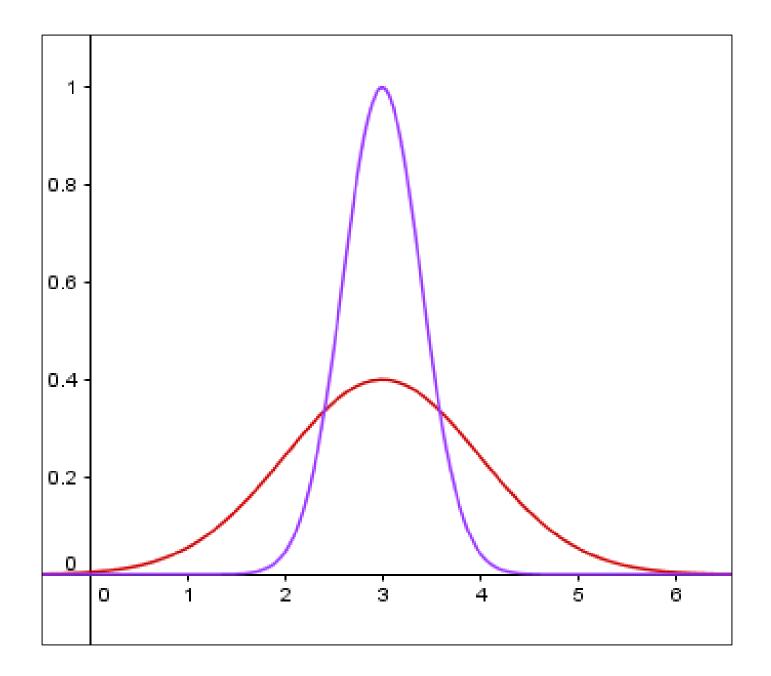
Descriptives, Crosstabs, Correlation

Methodology of Conflict and Democracy Studies

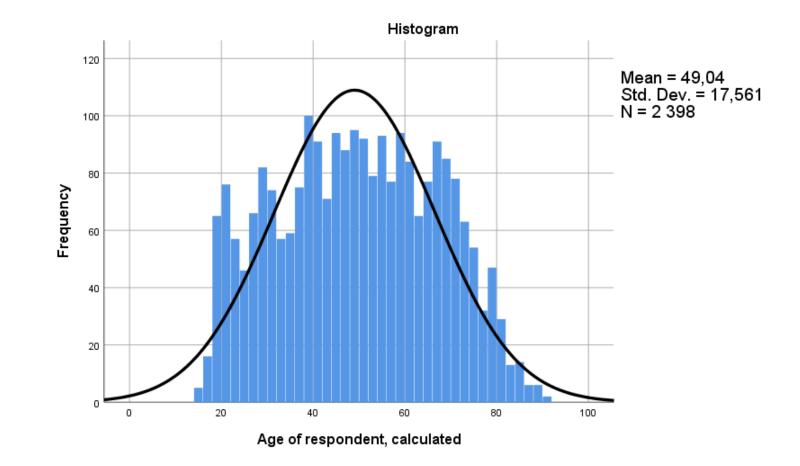

December 2

Aim of this lecture

- How to obtain basic information about your data
- Control of the assumptions
- Association of two variables:
 - Crosstabs (Contingency tables)
 - Correlation

Descriptive Statistics

- Basic measures to summarize the characteristics of your data
- Various types:
 - Central tendencies mean, median, modus
 - Dispersion standard deviation, variance, minimum, maximum
- Not all descriptives are suitable for all types of variables
- We use them to describe and explore your data

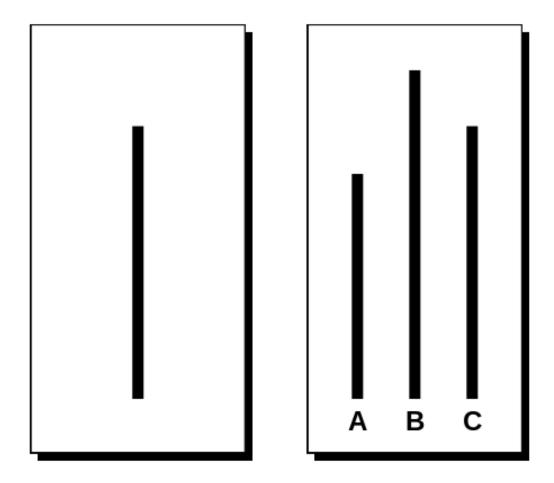

How to Obtain Descriptives in SPSS

- Analyze > Descriptive Statistics > Frequencies
- Move variables of interest to the right
- In 'Statistics' choose all measures you require

