
15
ggplot2

Hadley Wickham’s ggplot21 has become one of the most popular R packages.
ggplot2 is a great tool for producing readable charts. But more importantly,
ggplot2 uses a language for describing how to plot data called the grammar of
graphics. In this chapter, I’ll explain how to use the grammar of graphics to produce
plots with ggplot2.

A Short Introduction
To explain ggplot2, we’ll start by looking at a very simple data set:2

> d <- data.frame(a=c(0:9), b=c(1:10), c=c(rep(c("Odd", "Even"), times=5)))
> d
 a b c
1 0 1 Odd
2 1 2 Even
3 2 3 Odd
4 3 4 Even
5 4 5 Odd
6 5 6 Even
7 6 7 Odd
8 7 8 Even
9 8 9 Odd
10 9 10 Even

Let’s think about what we want to show. We want to show how variable y varies
with variable x. (To start with, we’ll forget about showing which points belong in a
or b, and just plot points.) We’ll use the qplot (for “quick plot”) function to show
this relationship. Plotting points is the default for qplot, so we’ll call qplot with the
arguments x=a, y=b, and data=d:

1. There is also a ggplot package; it was superseded by ggplot2. We won’t cover ggplot in this
book.

2. This is almost the same as the data set I used to demonstrate lattice graphics, but I changed
the variable names slightly to make it clearer how variables were mapped in ggplot.

325

Study Material. Do not distribute.

> library(ggplot2)
> qplot(x=a, y=b, data=d)

The result is shown in Figure 15-1. Notice what we specified: a value to plot on an
x-axis, a value to plot on a y-axis, and a data set. We focused on describing the
relationship we wanted to show, not on the type of plot. That’s the key idea of
ggplot: you describe what you want to present, not how to present it.

Figure 15-1. Simplest qplot example

When you create a new plot with ggplot2, you are not actually plotting the data to
the screen. Instead, you are creating a new plot object. (This is very similar to how
the lattice package works.) When you type a plot command on the console, R will
create the object, and then the print method will be called on the object; the print
method actually draws the object on the screen. (It’s good to remember this because
calling ggplot2 functions within other functions will not plot the results unless you
call print within the function or return an object that can be printed later.) Suppose
that we assign the output of the first example to a variable like this:

> first.ggplot2.example <- qplot(x=a, y=b, data=d)

326 | Chapter 15: ggplot2

Study Material. Do not distribute.

The plot object is assigned to the variable first.ggplot2.example, but the result isn’t
printed. You can print the object with the statement:

> print(first.ggplot2.example)

or

> first.ggplot2.example

But you can also examine and manipulate the plot object. For example, ggplot2
objects have a summary method:

> summary(first.ggplot2.example)
data: a, b, c [10x3]
mapping: x = a, y = b
faceting: facet_null()

geom_point:
stat_identity:
position_identity: (width = NULL, height = NULL)

This describes the content of the object very concisely. As we noted above, this
describes the underlying data frame, the mapping of variables in the data frame to
entities that are plotted, and the object we are plotting: points. (For now, we’ll ignore
the other statements; I’ll explain what it means in “The Grammar of Graph-
ics” on page 328.) But notice how clearly we can describe the content of the plot
using ggplot2.

Let’s customize the output of this plot to better understand the data. Just like in the
lattice package, we can pick facets and see the results in different panels:

> qplot(x=a, y=b, data=d, facets=~c)3

The results are shown in Figure 15-2. Notice that we use a formula to specify the
facets; you can specify as many faceting variables as you need. Unlike lattice graph-
ics, you can easily change the direction of the facets:

> qplot(x=a, y=b, data=d, facets=c~.)

