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There are a few snags to this, however: (a) The blood.glucose values
are in random order; we do not want line segments connecting points
haphazardly along the confidence curves; (b) the prediction limits, partic-
ularly the lower one, extend outside the plot region; and (c) the matlines
command needs to be prevented from cycling through line styles and
colours. Notice that the na.exclude setting (p. 115) prevents us from
also having an observation omitted from the predicted values.

The solution is to predict in a new data frame containing suitable x values
(here blood.glucose) at which to predict. It is done as follows:

> pred.frame <- data.frame(blood.glucose=4:20)
> pp <- predict(lm.velo, int="p", newdata=pred.frame)
> pc <- predict(lm.velo, int="c", newdata=pred.frame)
> plot(blood.glucose,short.velocity,
+ ylim=range(short.velocity, pp, na.rm=T))
> pred.gluc <- pred.frame$blood.glucose
> matlines(pred.gluc, pc, lty=c(1,2,2), col="black")
> matlines(pred.gluc, pp, lty=c(1,3,3), col="black")

What happens is that we create a new data frame in which the variable
blood.glucose contains the values at which we want predictions to be
made. pp and pc are then made to contain the result of predict for the
new data in pred.frame with prediction limits and confidence limits,
respectively.

For the plotting, we first create a standard scatterplot, except that we en-
sure that it has enough room for the prediction limits. This is obtained by
setting ylim=range(short.velocity, pp, na.rm=T). The func-
tion range returns a vector of length 2 containing the minimum and
maximum values of its arguments. We need the na.rm=T argument to
cause missing values to be skipped for the range computation; notice that
short.velocity is included to ensure that points outside the predic-
tion limits are not missed (although in this case there are none). Finally,
the curves are added, using as x-values the blood.glucose used for the
prediction and setting the line types and colours to more sensible values.
The final result is seen in Figure 6.5.

6.4 Correlation

A correlation coefficient is a symmetric, scale-invariant measure of associ-
ation between two random variables. It ranges from −1 to +1, where the
extremes indicate perfect correlation and 0 means no correlation. The sign
is negative when large values of one variable are associated with small
values of the other and positive if both variables tend to be large or small
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Figure 6.5. Plot with confidence and prediction bands.

simultaneously. The reader should be warned that there are many incor-
rect uses of correlation coefficients, particularly when they are used in
regression-type settings.

This section describes the computation of parametric and nonparametric
correlation measures in R.

6.4.1 Pearson correlation

The Pearson correlation is rooted in the two-dimensional normal distri-
bution where the theoretical correlation describes the contour ellipses for
the density. If both variables are scaled to have a variance of 1, then a
correlation of zero corresponds to circular contours, whereas the ellipses
become narrower and finally collapse into a line segment as the correlation
approaches ±1.

The empirical correlation coefficient is

r = ∑(xi − x̄)(yi − ȳ)√
∑(xi − x̄)2 ∑(yi − ȳ)2
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It can be shown that |r| will be less than 1 unless there is a perfect linear
relation between xi and yi, and for that reason the Pearson correlation is
sometimes called the “linear correlation”.

It is possible to test the significance of the correlation by transforming it to
a t-distributed variable (the formula is not particularly elucidating so we
skip it here), which will be identical with the test obtained from testing the
significance of the slope of either the regression of y on x or vice versa.

The function cor can be used to compute the correlation between two
or more vectors. However, if it is naively applied to the two vectors in
thuesen, the following happens:

> cor(blood.glucose,short.velocity)
Error in cor(blood.glucose, short.velocity) :

missing observations in cov/cor

All the elementary statistical functions in R require either that all values
be nonmissing or that you explicitly state what should be done with the
cases with missing values. For mean, var, sd, and similar one-vector func-
tions, you can give the argument na.rm=T to indicate that missing values
should be removed before the computation. For cor, you can write

> cor(blood.glucose,short.velocity,use="complete.obs")
[1] 0.4167546

The reason that cor does not use na.rm=T like the other functions is
that there are more possibilities than just removing incomplete cases or
failing. If more than two variables are in play, it is also possible to use in-
formation from all nonmissing pairs of measurements (this might result in
a correlation matrix that is not positive definite, though).