Statistics

Age of respondent, calculated

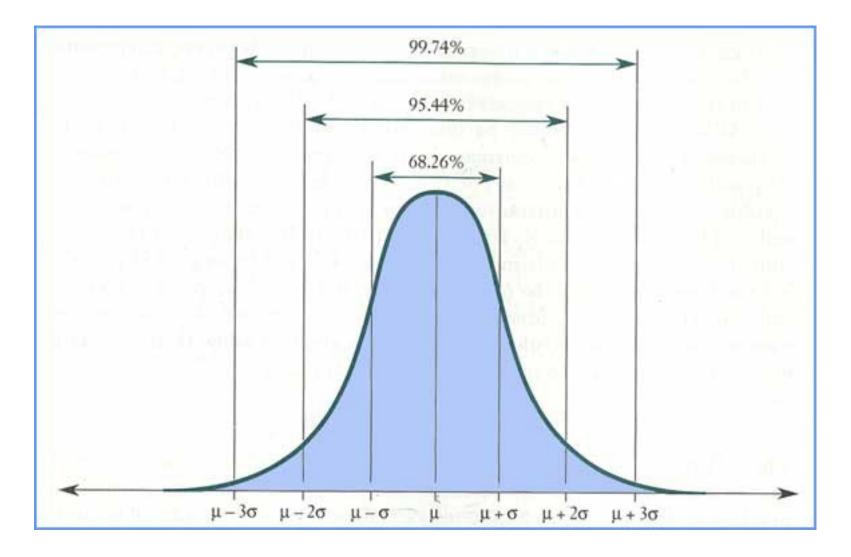
N	Valid	2398		
	Missing	0		
Mean		49,04		
Mediar	1	49,00		
Mode		50		
Std. De	eviation	17,561		
Minimum		15		
Maximum		90		
Sum		117591		

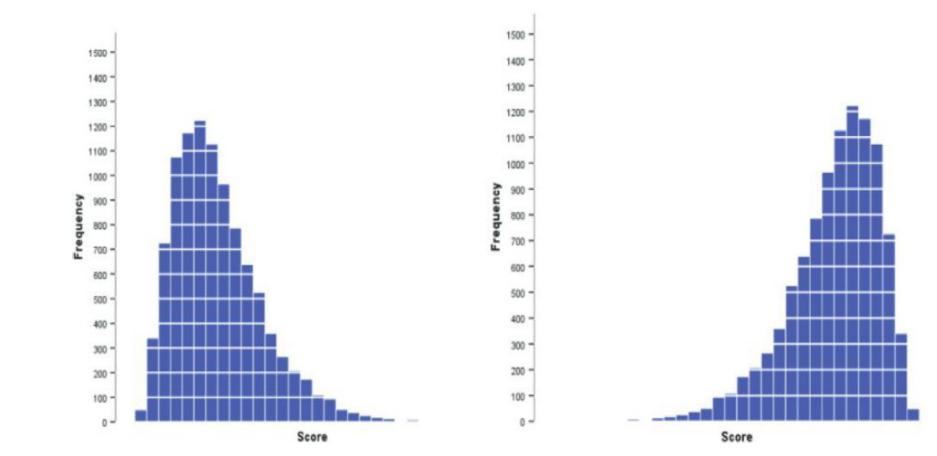

Assumptions of Data

- Not all data are suitable for all statistical tests
- Parametric and Non-parametric tests
- Parametric tests as a preference v. higher requests on data

