
219CHAPTER 6 CORRELAT ION

6.5.4. Pearson’s correlation coefficient 1

6.5.4.1. Assumptions of Pearson’s r 1

Pearson’s (Figure 6.5) correlation coefficient was described in full at the beginning of this
chapter. Pearson’s correlation requires only that data are interval (see section 1.5.1.2) for it
to be an accurate measure of the linear relationship between two variables. However, if you
want to establish whether the correlation coefficient is significant, then more assumptions
are required: for the test statistic to be valid the sampling distribution has to be normally
distributed and as we saw in Chapter 5 we assume that it is if our sample data are normally
distributed (or if we have a large sample). Although typically, to assume that the sampling
distribution is normal, we would want both variables to be normally distributed, there is
one exception to this rule: one of the variables can be a categorical variable provided there
are only two categories (in fact, if you look at section 6.5.7 you’ll see that this is the same
as doing a t-test, but I’m jumping the gun a bit). In any case, if your data are non-normal
(see Chapter 5) or are not measured at the interval level then you should use a different
kind of correlation coefficient or use bootstrapping.

6.5.4.2. Computing Pearson’s r using R 1

That’s a confusing title. We have already gone through the nuts and bolts of using R
Commander and the command line to calculate Pearson’s r. We’re going to use the exam
anxiety data to get some hands-on practice.

SELF-TEST

ü Load the Exam Anxiety.dat file into a dataframe
called examData.

FIGURE 6.5
Karl Pearson

06-Field_R-4368-Ch-06.indd 219 28/02/2012 6:03:13 PM

220 D ISCOVER ING STAT IST ICS US ING R

Let’s look at a sample of this dataframe:

 Code Revise Exam Anxiety Gender
1 1 4 40 86.298 Male
2 2 11 65 88.716 Female
3 3 27 80 70.178 Male
4 4 53 80 61.312 Male
5 5 4 40 89.522 Male
6 6 22 70 60.506 Female
7 7 16 20 81.462 Female
8 8 21 55 75.820 Female
9 9 25 50 69.372 Female
10 10 18 40 82.268 Female

The first issue we have is that some of the variables are not numeric (Gender) and others
are not meaningful numerically (code). We have two choices here. The first is to make a
new dataframe by selecting only the variables of interest) – we discovered how to do this
in section 3.9.1. The second is to specify this subset within the cor() command itself. If we
choose the first method then we should execute:

examData2 <- examData[, c("Exam", "Anxiety", "Revise")]
cor(examData2)

The first line creates a dataframe (examData2) that contains all of the cases, but only the
variables Exam, Anxiety and Revise. The second command creates a table of Pearson cor-
relations between these three variables (note that Pearson is the default so we don’t need to
specify it and because there are no missing cases we do not need the use command).

Alternatively, we could specify the subset of variables in the examData dataframe as part
of the cor() function:

cor(examData[, c("Exam", "Anxiety", "Revise")])

The end result is the same, so it’s purely down to preference. With the first method it is a
little easier to see what’s going on, but as you gain confidence and experience you might
find that you prefer to save time and use the second method.

 Exam Anxiety Revise
Exam 1.0000000 -0.4409934 0.3967207
Anxiety -0.4409934 1.0000000 -0.7092493
Revise 0.3967207 -0.7092493 1.0000000

Output 6.1: Output for a Pearson’s correlation

Output 6.1 provides a matrix of the correlation coefficients for the three variables.
Each variable is perfectly correlated with itself (obviously) and so r = 1 along the diago-
nal of the table. Exam performance is negatively related to exam anxiety with a Pearson
correlation coefficient of r = −.441. This is a reasonably big effect. Exam performance
is positively related to the amount of time spent revising, with a coefficient of r = .397,
which is also a reasonably big effect. Finally, exam anxiety appears to be negatively related
to the time spent revising, r = −.709, which is a substantial effect size. In psychologi-
cal terms, this all means that as anxiety about an exam increases, the percentage mark
obtained in that exam decreases. Conversely, as the amount of time revising increases, the
percentage obtained in the exam increases. Finally, as revision time increases, the student’s
anxiety about the exam decreases. So there is a complex interrelationship between the
three variables.