The second faceting example is shown in Figure 15-3. Alternately, you can change
the color of the points to show which group they belong to, rather than presenting
it in another panel. Here is how to produce the plot shown in Figure 15-4:

> qplot(x=a, y=b, data=d, color=c)

The qplot function can also plot one-dimensional data. As an example, let’s pick
1,000 pseudo-random, normally distributed values:

> set.seed(123456789)
> e <- data.frame(f=rnorm(1000))
> str(e)

3. Hadley Wickam, author of ggplot2, suggested rewriting this as:

> qplot(x=a, y=b, data=d) + facet_wrap(~ c)

He prefers to use the face_wrap function to add facets to a ggplot2 object.

A Short Introduction | 327

ggplot2
Study Material. Do not distribute.

'data.frame': 1000 obs. of 1 variable:
 $ x: num 0.505 0.396 1.416 -0.722 -0.618 ...

Now, let’s plot these with qplot:

> qplot(x=f, data=e)

The result is shown in Figure 15-5. Notice that qplot picks a histogram as the default
value. We could just as easily have plotted the density function:

> qplot(x=f, data=e, geom="density")

The density plot is shown in Figure 15-6.

To explain how these plots were generated, we’ll explore the grammar of graphics.

The Grammar of Graphics
Every time you draw a chart, you are actually doing many different things. You are:

• Defining the data that will be shown to the user

Figure 15-2. Faceting on the x-axis

328 | Chapter 15: ggplot2

Study Material. Do not distribute.

• Determining how to summarize or transform the data

• Determining the graphical objects that will be used to represent the data

• Determining how to divide the data, and how to show different partitions

• Determining how the chart looks

When you draw a chart with most conventional tools (such as spreadsheets and
presentation programs), you begin by picking a style of chart like a scatter plot, a
pie chart, or a bar chart for your data. You may then refine the chart slightly by
tweaking the size, color, and other visual parameters. These tools don’t reflect the
thought process in drawing a chart. If you have to summarize your data before plot-
ting (for example, when plotting a histogram), it can be awkward to do so. It is often
hard to tweak how the results are displayed. Worst of all, it can be difficult to pick
a different object to represent the data.

The grammar of graphics is designed to help separate each step of the charting pro-
cess. This can help you decide the best way to visualize data, and is especially helpful
for defining new types of plots. Each of these different aspects of the charting process

Figure 15-3. Faceting on the y-axis

The Grammar of Graphics | 329

ggplot2
Study Material. Do not distribute.

is given a name in ggplot2; the tool reflects the language. The ggplot2 package in-
cludes a variety of functions for altering each component of a plot. (The qplot func-
tion above simplifies this process by allowing you to use arguments to specify many
of these different components, and choose reasonable default values.)

Here is the name for each different component of a chart in the grammar of graphics:

Data
The data that is being visualized.

Mappings
Mappings between variables in the data and components of the chart.

Geometric Objects (geom)
The geometric objects that are used to display the data. For example, scatter
plots use geom_point, bar plots use geom_bar, and line plots use geom_abline.

Aesthetic Properties (aes)
The aesthetic properties determine how the plot looks. For example, typeface
sizes, label locations, and tick marks are all aesthetic properties.

Figure 15-4. Marking different sets of points with different colors

330 | Chapter 15: ggplot2

Study Material. Do not distribute.

Scales
Scales control how variables are mapped to aesthetics.

Coordinates
Coordinates describe how data is mapped to the plot. For example, you can use
simple Cartesian coordinates with coord_cartesian, polar coordinates with
coord_polar, or geographic projections with coord_map.

Statistical Transformations (stat)
Statistical transformations applied to the data to summarize the data. For ex-
ample, boxplots use stat_boxplot, lines use stat_abline, and histograms use
stat_bin.

Facets
Describes how the data is partitioned into subsets and how these different sub-
sets are plotted.

Positional adjustments
Provides fine-grained control of where data is plotted.

Figure 15-5. Single variable plotted with ggplot2 (as a histogram)

The Grammar of Graphics | 331

ggplot2
Study Material. Do not distribute.