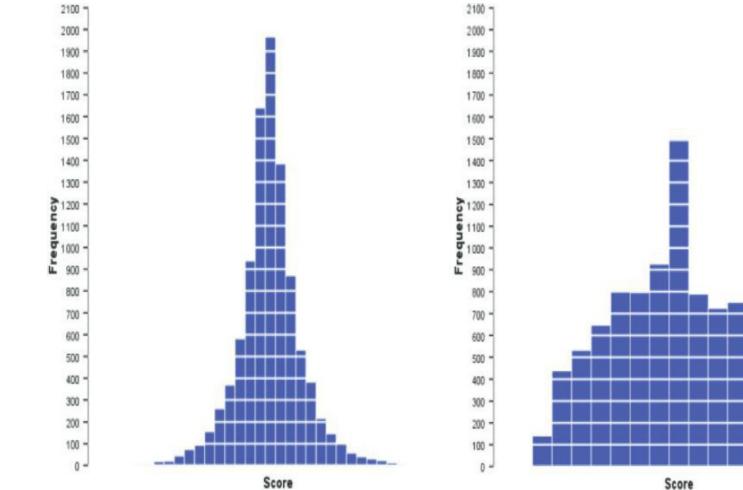
Parametric Data

- 1. Scale data (at least interval)
- 2. Independence
- 3. Normally distributed data
- 4. Homogeneity of variance


Independence

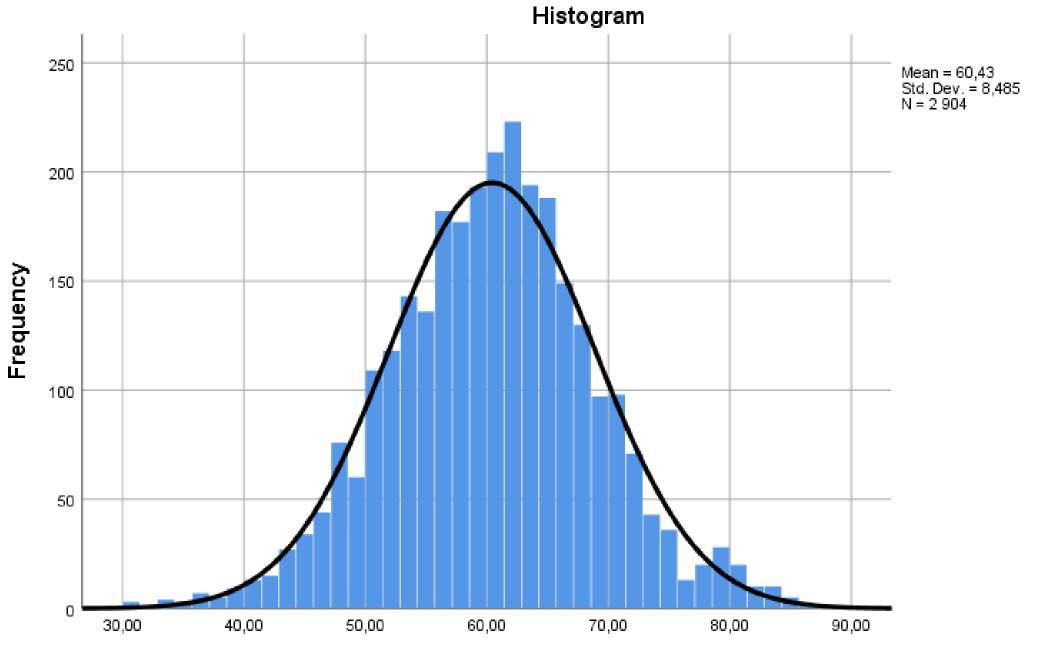

Parametric Data

- 1. Scale data (at least interval)
- 2. Independence
- 3. Normally distributed data
- 4. Homogeneity of variance


Normal Distribution

Skewness

Kurtosis


Score

How to Check the Distribution

- Visual control Histogram
- Calculation of skewness and kurtosis
- Statistical tests:
 - Kolmogorov-Smirnov
 - Shapiro-Wilk

Histogram

- Analyze > Descriptive Statistics > Frequencies
- In 'Charts' choose 'Histogram'
- Select 'Show normal curve on histogram' to draw a line corresponding to normal distribution

Turnout

Skewness and Kurtosis

- Analyze > Descriptive Statistics > Frequencies
- In 'Statistics' choose these two options
- The values are only informative you have to divide them by their standard error
- Acceptable values:
 - Small sample between -1.96 and 1.96
 - Medium sample between -2.58 and 2.58
 - Large samples do not use it

Statistics					
Turnout					
N	Valid	2904			
	Missing	0			
Skewne	Skewness				
Std. Erro	Std. Error of Skewness				
Kurtosis	,279				
Std. Erro	,091				

Skewness:

-0.020 / 0.045 = -0.44

Kurtosis:

0.279 / 0.097 = 3.07

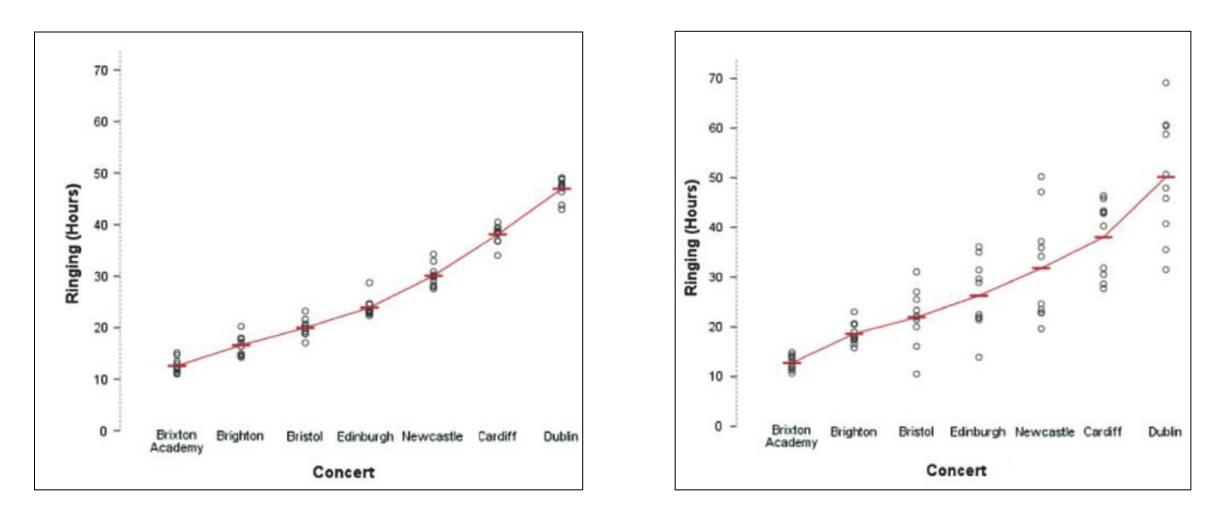
Statistical Tests

- Kolmogorov-Smirnov (Shapiro-Wilk)
 - Both test the null hypothesis that your data are normally distributed
- Results:
 - Significant (p <= 0.05) we reject the null hypothesis
 - Not significant (p > 0.05) we keep the null hypothesis
- With large samples the tests tend to lead to significant results without meaningful reason

Statistical Tests

- Analyze > Descriptive Statistics > Explore
- Place variable of your interest into 'Dependent List'
- In 'Plots' select 'Normality plots with tests'

Tests of Normality						
Kolmogorov-Smirnov ^a Shapiro-Wilk						
Statistic df Sig.		Statistic	df	Sig.		
Turnout	,018	2904	,039	,998	2904	,000
a. Lilliefors Significance Correction						


Parametric Data

- 1. Scale data (at least interval)
- 2. Independence
- 3. Normally distributed data
- 4. Homogeneity of variance

Homogeneity of Variance

- Assumption that the variances in various levels of data are equal
- The levels are defined by other (categorical) variable
- We use only a single test for this assumption
- Levene test

Homogeneity of Variances

Levene Test

- Tests the null hypothesis that variances are equal
- Results:
 - Significant (p <= 0.05) we reject the null hypothesis
 - Not significant (p > 0.05) we keep the null hypothesis
- With large samples the tests tend to lead to significant results without meaningful reason

Levene Test

- Analyze > Descriptive Statistics > Explore
- Place variable of your interest into 'Dependent List'
- Place second variable that defines the levels of data into 'Factor list'
- In 'Plots' select 'Spread vs Level with Levene Test' and 'Untransformed'

Test of Homogeneity of Variance						
Levene Statistic df1 df2 Sig.						
Turnout	Based on Mean	12,648	7	2896	,000	
	Based on Median	12,607	7	2896	,000	
	Based on Median and with adjusted df	12,607	7	2763,503	,000	
	Based on trimmed mean	12,621	7	2896	,000	

Association of Two Variables

- Depends on types of variables
- Crosstabs:
 - Suitable for two categorical variables
 - Low amount of categories in your variables (but at least two per variable)
- Correlation:
 - Two scale variables, scale and ordinal, two ordinal variables
 - Specific case scale and binary variable