Correlation coefficients are effect sizes, so we can interpret these values without really
needing to worry about p-values (and as I have tried to drum into you, because p-values
are related to sample size, there is a lot to be said for not obsessing about them). However,
if you are the type of person who obsesses about p-values, then you can use the rcorr()

06-Field_R-4368-Ch-06.indd 220 28/02/2012 6:03:14 PM

221CHAPTER 6 CORRELAT ION

function instead and p yourself with excitement at the output it produces. First, make sure
you have loaded the Hmisc package by executing:

library(Hmisc)

Next, we need to convert our dataframe into a matrix using the as.matrix() command.
We can include only numeric variables so, just as we did above, we need to select only the
numeric variables within the examData dataframe. To do this, execute:

examMatrix<-as.matrix(examData[, c("Exam", "Anxiety", "Revise")])

Which creates a matrix called examMatrix that contains only the variables Exam, Anxiety,
and Revise from the examData dataframe. To get the correlation matrix we simply input
this matrix into the rcorr() function:4

rcorr(examMatrix)

As before, I think that the method above makes it clear what we’re doing, but more expe-
rienced users could combine the previous two commands into a single one:

rcorr(as.matrix(examData[, c("Exam", "Anxiety", "Revise")]))

Output 6.2 shows the same correlation matrix as Output 6.1, except rounded to 2 decimal
places. In addition, we are given the sample size on which these correlations are based, and
also a matrix of p-values that corresponds to the matrix of correlation coefficients above.
Exam performance is negatively related to exam anxiety with a Pearson correlation coefficient
of r = −.44 and the significance value is less than .001 (it is approximately zero). This signifi-
cance value tells us that the probability of getting a correlation coefficient this big in a sample
of 103 people if the null hypothesis were true (there was no relationship between these vari-
ables) is very low (close to zero in fact). Hence, we can gain confidence that there is a genuine
relationship between exam performance and anxiety. Our criterion for significance is usually
.05 (see section 2.6.1) so we can say that all of the correlation coefficients are significant.

 Exam Anxiety Revise
Exam 1.00 -0.44 0.40
Anxiety -0.44 1.00 -0.71
Revise 0.40 -0.71 1.00

n= 103

P
 Exam Anxiety Revise
Exam 0 0
Anxiety 0 0
Revise 0 0

Output 6.2

It can also be very useful to look at confidence intervals for correlation coefficients. Sadly,
we have to do this one at a time (we can’t do it for a whole dataframe or matrix). Let’s look
at the correlation between exam performance (Exam) and exam anxiety (Anxiety). We can
compute the confidence interval using cor.test() by executing:

cor.test(examData$Anxiety, examData$Exam)

4 The ggm package also has a function called rcorr(), so if you have this package installed, R might use that func-
tion instead, which will produce something very unpleasant on your screen. If so, you need to put Hmisc:: in front
of the commands to make sure R uses rcorr() from the Hmisc package (R’s Souls’ Tip 3.4):

Hmisc::rcorr(examMatrix)
Hmisc::rcorr(as.matrix(examData[, c("Exam", "Anxiety", "Revise")]))

06-Field_R-4368-Ch-06.indd 221 28/02/2012 6:03:14 PM

222 D ISCOVER ING STAT IST ICS US ING R

Note that we have specified only the variables because by default this function produces
Pearson’s r and a 95% confidence interval. Output 6.3 shows the resulting output; it reiter-
ates that the Pearson correlation between exam performance and anxiety was –.441, but
tells us that this was highly significantly different from zero, t(101) = –4.94, p < .001.
Most important, the 95% confidence ranged from –.585 to – .271, which does not cross
zero. This tells us that in all likelihood, the population or actual value of the correlation
is negative, so we can be pretty content that exam anxiety and exam performance are, in
reality, negatively related.

 Pearson’s product-moment correlation

data: examData$Anxiety and examData$Exam
t = -4.938, df = 101, p-value = 3.128e-06
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.5846244 -0.2705591
sample estimates:
 cor
-0.4409934

Output 6.3

SELF-TEST

ü Compute the confidence intervals for the
relationships between the time spent revising
(Revise) and both exam performance (Exam) and
exam anxiety (Anxiety).