You can use the summary method on a ggplot2 object to show each of these at-
tributes for a plot. As an example, let’s look at the density plot that we created
previously:

> thehistogram <- qplot(x=f, data=e, geom="density")
> summary(thehistogram)
data: x [1000x1]
mapping: x = f
faceting: facet_null()

geom_density:
stat_density:
position_identity: (width = NULL, height = NULL)

The output shows us exactly how this plot maps to the grammar of graphics:

Data
A data set containing the variable x (with 1,000 values).

Figure 15-6. Single variable plotted with ggplot2 (as a density plot)

332 | Chapter 15: ggplot2

Study Material. Do not distribute.

Mappings
The “x” value in the plot is assigned to the variable x in the data frame.

Geometric Objects (geom)
The geometric object is geom_density, a smooth density plot.

Aesthetic Properties (aes)
We have not overridden any aesthetic properties.

Scales
We have not customized the scale.

Coordinates
We have not overridden the default coordinates.

Statistical Transformations (stat)
For the density plot, we have used a density function to summarize the data.

Facets
We did not facet the data.

Positional adjustments
We did not make any positional adjustments; we used the identity function.

This can be useful when trying to figure out what a chart is showing and tuning the
output to look the way you want. We’ll use this technique throughout this chapter.

A More Complex Example: Medicare Data
To help show how to use ggplot2 to solve problems, and to better understand the
grammar of graphics, I’ll use a real, complicated data example: U.S. Medicare cost
and outcome data. See “Medicare Data” on page 333 for more information.

Medicare Data
To demonstrate ggplot2, I tried to find a rich and complicated real-world data set.
You can download the data from the website Medicare; it’s straightforward to
load the raw data into R.

I have included several R data frames based on this data in the nutshell package:

outcome.of.care.measures.national
A small data set that shows the national average mortality and readmission
rates for heart attacks, heart failure, and pneumonia.

medicare.payments
A data set that shows the average payment to each hospital for 70 common
conditions. Average payments are available only for hospitals that treated a
sufficient number of patients with each condition; otherwise, HIPAA makes
it illegal to disclose this information.

medicare.payments.by.state
Similar to medicare.payments, but summarized at a state level.

For more details on these data sets, use the online help.

A More Complex Example: Medicare Data | 333

ggplot2
Study Material. Do not distribute.

Let’s start with a simple example: average mortality and readmission rates for three
common medical conditions. We’d like to compare national treatment effectiveness
statistics for three common diseases. This is a fairly simple data set: there is one
dimension (the readmission rate), three conditions (Heart Attack, Heart Failure, and
Pneumonia), and one factor variable (Measure) with two values (Mortality and Re-
admission). Here is the data:

> library(nutshell)
> data(outcome.of.care.measures.national)
> outcome.of.care.measures.national
 Condition Measure Rate
1 Heart Attack Mortality 15.9
2 Heart Failure Mortality 11.3
3 Pneumonia Mortality 11.9
4 Heart Attack Readmission 19.8
5 Heart Failure Readmission 24.8
6 Pneumonia Readmission 18.4

We’d like to show how the rates differ for each condition. We need to set
x=Condition, and we will set weight=Rate. (Notice that we didn’t set the y variable;
x is not a numerical value, so we need to treat x as a univariate plot. By default,
ggplot2 tabulates data for you, so ggplot2 would attempt to plot the value 2 for each
value of x.)

A bar chart is a good choice for this data, so we will tell qplot to use geom="bar" as
the geometric object. We’ll also tell ggplot2 to set the height of the bars to Rate by
specifying weight=Rate. Then, we will tell ggplot2 that we want to show each meas-
ure in a separate panel by setting facets=Measure~. And finally, we will set the fill
color of each bar to a different color, depending on the Measure variable by setting
fill=Measure. Putting it all together, we have the following plot object:

> bar.chart.example <- qplot(x=Condition,
+ data=outcome.of.care.measures.national,
+ geom="bar", weight=Rate, facets=Measure~., fill=Measure)
> summary(bar.chart.example)
data: Condition, Measure, Rate [6x3]
mapping: fill = Measure, weight = Rate, x = Condition
faceting: facet_grid(Measure ~)

geom_bar:
stat_bin:
position_stack: (width = NULL, height = NULL)

This corresponding plot is shown in Figure 15-7.