Crosstabs

- Contingency tables
- Describe interaction of two categorical variables
- Age groups of people v. turnout in election (yes/no)
- Allows generalization to population

Crosstabs

- Analyze > Descriptive statistics > Crosstabs
- Select variables for Columns and Rows
- Features:
 - Cells counts, percentages, residuals
 - Statistics Chi-square, Cramer's V
- Try not to fill your crosstab with too many features

Counts: Observed

Age * Voted in election Crosstabulation

Count

		Voted in		
		No	Total	
Age	18 - 35	271	248	519
	36 - 59	390	655	1045
	60 - 90	186	556	742
Total		847	1459	2306

Counts: Observed Percentages: Row

Age * Voted in election Crosstabulation

			Voted in		
			No	Yes	Total
Age	18 - 35	Count	271	248	519
		% within Age	52,2%	47,8%	100,0%
	36 - 59	Count	390	655	1045
		% within Age	37,3%	62,7%	100,0%
	60 - 90	Count	186	556	742
		% within Age	25,1%	74,9%	100,0%
Total		Count	847	1459	2306
		% within Age	36,7%	63,3%	100,0%

Counts: Observed Percentages: Column

Age * Voted in election Crosstabulation

			Voted in e		
			No	Yes	Total
Age	18 - 35	Count	271	248	519
		% within Voted in election	32,0%	17,0%	22,5%
	36 - 59	Count	390	655	1045
		% within Voted in election	46,0%	44,9%	45,3%
	60 - 90	Count	186	556	742
		% within Voted in election	22,0%	38,1%	32,2%
Total		Count	847	1459	2306
		% within Voted in election	100,0%	100,0%	100,0%

Counts: Observed + Expected

Age * Voted in election Crosstabulation

			Voted in e		
			No	Yes	Total
Age	18-35	Count	271	248	519
		Expected Count	190,6	328,4	519,0
	36 - 59	Count	390	655	1045
		Expected Count	383,8	661,2	1045,0
	60 - 90	Count	186	556	742
		Expected Count	272,5	469,5	742,0
Total		Count	847	1459	2306
		Expected Count	847,0	1459,0	2306,0

Counts: Observed Percentages: Row

- Younger people do not vote to the same extent than older people
- But can we apply this to the whole population?

Chi-square, Cramer's V

Chi-Square Tests

Approximate Asymptotic Significance Value Significance Value df (2-sided) Nominal by Nominal Phi .205 .000 Cramer's V ,000, .205 97,142^a Pearson Chi-Square 2 ,000 N of Valid Cases 2306 Likelihood Ratio 97,604 2 ,000, Linear-by-Linear .000 96.677 4 Association N of Valid Cases 2306 a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 190,63. • There is a relationship between age and turnout, and it applies to the population

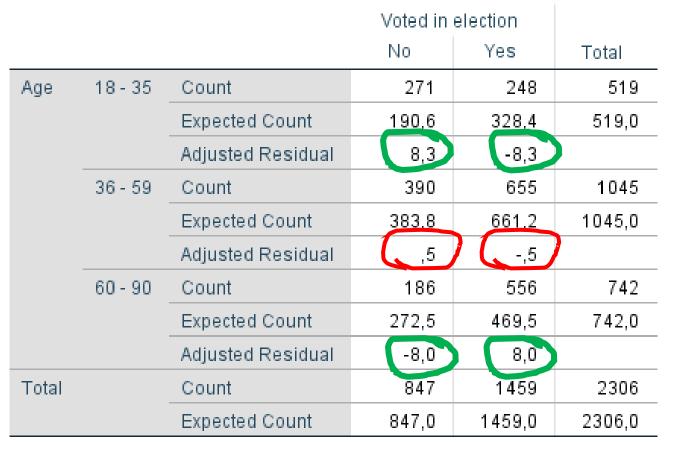
 But is it okay to end the analysis at this point? Can we find out <u>more</u>?