You can obtain the entire matrix of correlations between all variables in a
data frame by saying, for instance,

> cor(thuesen,use="complete.obs")
blood.glucose short.velocity

blood.glucose 1.0000000 0.4167546
short.velocity 0.4167546 1.0000000

Of course, this is more interesting when the data frame contains more than
two vectors!

However, the calculations above give no indication of whether the correla-
tion is significantly different from zero. To that end, you need cor.test.
It works simply by specifying the two variables:
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> cor.test(blood.glucose,short.velocity)

Pearson’s product-moment correlation

data: blood.glucose and short.velocity
t = 2.101, df = 21, p-value = 0.0479
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.005496682 0.707429479
sample estimates:

cor
0.4167546

We also get a confidence interval for the true correlation. Notice that it is
exactly the same p-value as in the regression analysis in Section 6.1 and
also that based on the ANOVA table for the regression model, which is
described in Section 7.5.

6.4.2 Spearman’s ρ

As with the one- and two-sample problems, you may be interested in
nonparametric variants. These have the advantage of not depending
on the normal distribution and, indeed, being invariant to monotone
transformations of the coordinates. The main disadvantage is that its in-
terpretation is not quite clear. A popular and simple choice is Spearman’s
rank correlation coefficient ρ. This is obtained quite simply by replac-
ing the observations by their rank and computing the correlation. Under
the null hypothesis of independence between the two variables, the exact
distribution of ρ can be calculated.

Unlike group comparisons where there is essentially one function per
named test, correlation tests are all grouped into cor.test. There is no
special spearman.test function. Instead, the test is considered one of
several possibilities for testing correlations and is therefore specified via
an option to cor.test:

> cor.test(blood.glucose,short.velocity,method="spearman")

Spearman’s rank correlation rho

data: blood.glucose and short.velocity
S = 1380.364, p-value = 0.1392
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.318002

Warning message:
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In cor.test.default(blood.glucose, short.velocity, method="spearman"):
Cannot compute exact p-values with ties

6.4.3 Kendall’s τ

The third correlation method that you can choose is Kendall’s τ, which is
based on counting the number of concordant and discordant pairs. A pair
of points is concordant if the difference in the x-coordinate is of the same
sign as the difference in the y-coordinate. For a perfect monotone rela-
tion, either all pairs will be concordant or all pairs will be discordant.
Under independence, there should be as many concordant pairs as there
are discordant ones.

Since there are many pairs of points to check, this is quite a computation-
ally intensive procedure compared with the two others. In small data sets
such as the present one, it does not matter at all, though, and the procedure
is generally usable up to at least 5000 observations.

The τ coefficient has the advantage of a more direct interpretation over
Spearman’s ρ, but apart from that there is little reason to prefer one over
the other.

> cor.test(blood.glucose,short.velocity,method="kendall")

Kendall’s rank correlation tau

data: blood.glucose and short.velocity
z = 1.5604, p-value = 0.1187
alternative hypothesis: true tau is not equal to 0
sample estimates:

tau
0.2350616

Warning message:
In cor.test.default(blood.glucose, short.velocity, method="kendall"):
Cannot compute exact p-value with ties

Notice that neither of the two nonparametric correlations is significant
at the 5% level, which the Pearson correlation is, albeit only borderline
significant.

6.5 Exercises

6.1 With the rmr data set, plot metabolic rate versus body weight. Fit
a linear regression model to the relation. According to the fitted model,
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what is the predicted metabolic rate for a body weight of 70 kg? Give a
95% confidence interval for the slope of the line.

6.2 In the juul data set, fit a linear regression model for the square root
of the IGF-I concentration versus age to the group of subjects over 25 years
old.

6.3 In the malaria data set, analyze the log-transformed antibody level
versus age. Make a plot of the relation. Do you notice anything peculiar?

6.4 One can generate simulated data from the two-dimensional normal
distribution with a correlation of ρ by the following technique: (a) Gen-
erate X as a normal variate with mean 0 and standard deviation 1; (b)
generate Y with mean ρX and standard deviation

√
1− ρ2. Use this to

create scatterplots of simulated data with a given correlation. Compute
the Spearman and Kendall statistics for some of these data sets.