As an alternative, we might want to plot the bars adjacent to one another, grouped
together by condition, in a single panel. We can do this by dropping the facet variable
and setting position="dodge" to plot the different geometric objects adjacent to one
another. The result of this statement is shown in Figure 15-8.

> qplot(x=Condition, data=outcome.of.care.measures.national,
+ geom="bar", weight=Rate, fill=Measure, position="dodge")

334 | Chapter 15: ggplot2

Study Material. Do not distribute.

Both charts are effective ways of showing the data, but they can be used to make
different statements. The faceted version encourages the reader to compare the rates
for different conditions within each group of measures, while the dodged version
encourages the reader to compare rates for different measures within each group of
conditions.

So far, we’ve looked at a lot of really simple examples. But I think the place where
ggplot2 really shines is when you start looking at larger, more complicated data.
Let’s take a look at the Medicare payment information as an example. This data set
contains 140,722 records. Each record shows the average Medicare payment to, and
number of cases seen by, almost 3,300 different hospitals for 70 different conditions.

There are many different things to look at in this data, but I started with a simple
question: how does the number of patients treated by a hospital relate to the fees
charged to Medicare? Would large hospitals charge less money because patients
experienced fewer complications, or would large hospitals charge more because they
were better at gaming the system?

Figure 15-7. Outcome of care measures using facets

A More Complex Example: Medicare Data | 335

ggplot2
Study Material. Do not distribute.

Clearly, the average cost should vary greatly depending on the diagnosis; it would
make no sense to compare the cost of treating a heart attack in one hospital with the
cost of treating pneumonia in another hospital. We need to compare costs within
each diagnosis group, so we will group the data by diagnosis. To make the chart
legible, I cut down the results from 70 conditions to the three diagnosis groups for
heart failure: heart failure without complications or comorbidities, heart failure with
complications or comorbidities, and heart failure with major complications or co-
morbidities:

> heart.failure <- c("Heart failure and shock w/o CC/MCC",
+ "Heart failure and shock w MCC",
+ "Heart failure and shock w CC")

Let’s start simply. We’ll plot the average payment as a function of the number of
cases, setting the color of each point by the diagnosis. I’ll include only rows where
the diagnosis is a type of heart failure. We’ll set data=subset(medicare.payments,
Diagnosis.Related.Group %in% heart.failure) to define the data set. We want to
show the average payment as a function of the number of cases treated at the

Figure 15-8. Outcome of care measures using dodging

336 | Chapter 15: ggplot2

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Study Material. Do not distribute.

hospital, so we’ll set x=Number.Of.Cases and y=Medicare.Average.Payment. Finally,
we’d like to be able to tell apart the different diagnoses. We’ll set each diagnosis to
a different color by setting color=Diagnosis.Related.Group. We’d like to just plot
each point on the axes, so we’ll take advantage of the default geometric object
(geom_point):

> payment.plot <- qplot(x=Number.Of.Cases, y=Medicare.Average.Payment,
+ data=subset(medicare.payments, Diagnosis.Related.Group %in%
+ heart.failure), color=Diagnosis.Related.Group)

> summary(payment.plot)
data: Provider.Number, Hospital.Name, Address.1, Address.2,
 Address.3, City, State, ZIP.Code, County.Name, Phone.Number,
 Diagnosis.Related.Group, Medicare.Average.Payment,
 Number.Of.Cases, Footnote [9722x14]
mapping: colour = Diagnosis.Related.Group, x = Number.Of.Cases,
 y = Medicare.Average.Payment
faceting: facet_null()

geom_point:
stat_identity:
position_identity: (width = NULL, height = NULL)

The plot is shown in Figure 15-9. As you can see, this plot isn’t very easy to read.
(Note that the number of patients is not shown when the number is small. This is
due to HIPPA regulations.) All the points clump together on the left, and it is difficult
to tell where most points lie.