Symmetric Measures

Counts: Observed + Expected Residuals: Unstandardized

Age * Voted in election Crosstabulation

			Voted in		
			No	Yes	Total
Age	18 - 35	Count	271	248	519
		Expected Count	190,6	328,4	519,0
		Residual	80,4	-80,4	
	36 - 59	Count	390	655	1045
		Expected Count	383,8	661,2	1045,0
		Residual	6,2	-6,2	
	60 - 90	Count	186	556	742
		Expected Count	272,5	469,5	742,0
		Residual	-86,5	86,5	
Total		Count	847	1459	2306
		Expected Count	847,0	1459,0	2306,0


Counts: Observed + Expected Residuals: Adjusted standardized

Age * Voted in election Crosstabulation

			Voted in election		
			No	Yes	Total
Age	18 - 35	Count	271	248	519
		Expected Count	190,6	328,4	519,0
		Adjusted Residual	8,3	-8,3	
	36 - 59	Count	390	655	1045
		Expected Count	383,8	661,2	1045,0
		Adjusted Residual	,5	-,5	
	60 - 90	Count	186	556	742
		Expected Count	272,5	469,5	742,0
		Adjusted Residual	-8,0	8,0	
Total		Count	847	1459	2306
		Expected Count	847,0	1459,0	2306,0

Counts: Observed + Expected Residuals: Adjusted standardized Chi-square, Cramer's V

Age * Voted in election Crosstabulation

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	
Pearson Chi-Square	97,142 ^a	2		,000
Likelihood Ratio	97,604	2		,000,
Linear-by-Linear Association	96,677	1		,000,
N of Valid Cases	2306			

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 190,63.

Symmetric Measures

		Value	Approximate Significance
Nominal by Nominal	Phi	,205	,000,
	Cramer's V	,205	,000
N of Valid Cases		2306	

Why Not Make It Too Complicated?