6.5.4.3. Using R2 for interpretation 1

Although we cannot make direct conclusions about causality from a correlation, we can
take the correlation coefficient a step further by squaring it. The correlation coefficient
squared (known as the coefficient of determination, R2) is a measure of the amount of vari-
ability in one variable that is shared by the other. For example, we may look at the relation-
ship between exam anxiety and exam performance. Exam performances vary from person
to person because of any number of factors (different ability, different levels of preparation
and so on). If we add up all of this variability (rather like when we calculated the sum of
squares in section 2.4.1) then we would have an estimate of how much variability exists
in exam performances. We can then use R2 to tell us how much of this variability is shared
by exam anxiety. These two variables had a correlation of −0.4410 and so the value of R2
will be (−0.4410)2 = 0.194. This value tells us how much of the variability in exam per-
formance is shared by exam anxiety.

If we convert this value into a percentage (multiply by 100) we can say that exam anxi-
ety shares 19.4% of the variability in exam performance. So, although exam anxiety was
highly correlated with exam performance, it can account for only 19.4% of variation in
exam scores. To put this value into perspective, this leaves 80.6% of the variability still to
be accounted for by other variables.

You’ll often see people write things about R2 that imply causality: they might write ‘the
variance in y accounted for by x’, or ‘the variation in one variable explained by the other’.
However, although R2 is an extremely useful measure of the substantive importance of an
effect, it cannot be used to infer causal relationships. Exam anxiety might well share 19.4%
of the variation in exam scores, but it does not necessarily cause this variation.

06-Field_R-4368-Ch-06.indd 222 28/02/2012 6:03:14 PM

223CHAPTER 6 CORRELAT ION

We can get R to compute the coefficient of determination by remembering that “^2”
means ‘squared’ in R-speak. Therefore, for our examData2 dataframe (see earlier) if we
execute:

cor(examData2)^2

instead of:

cor(examData2)

then you will see be a matrix containing r2 instead of r (Output 6.4).

 Exam Anxiety Revise
Exam 1.0000000 0.1944752 0.1573873
Anxiety 0.1944752 1.0000000 0.5030345
Revise 0.1573873 0.5030345 1.0000000

Output 6.4

Note that for exam performance and anxiety the value is 0.194, which is what we calcu-
lated above. If you want these values expressed as a percentage then simply multiply by
100, so the command would become:

cor(examData2)^2 * 100

6.5.5. Spearman’s correlation coefficient 1

Spearman’s correlation coefficient (Spearman, 1910), rs, is a non-parametric statis-
tic and so can be used when the data have violated parametric assumptions such
as non-normally distributed data (see Chapter 5). You’ll sometimes hear the test
referred to as Spearman’s rho (pronounced ‘row’, as in ‘row your boat gently
down the stream’). Spearman’s test works by first ranking the data (see section
15.4.1), and then applying Pearson’s equation (equation (6.3)) to those ranks.

I was born in England, which has some bizarre traditions. One such oddity is
the World’s Biggest Liar competition held annually at the Santon Bridge Inn in
Wasdale (in the Lake District). The contest honours a local publican, ‘Auld Will
Ritson’, who in the nineteenth century was famous in the area for his far-fetched
stories (one such tale being that Wasdale turnips were big enough to be hollowed out and
used as garden sheds). Each year locals are encouraged to attempt to tell the biggest lie in the
world (lawyers and politicians are apparently banned from the competition). Over the years
there have been tales of mermaid farms, giant moles, and farting sheep blowing holes in the
ozone layer. (I am thinking of entering next year and reading out some sections of this book.)

Imagine I wanted to test a theory that more creative people will be able to create taller
tales. I gathered together 68 past contestants from this competition and asked them where
they were placed in the competition (first, second, third, etc.) and also gave them a creativity
questionnaire (maximum score 60). The position in the competition is an ordinal variable
(see section 1.5.1.2) because the places are categories but have a meaningful order (first place
is better than second place and so on). Therefore, Spearman’s correlation coefficient should
be used (Pearson’s r requires interval or ratio data). The data for this study are in the file
The Biggest Liar.dat. The data are in two columns: one labelled Creativity and one labelled
Position (there’s actually a third variable in there but we will ignore it for the time being). For
the Position variable, each of the categories described above has been coded with a numerical
value. First place has been coded with the value 1, with positions being labelled 2, 3 and so on.

The procedure for doing a Spearman correlation is the same as for a Pearson correlation
except that we need to specify that we want a Spearman correlation instead of Pearson,

What if my data are
not parametric?