Let’s make a few tweaks to improve the legibility of this plot. First, let’s transform
the x variable to a log scale, to remove the clumping in low numbers by setting
x=log(Number.Of.Cases). Next, we’ll make the points semi-opaque. This way, we
can see what regions have more points and which have fewer points. We do this by
specifying alpha=I(1/10). To help see the trend, we’ll add a smoothing line in ad-
dition to the points (geom=c("point","smooth")). And finally, we’ll change the y lim-
its to hide outliers. Here’s the statement to create the plot from scratch:

> heart.failure.cost.plot <-
+ qplot(x=log(Number.Of.Cases), y=Medicare.Average.Payment,
+ data=subset(medicare.payments,
+ Diagnosis.Related.Group %in% heart.failure),
+ color=Diagnosis.Related.Group, ylim=c(0, 20000),
+ alpha=I(1/10), geom=c("point", "smooth"))

But there is a more elegant way to do this. We will start by recreating the plot with
the alpha value and different y limits:

> payment.plot.alpha <- qplot(x=Number.Of.Cases,
+ y=Medicare.Average.Payment,data=subset(medicare.payments,
+ Diagnosis.Related.Group %in% heart.failure),
+ color=Diagnosis.Related.Group,alpha=I(1/10), ylim=c(0,20000))

A More Complex Example: Medicare Data | 337

ggplot2
Study Material. Do not distribute.

Next, we'll add the smoothing lines and change the scale:

> payment.plot.scaled <- payment.plot.alpha
+ scale_x_log10() + geom_smooth()

> heart.failure.cost.plot.scaled <- payment.plot + scale_x_log10()
+ geom_point() + geom_smooth() + aes(alpha=I(1/10))

This form gives more informative values on the x axis (and it saves some typing).

Here is the description of the plot:

> summary(payment.plot.scaled)
data: Provider.Number, Hospital.Name, Address.1, Address.2, Address.3,
 City, State, ZIP.Code, County.Name, Phone.Number,
 Diagnosis.Related.Group, Medicare.Average.Payment,
 Number.Of.Cases, Footnote [9722x14]
mapping: colour = Diagnosis.Related.Group, x = Number.Of.Cases,
 y = Medicare.Average.Payment
scales: y, ymin, ymax, yend, yintercept, ymin_final, ymax_final,
 x, xmin, xmax, xend, xintercept
faceting: facet_null()

Figure 15-9. Number of heart failure cases and average payment (first attempt)

338 | Chapter 15: ggplot2

Study Material. Do not distribute.

geom_point: alpha = 0.1
stat_identity: alpha = 0.1
position_identity: (width = NULL, height = NULL)

geom_smooth:
stat_smooth:
position_identity: (width = NULL, height = NULL)

There are a few features that we haven’t seen before. First, notice that there are two
sets of geom/stat/position parameters, corresponding to the points and lines. Ad-
ditionally, notice that the alpha property is passed along to each geometric object
function and statistic function, even though it does not have any meaning for all of
these.

The revised plot is shown in Figure 15-10.

Figure 15-10. Number of heart failure cases and average payment

A More Complex Example: Medicare Data | 339

ggplot2
Study Material. Do not distribute.

Why did costs increase as the number of patients seen increased? I wondered if there
was a geographic trend; costs of living are very different in different states, and per-
haps Medicare charges adjust for these differences. To help understand these dif-
ferences, I wanted to see how costs varied by region, specifically by state.

To begin, I picked a data set that summarized Medicare payments by state:

> data(medicare.payments.by.state)
> medicare.payments.by.state.hf <- subset(medicare.payments.by.state,
+ Diagnosis.Related.Group %in% heart.failure)

By default, R will order the output by the values of the factor values. The default
order is driven by the order that values appear in the source data; in the case of the
Medicare data, the values were ordered by state name. It is easy to find results for a
given state when the results are alphabetically sorted, but hard to spot trends. (You
can try plotting this data without reordering to see what I mean.)