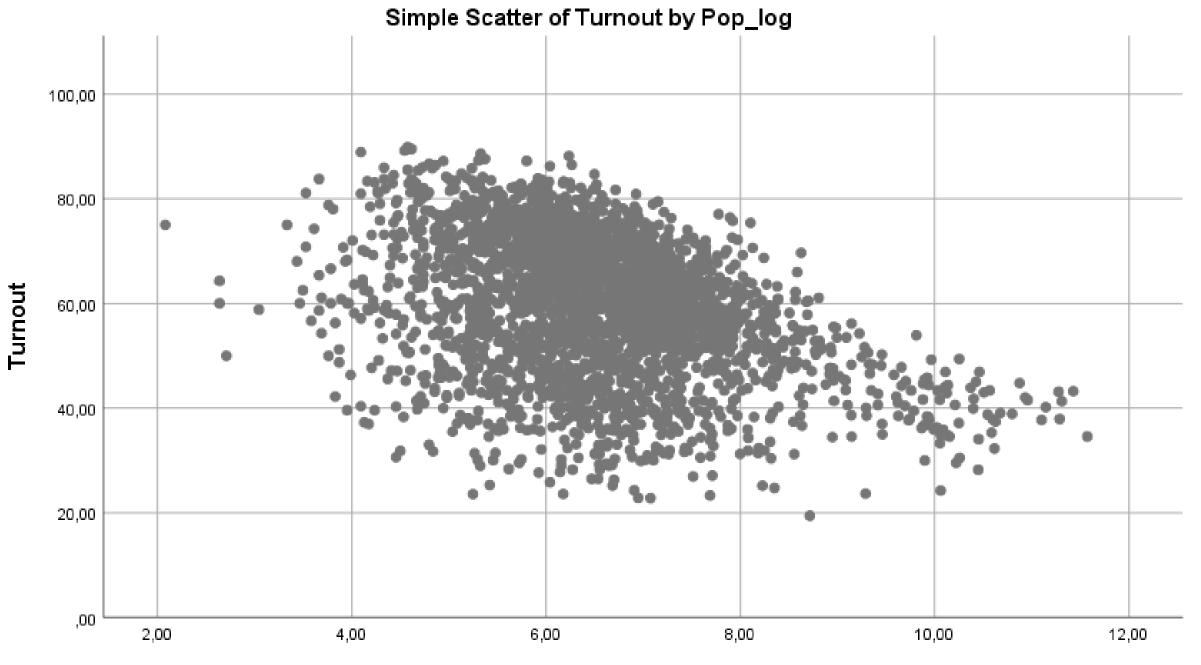
Age * Voted in election Crosstabulation

			Voted in election		
			No	Yes	Total
Age	18 - 35	Count	271	248	519
		Expected Count	190,6	328,4	519,0
		% within Age	52,2%	47,8%	100,09
		% within Voted in election	32,0%	17,0%	22,59
		% of Total	11,8%	10,8%	22,59
		Residual	80,4	-80,4	
		Adjusted Residual	8,3	-8,3	
	36 - 59	Count	390	655	104
		Expected Count	383,8	661,2	1045,
		% within Age	37,3%	62,7%	100,09
		% within Voted in election	46,0%	44,9%	45,39
		% of Total	16,9%	28,4%	45,39
		Residual	6,2	-6,2	
		Adjusted Residual	,5	-,5	
	60 - 90	Count	186	556	743
		Expected Count	272,5	469,5	742,
		% within Age	25,1%	74,9%	100,09
		% within Voted in election	22,0%	38,1%	32,29
		% of Total	8,1%	24,1%	32,29
		Residual	-86,5	86,5	
		Adjusted Residual	-8,0	8,0	
Total		Count	847	1459	230
		Expected Count	847,0	1459,0	2306,0
		% within Age	36,7%	63,3%	100,09
		% within Voted in election	100,0%	100,0%	100,09
		% of Total	36,7%	63,3%	100,09

Correlation

- Association between two variables (for other cases than crosstabs)
- Examples: two scale variables, scale and ordinal, two ordinal variables
- Three coefficients:
 - Pearson
 - Spearman
 - Kendall

Correlation

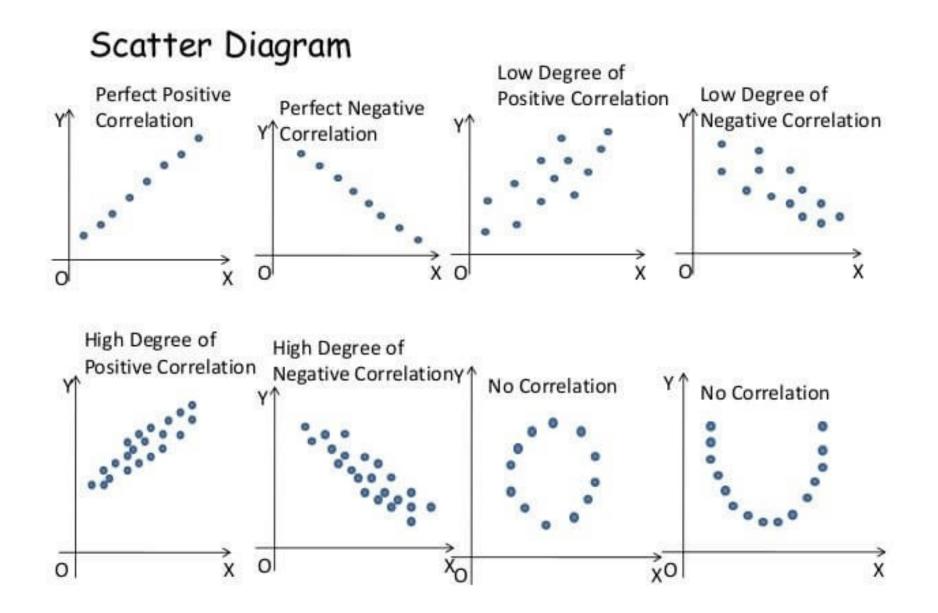

- Results vary on a scale between -1 and 1
- Interpretation:
 - Zero means no association between the variables
 - Rising distance from zero show rising association (regardless the direction negative or positive)
 - -1: perfect negative association
 - 1: perfect positive association
- Beware of false absence of association
- Always good to visualize data before calculating correlations

Pearson's Correlation Coefficient

- Parametric operation
- Requirements:
 - Scale data (exemption scale and binary)
 - If we aim to apply the findings to population we need normally distributed data (or a large sample)
- Sensitive to outliers

