# Renewable energy in systems perspective

# Case study: Policy sequencing



- Synergies (positive feedback)
  - RE enables actors to decrease ETS costs
  - Enlarged coalitions (eventually)
  - Learning (market solutions)
- Conflicts (negative feedback)
  - RE increases certificates surplus
  - Both communities initially skeptical

Source: Leipprand et al. 2020

## Defining system boundaries (costs perspective)



## Defining system boundaries (costs perspective)



## Defining system boundaries (costs perspective)



# Systems perspective

| System components     | What to watch    | Acting upon a system    |
|-----------------------|------------------|-------------------------|
| • Parts               | Stocks and flows | System levers           |
| • Interactions        | • Feedback loops | Unintended consequences |
| • Function or purpose | • Delays         |                         |
|                       |                  |                         |

## Feedback loops

#### Positive

- RES deployment <> RES costs
- RES deployment <> integration tech costs
- RES deployment <> system costs
- RES deployment <> acceptance
- RES deployment <> political feasibility

## Negative

- RES deployment <> wholesale price
- RES deployment <> conventional energy costs and deployment
- RES deployment <> system costs
- RES deployment <> acceptance

# Stocks and flows, delays

### **Electricity generation mix (2019)**



## **Expected new capacity (GW, 2020)**





## Unintended effects