To help us learn from the data, I wanted to sort the results from lowest to highest
payment. I didn’t want to sort the data; I just needed to reorder the levels in the State
factor. To do this, I used the reorder function to calculate a new factor, with levels
arranged by average payment:

> medicare.payments.by.state.hf$State <- with(medicare.payments.by.state.hf,
+ reorder(State, Medicare.Average.Payment.Maximum, mean))

Finally, I drew the dot plot shown in Figure 15-11.

> payment.dotplot <- qplot(x=Medicare.Average.Payment.Maximum, y=State,
+ data=medicare.payments.by.state.hf,
+ color=Diagnosis.Related.Group)
> summary(payment.dotplot)
data: State, Diagnosis.Related.Group,
 Medicare.Average.Payment.Minimum,
 Medicare.Average.Payment.Maximum, Number.Of.Cases, Footnote
 [168x6]
mapping: colour = Diagnosis.Related.Group,
 x = Medicare.Average.Payment.Maximum, y = State
faceting: facet_null()

geom_point:
stat_identity:
position_identity: (width = NULL, height = NULL)

At the top of the list are the Northern Mariana Islands, Alaska, and the Vir-
gin Islands—all isolated, expensive locations, and locations unlikely to have very
large hospitals. But next on the list are New York, Maryland, and California—all
states with high costs of living and large hospitals. Remember that Washington,
D.C., is right next to Maryland, and there are large VA hospitals in Maryland. Ac-
tually, there are also large VA hospitals in Hawaii as well, which is next on the list.
This was starting to make sense; it’s not that costs are increasing with volume, it’s
that both costs and volume are correlated with geography! Also, note that the
cheapest states are actually territories: Puerto Rico and American Samoa.

340 | Chapter 15: ggplot2

Study Material. Do not distribute.

Finally, I wanted to see if states that were adjacent to each other had similar costs.
To help visualize this, I wanted to show the average costs on a map, or as a choropleth
plot:

> library(maps)
> states <- map_data("state")
> library(datasets)
> state.name.map <- data.frame(abb=state.abb, region=tolower(state.name),
+ stringsAsFactors=FALSE)
> states <- merge(states, state.name.map, by="region")
> # merge the geography data with the numerical data
> toplot <- merge(states, medicare.payments.by.state,
+ by.x="abb", by.y="State")
> # make sure it's sorted correctly
> toplot <- toplot[order(toplot$order),]
> # draw the plot
> qplot(long, lat,
+ data=subset(toplot,
+ Diagnosis.Related.Group=="Heart failure and shock w/o CC/MCC"),

Figure 15-11. Dotplot showing payments by state

A More Complex Example: Medicare Data | 341

ggplot2
Study Material. Do not distribute.

+ group=group,
+ fill=Medicare.Average.Payment.Maximum, geom="polygon") +
+ opts(legend.position="bottom", legend.direction="vertical")

The resulting plot is shown in Figure 15-12.

Figure 15-12. Choropleth plot, showing costs by region

Quick Plot
As we saw above, the simplest way to use ggplot2 is with the qplot command:

qplot(x, y, ..., data, facets, margins, geom, stat,
 position, xlim, ylim, log, main, xlab, ylab

qplot is designed to pick default values that produce a readable plot (and uses helper
functions to help make those choices based on the inputs data), but you can control
how qplot works. Here is a description of the arguments to qplot:

342 | Chapter 15: ggplot2

Study Material. Do not distribute.

Argument Description Default

x X values.

y Y values. NULL

data (Optional) Data frame in which x and y are defined.

facets Describes facets to use as a formula. Uses facet_wrap for
one-sided formula or facet_grid for a two sided formula.