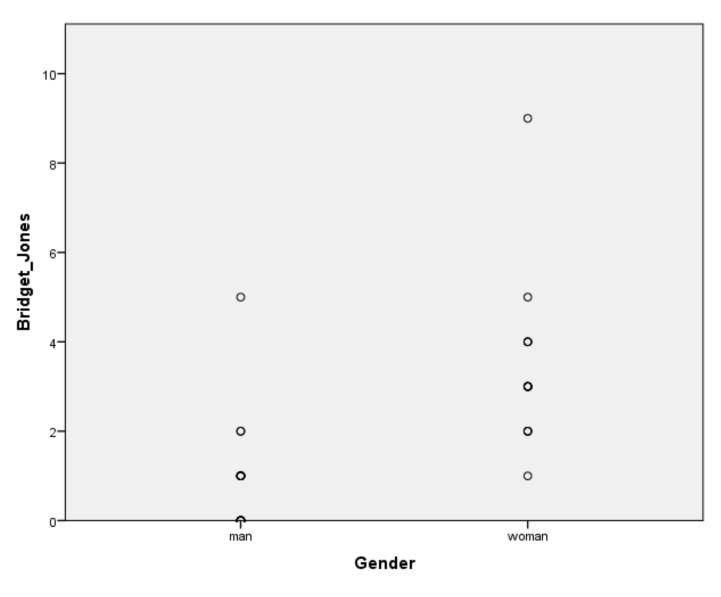
Pearson's Correlation Coefficient

- Visualize the data
 - Graphs > Chart Builder
 - Select Scatter/Dot a variables of your interest
- Correlation
 - Analyze > Correlate > Bivariate
 - Select variables and the proper coefficient (PCC is set by default)
 - For significance select 'Flag significant correlations'

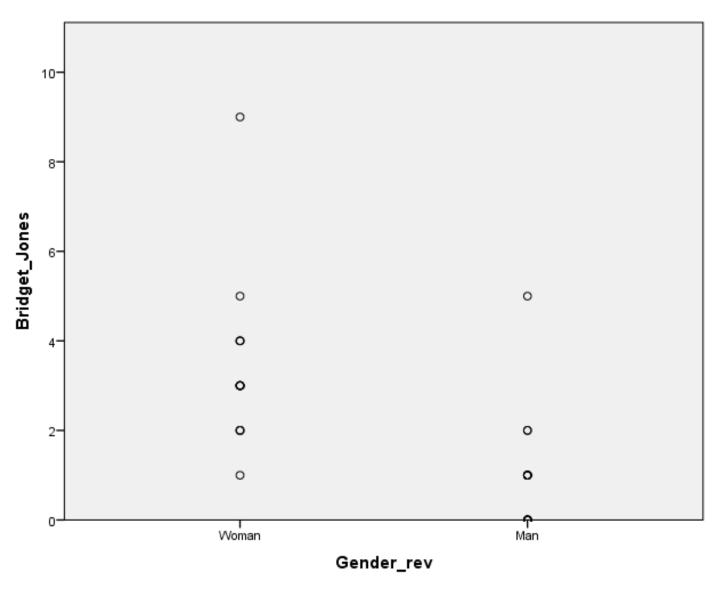


Pop_log

Correlations


		Pop_log	Turnout
Pop_log	Pearson Correlation	1	-,366**
	Sig. (2-tailed)		,000
	N	2926	2919
Turnout	Pearson Correlation	-,366**	1
	Sig. (2-tailed)	,000,	
	Ν	2919	2919

**. Correlation is significant at the 0.01 level (2tailed).


Pearson's Correlation Coefficient

- Scale variable and binary variable
- Works the same as for two scale variables
- Beware of coding of the binary variable (you provide codes for each value)

	Correlation	s	
		Bridget_Jone s	Gender
Bridget_Jones	Pearson Correlation	1	,677**
	Sig. (2-tailed)		,000
	Ν	37	37
Gender	Pearson Correlation	,677**	1
	Sig. (2-tailed)	,000,	
	N	37	37

**. Correlation is significant at the 0.01 level (2-tailed).

Conclutions			
		Bridget_Jone s	Gender_rev
Bridget_Jones	Pearson Correlation	1	-,677**
	Sig. (2-tailed)		,000
	Ν	37	37
Gender_rev	Pearson Correlation	-,677**	1
	Sig. (2-tailed)	,000,	
	N	37	37

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations

Non-Parametric Correlation

- Spearman's Rho and Kendall's Tau
 - Correlation for other cases than two scale variables (or scale and binary)
 - Same interpretation as in Pearson's CC
 - Preference of Kendall's Tau if variables contain less categories and for smaller samples
- Analyze > Correlate > Bivariate
 - Select variables and Spearman/Kendall
 - For significance select 'Flag significant correlations'

Interpretation

- Correlation does not imply causality
 - No control of other variables
 - No independent and dependent variable
- You cannot tell that one variable affects the other even in cases when such relationship seems to be meaningful and logical
- Keep the interpretation of effects of IVs on DV for the regression analysis