06-Field_R-4368-Ch-06.indd 223 28/02/2012 6:03:15 PM

224 D ISCOVER ING STAT IST ICS US ING R

which is done using method = “spearman” for cor() and cor.test(), and type = “spearman”
for rcorr(). Let’s load the data into a dataframe and then create a dataframe by executing:

liarData = read.delim("The Biggest Liar.dat", header = TRUE)

or if you haven’t set your working directory, execute this command and use the dialog box
to select the file:

liarData = read.delim(file.choose(), header = TRUE)

SELF-TEST

ü See whether you can use what you have learned so
far to compute a Spearman’s correlation between
Position and Creativity.

To obtain the correlation coefficient for a pair of variables we can execute:

cor(liarData$Position, liarData$Creativity, method = "spearman")

Note that we have simply specified the two variables of interest, and then set the method
to be a Spearman correlation. The output of this command will be:

[1] -0.3732184

If we want a significance value for this correlation we could either use rcorr() by executing
(remembering that we have to first convert the dataframe to a matrix):

liarMatrix<-as.matrix(liarData[, c("Position", "Creativity")])
rcorr(liarMatrix)

or simply use cor.test(), which has the advantage that we can set a directional hypothesis.
I predicted that more creative people would tell better lies. Doing well in the competition
(i.e., telling better lies) actually equates to a lower number for the variable Position (first
place = 1, second place = 2 etc.), so we’re predicting a negative relationship. High scores
on Creativity should equate to a lower value of Position (because a low value means you
did well!). Therefore, we predict that the correlation will be less than zero, and we can
reflect this prediction by using alternative = “less” in the command:

cor.test(liarData$Position, liarData$Creativity, alternative = "less",
method = "spearman")

FIGURE 6.6
Charles
Spearman,
ranking furiously

06-Field_R-4368-Ch-06.indd 224 28/02/2012 6:03:18 PM

225CHAPTER 6 CORRELAT ION

 Spearman’s rank correlation rho
data: liarData$Position and liarData$Creativity
S = 71948.4, p-value = 0.0008602
alternative hypothesis: true rho is less than 0
sample estimates:
 rho
-0.3732184

Output 6.5

Output 6.5 shows the output for a Spearman correlation on the variables Creativity and
Position. The output is very similar to that of the Pearson correlation (except that confidence
intervals are not produced – if you want one see the section on bootstrapping): the correla-
tion coefficient between the two variables is fairly large (−.373), and the significance value of
this coefficient is very small (p < .001). The significance value for this correlation coefficient
is less than .05; therefore, it can be concluded that there is a significant relationship between
creativity scores and how well someone did in the World’s Biggest Liar competition. Note
that the relationship is negative: as creativity increased, position decreased. Remember that a
low number means that you did well in the competition (a low number such as 1 means you
came first, and a high number like 4 means you came fourth). Therefore, our hypothesis is
supported: as creativity increased, so did success in the competition.

SELF-TEST

ü Did creativity cause success in the World’s Biggest
Liar competition?

6.5.6. Kendall’s tau (non-parametric) 1

Kendall’s tau, τ, is another non-parametric correlation and it should be used rather than
Spearman’s coefficient when you have a small data set with a large number of tied ranks.
This means that if you rank all of the scores and many scores have the same rank, then
Kendall’s tau should be used. Although Spearman’s statistic is the more popular of the
two coefficients, there is much to suggest that Kendall’s statistic is actually a better esti-
mate of the correlation in the population (see Howell, 1997: 293). As such, we can draw
more accurate generalizations from Kendall’s statistic than from Spearman’s. To carry out
Kendall’s correlation on the World’s Biggest Liar data simply follow the same steps as for
Pearson and Spearman correlations but use method = “kendall”:

cor(liarData$Position, liarData$Creativity, method = "kendall")

cor.test(liarData$Position, liarData$Creativity, alternative = "less",
method = "kendall")

The output is much the same as for Spearman’s correlation.