NULL

margins Enables displaying margins. FALSE

geom Specifies the geom to use as a vector of character values. "auto"
If x and y are specified, defaults to
"point"

If only x is specified, defaults to
"histogram"

stat Specifies statistics to use as a vector of character values. list(NULL)

position Specifies position adjustments. list(NULL)

xlim Limits for x-axis, as a vector of two values. c(NA,NA)

ylim Limits for y-axis, as a vector of two values. c(NA,NA)

log Specifies whether to display x-axis, y-axis, or both in log scale.
Use "" for neither, "x" for just the x-axis, "y" for just the y-
axis, and "xy" for both.

""

main The title for the plot as a character values. NULL

xlab The label for the x-axis. deparse(substitute(x))

ylab The label for the y-axis. deparse(substitute(y))

asp The y/x aspect ratio. NA

... Other aesthetic attributes passed to lower layers.

Creating Graphics with ggplot2
Above, we used the qplot function to build ggplot2 objects in one function call.
Sometimes, you may need more flexibility than qplot provides. Alternately, you may
want to write a more verbose description of your plot to make your code easier to
read. To do this, you create your plot in several parts:

1. You call the ggplot function to create a new ggplot object, define the input data,
and define aesthetic mappings

2. You add layers to the ggplot object

Note that you add layers (and options) to a ggplot object by using the + operator.

As an example, we could create a plot identical to the one we started with using
these statements:

> plt <- ggplot(data=d, mapping=aes(x=a, y=b)) + geom_point()
> summary(plt)
data: a, b, c [10x3]
mapping: x = a, y = b

Creating Graphics with ggplot2 | 343

ggplot2
Study Material. Do not distribute.

faceting: facet_null()

geom_point: na.rm = FALSE
stat_identity:
position_identity: (width = NULL, height = NULL)

To create ggplot objects without qplot, you begin by using the ggplot function.

ggplot(data, mapping = aes(), ..., environment = globalenv())

Here is a description of the arguments to ggplot2:

Argument Description Default

data The default data frame for the plot

mapping Default list of aesthetic mappings for the plot aes()

environment Environment in which the aesthetics should occur globalenv()

...

The ggplot function returns a new ggplot object with no layers. You can’t actually
print a chart from this object because no layers are defined:

> ggplot(data=d, mapping=aes(x=a, y=b))
Error: No layers in plot

Typically, you specify aesthetic mappings with the aes function:

aes(x, y, ...)

The x argument specifies the x value, the y argument specifies the y value, and other
arguments specify aesthetics to map as name/value pairs. See the documentation for
ggplot2 for alternate ways to map aesthetics including aes_string and aes_auto. As
an example, to finish specifying a plot, you need to add layers. You can create a new
layer with the layer function:

layer(...)

You specify the geometric objects using short names like "point". Using our earlier
example, we could define our plot object with:

> plt <- ggplot(data=d, mapping=aes(x=a, y=b)) + layer("point")

The layer function allows you to specify geometric objects as name value pairs. You
do not need to specify the full function name, but simply need to part after geom_.

For reference, here is a description of the available geometric functions:

Geometric Function Description

geom_abline A line, specified by a slope and intercept

geom_area Area plot (a continuous analog to a bar plot)

geom_bar Bar plot

geom_bin2d Heatmap of two-dimensional bins

geom_blank Blank geometric object; doesn’t draw anything

344 | Chapter 15: ggplot2

Study Material. Do not distribute.

Geometric Function Description

geom_boxplot Box plot

geom_contour Contour plot

geom_crossbar Crossbar plot (like a box plot, but without the whiskers and extreme values)

geom_density Density plot

geom_density2d Two-dimensional density plot

geom_errorbar Error bars (typically added to other plots like bar plots, point plots, and line plots)

geom_errorbarh Horizontal error bars

geom_freqpoly Frequency polygon (similar to a histogram)

geom_hex Hexagonal objects (typically used with hexagonal binning)

geom_histogram Histogram

geom_hline A horizontal line

geom_jitter Points, automatically jittered

geom_line A line

geom_linerange An interval represented by a vertical line

geom_path A geometric path, connecting a set of points in order

geom_point Points

geom_pointrange A vertical line with a point in the middle (related to crossbars, boxplots, and line-ranges)

geom_polygon A polygon

geom_quantile A set of quantile lines from a quantile regression

geom_rect Two-dimensional rectangles

geom_ribbon A ribbon (a y range with continuous x values, like Tufte’s famous Napoleon’s march plot)

geom_rug A rug

geom_segment Line segments

geom_smooth A smoothed condition mean

geom_step A stepped plot connecting points

geom_text Text

geom_tile Tiles

geom_vline Vertical line

ggplot2 includes some convenience functions for applying a statistical transforma-
tion and adding a layer to a plot. Some of these functions are listed below.

Statistic Function Description

stat_abline Adds a line with a slope and intercept.

stat_bin Splits data into bins then plots as a histogram.

stat_bin2d Shows density across two dimensions using rectangles.

stat_binhex Shows density across two dimensions using hexagons.

Creating Graphics with ggplot2 | 345

ggplot2

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Study Material. Do not distribute.

Statistic Function Description

stat_boxplot Creates a box-and-whiskers plot.

stat_contour Shows contours of three-dimensional data.

stat_density Plots density.

stat_density2d Plots density in two dimensions.

stat_function Superimposes a function.

stat_hline Adds a horizontal line.

stat_identity Plots data without a statistical transformation.

stat_qq Calculations for a quantile-quantile plot.

stat_quantile Continuous quantiles.

stat_smooth Adds a smoother.

stat_spoke Plots directional data at points (specifying location with x and y, and angle separately).

stat_sum Plots sums of unique values (typically on a scatter plot).

stat_summary Plots summarized data.

stat_unique Plots only unique values (removes duplicates).

stat_vline Plots a vertical line.

You can manually specify different scales with ggplot2; mapping data to different
scales lets you control how ggplot2 shows different densities, quantities, or other
values. Scales can specify ranges of colors, objects, or labels. The following table
shows some of these scale functions :

Scale function Description

scale_alpha Alpha channel values (grayscale).

scale_brewer Colors derived from scales shown on colorbrewer.org.

scale_continuous Continuous scales.

scale_date Dates.

scale_datetime Dates and times.

scale_discrete Discrete values.

scale_gradient Smooth gradients between two colors.

scale_gradient2 Smooth gradients among three colors.

scale_gradientn Smooth gradients among n colors.

scale_grey Grayscale colors.

scale_hue Evenly spaced hues.

scale_identity Uses values without scaling.

scale_linetype Shows differences as line patterns.

scale_manual Manually created discrete scales.

scale_shape Different shapes (“glyphs”) for different values.

scale_size Shows different values as different size objects.

346 | Chapter 15: ggplot2

Study Material. Do not distribute.

With ggplot2, you can plot data using several different coordinate systems:

Coordinate function Description

coord_cartesian Cartesian coordinates

coord_equal Equal scale coordinates

coord_flip Flipped Cartesian coordinates

coord_map Map projections

coord_polar Polar projections

coord_trans Transformed Cartesian coordinates

There are two options for faceting data bundled with the ggplot2 package:

Faceting function Description

facet_grid Lay out panels in a grid

facet_wrap Wraps a one-dimensional list of facets into two dimensions

When you are plotting multiple geometric objects (such as multiple bars), you can
specify where different objects should be plotted.

Position function Description

position_dodge Positions objects by dodging overlaps to the side (lays them out in a non-overlapping way)

position_fill Stacks overlapping objects on top of one another

postition_identity Doesn’t adjust the position

position_jitter Jitters objects

postion_stack Stacks objects

Learning More
Hadley Wickham wrote an excellent book about ggplot2, [Wickham2009] You can
also find more information about ggplot2 at the official website, including a chapter
from Hadley’s book on qplot and a reference manual for ggplot. Also see R Graphics
Cookbook.

Learning More | 347

ggplot2
Study Material. Do not distribute.