 Kendall’s rank correlation tau

data: liarData$Position and liarData$Creativity
z = -3.2252, p-value = 0.0006294
alternative hypothesis: true tau is less than 0
sample estimates:
 tau
-0.3002413

Output 6.6

06-Field_R-4368-Ch-06.indd 225 28/02/2012 6:03:18 PM

226 D ISCOVER ING STAT IST ICS US ING R

You’ll notice from Output 6.6 that the actual value of the correlation coefficient is closer
to zero than the Spearman correlation (it has increased from −.373 to −.300). Despite the
difference in the correlation coefficients we can still interpret this result as being a highly
significant relationship (because the significance value of .001 is less than .05). However,
Kendall’s value is a more accurate gauge of what the correlation in the population would
be. As with the Pearson correlation, we cannot assume that creativity caused success in the
World’s Best Liar competition.

SELF-TEST

ü Conduct a Pearson correlation analysis of the advert
data from the beginning of the chapter.

6.5.7. Bootstrapping correlations 3

Another way to deal with data that do not meet the assumptions of Pearson’s r is to use
bootstrapping. The boot() function takes the general form:

object<-boot(data, function, replications)

in which data specifies the dataframe to be used, function is a function that you write to
tell boot() what you want to bootstrap, and replications is a number specifying how many
bootstrap samples you want to take (I usually set this value to 2000). Executing this com-
mand creates an object that has various properties. We can view an estimate of bias, and
an empirically derived standard error by viewing object, and we can display confidence
intervals based on the bootstrap by executing boot.ci(object).

When using the boot() function with correlations (and anything else for that matter) the
tricky bit is writing the function (R’s Souls’ Tip 6.2). If we stick with our biggest liar data
and want to bootstrap Kendall tau, then our function will be:

bootTau<-function(liarData,i) cor(liarData$Position[i], liarData$Creativity[i],
use = "complete.obs", method = "kendall")

Executing this command creates an object called bootTau. The first bit of the function tells
R what input to expect in the function: in this case we need to feed a dataframe (liarData)
into the function and a variable that has been called i (which refers to a particular bootstrap
sample). The second part of the function specifies the cor() function, which is the thing we
want to bootstrap. Notice that cor() is specified in exactly the same way as when we did the
original Kendall correlation except that for each variable we have added [i], which again
just refers to a particular bootstrap sample. If you want to bootstrap a Pearson or Spearman
correlation you do it in exactly the same way except that you specify method = “pearson”
or method = “spearman” when you define the function.

To create the bootstrap object, we execute:

library(boot)
boot_kendall<-boot(liarData, bootTau, 2000)
boot_kendall

The first command loads the boot package (in case you haven’t already initiated it). The
second command creates an object (boot_kendall) based on bootstrapping the liarData
dataframe using the bootTau function that we previously defined and executed. The second

06-Field_R-4368-Ch-06.indd 226 28/02/2012 6:03:19 PM

227CHAPTER 6 CORRELAT ION

line displays a summary of the boot_kendall object. To get the 95% confidence interval for
the boot_kendall object we execute:5

boot.ci(boot_kendall)

Output 6.7 shows the contents of both boot_kendall and also the output of the boot.ci()
function. First, we get the original value of Kendall’s tau (−.300), which we computed in
the previous section. We also get an estimate of the bias in that value (which in this case
is very small) and the standard error (0.098) based on the bootstrap samples. The out-
put from boot.ci() gives us four different confidence intervals (the basic bootstrapped CI,
percentile and BCa). The good news is that none of these confidence intervals cross zero,
which gives us good reason to think that the population value of this relationship between
creativity and success at being a liar is in the same direction as the sample value. In other
words, our original conclusions stand.

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = liarData, statistic = bootTau, R = 2000)

Bootstrap Statistics :
 original bias std. error
t1* -0.3002413 0.001058191 0.097663

> boot.ci(boot_kendall)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = boot_kendall)

Intervals :
Level Normal Basic
95% (-0.4927, -0.1099) (-0.4956, -0.1126)

Level Percentile BCa
95% (-0.4879, -0.1049) (-0.4777, -0.0941)
Calculations and Intervals on Original Scale
Warning message:
In boot.ci(boot_kendall) :
 bootstrap variances needed for studentized intervals

Output 6.7

SELF-TEST

ü Conduct bootstrap analysis of the Pearson and
Spearman correlations for the examData2 dataframe.

5 If we want something other than a 95% confidence interval we can add conf = x, in which x is the value of the
confidence interval as a proportion. For example, we can get a 99% confidence interval by executing:

boot.ci(boot_kendall, conf = 0.99)

06-Field_R-4368-Ch-06.indd 227 28/02/2012 6:03:20 PM

