
5
An Overview of the R Language

Learning a computer language is a lot like learning a spoken language (only much
simpler). If you’re just visiting a foreign country, you might learn enough phrases to
get by without really understanding how the language is structured. Similarly, if
you’re just trying to do a couple of simple things with R (like drawing some charts),
you can probably learn enough from examples to get by.

However, if you want to learn a new spoken language really well, you have to learn
about syntax and grammar: verb conjugation, proper articles, sentence structure,
and so on. The same is true with R: if you want to learn how to program effectively
in R, you’ll have to learn more about the syntax and grammar.

This chapter gives an overview of the R language, designed to help you understand
R code and write your own. I’ll assume that you’ve spent a little time looking at R
syntax (maybe from reading Chapter 3). Here’s a quick overview of how R works.

Expressions
R code is composed of a series of expressions. Examples of expressions in R include
assignment statements, conditional statements, and arithmetic expressions. Here
are a few examples of expressions:

> x <- 1
> if (1 > 2) "yes" else "no"
[1] "no"
> 127 %% 10
[1] 7

Expressions are composed of objects and functions. You may separate expressions
with new lines or with semicolons. For example, here is a series of expressions sep-
arated by semicolons:

> "this expression will be printed"; 7 + 13; exp(0+1i*pi)
[1] "this expression will be printed"
[1] 20
[1] -1+0i

51

Study Material. Do not distribute.

Objects
All R code manipulates objects. The simplest way to think about an object is as a
“thing” that is represented by the computer. Examples of objects in R include nu-
meric vectors, character vectors, lists, and functions. Here are some examples of
objects:

> # a numerical vector (with five elements)
> c(1,2,3,4,5)
[1] 1 2 3 4 5

> # a character vector (with one element)
> "This is an object too"
[1] "This is an object too"

> # a list
> list(c(1,2,3,4,5),"This is an object too", " this whole thing is a list")
[[1]]
[1] 1 2 3 4 5

[[2]]
[1] "This is an object too"

[[3]]
[1] " this whole thing is a list"

> # a function
> function(x,y) {x + y}
function(x,y) {x + y}

Symbols
Formally, variable names in R are called symbols. When you assign an object to a
variable name, you are actually assigning the object to a symbol in the current en-
vironment. (Somewhat tautologically, an environment is defined as the set of sym-
bols that are defined in a certain context.) For example, the statement:

> x <- 1

assigns the symbol “x” to the object “1” in the current environment. For a more
complete discussion of symbols and environments, see Chapter 8.

Functions
A function is an object in R that takes some input objects (called the arguments of
the function) and returns an output object. All work in R is done by functions. Every
statement in R—setting variables, doing arithmetic, repeating code in a loop—can
be written as a function. For example, suppose that you had defined a variable
animals pointing to a character vector with four elements: “cow,” “chicken,” “pig,”
and “tuba.” Here is a statement that assigns this variable:

> animals <- c("cow", "chicken", "pig", "tuba")

52 | Chapter 5: An Overview of the R Language

Study Material. Do not distribute.

Suppose that you wanted to change the fourth element to the word “duck.” Nor-
mally, you would use a statement like this:

> animals[4] <- "duck"

This statement is parsed into a call to the [<- function. So you could actually use
this equivalent expression:1

> `[<-`(animals,4,"duck")

In practice, you would probably never write this statement as a function call; the
bracket notation is much more intuitive and much easier to read. However, it is
helpful to know that every operation in R is a function. Because you know that this
assignment is really a function call, it means that you can inspect the code of the
underlying function, search for help on this function, or create methods with the
same name for your own object classes.2

Here are a few more examples of R syntax and the corresponding function calls:

> # pretty assignment
> apples <- 3
> # functional form of assignment
> `<-`(apples,3)
> apples
[1] 3

> # another assignment statement, so that we can compare apples and oranges
> `<-`(oranges,4)
> oranges
[1] 4

> # pretty arithmetic expression
> apples + oranges
[1] 7
> # functional form of arithmetic expression
> `+`(apples,oranges)
[1] 7

> # pretty form of if-then statement
> if (apples > oranges) "apples are better" else "oranges are better"
[1] "oranges are better"
> # functional form of if-then statement
> `if`(apples > oranges,"apples are better","oranges are better")
[1] "oranges are better"
> x <- c("apple","orange","banana","pear")

> # pretty form of vector reference
> x[2]
[1] "orange"

1. This expression acts slightly differently, because the result is not printed on the R console.
However, the result is the same:

> animals
[1] "cow" "chicken" "pig" "duck"

2. See Chapter 10 for more information on object-oriented programming using R.

Functions | 53

Overview of the R
Language

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Study Material. Do not distribute.

> # functional form or vector reference
> `[`(x,2)
[1] "orange"

Objects Are Copied in Assignment Statements
In assignment statements, most objects are immutable. Immutable objects are a
good thing: for multithreaded programs, immutable objects help prevent errors. R
will copy the object, not just the reference to the object. For example:

> u <- list(1)
> v <- u
> u[[1]] <- "hat"
> u
[[1]]
[1] "hat"

> v
[[1]]
[1] 1

This applies to vectors, lists, and most other primitive objects in R.

This is also true in function calls. Consider the following function, which takes two
arguments: a vector x and an index i. The function sets the ith element of x to 4 and
does nothing else:

> f <- function(x,i) {x[i] = 4}

Suppose that we define a vector w and call f with x = w and i = 1:

> w <- c(10, 11, 12, 13)
> f(w,1)

The vector w is copied when it is passed to the function, so it is not modified by the
function:

> w
[1] 10 11 12 13

The value x is modified inside the context of the function. Technically, the R inter-
preter copies the object assigned to w and then assigns the symbol x to point at the
copy. We will talk about how you can actually create mutable objects, or pass ref-
erences to objects, when we talk about environments.

54 | Chapter 5: An Overview of the R Language

Study Material. Do not distribute.

Although R will behave as if every assignment makes a new copy
of an object, in many cases R will actually modify the object in
place. For example, consider the following code fragment:

> v <- 1:100
> v[50] <- 27

R does not actually copy the vector when the 50th element is
altered; instead, R modifies the vector in place. Semantically,
this is identical, but the performance is much better. See the R
Internals Guide for more information about how this works.

Everything in R Is an Object
In the last few sections, most examples of objects were objects that stored data:
vectors, lists, and other data structures. However, everything in R is an object: func-
tions, symbols, and even R expressions.

For example, function names in R are really symbol objects that point to function
objects. (That relationship is, in turn, stored in an environment object.) You can
assign a symbol to refer to a numeric object and then change the symbol to refer to
a function:

> x <- 1
> x
[1] 1
> x(2)
Error: could not find function "x"
> x <- function(i) i^2
> x
function(i) i^2
> x(2)
[1] 4

You can even use R code to construct new functions. If you really wanted to, you
could write a function that modifies its own definition.

Special Values
There are a few special values that are used in R.

NA
In R, the NA values are used to represent missing values. (NA stands for “not
available.”) You may encounter NA values in text loaded into R (to represent missing
values) or in data loaded from databases (to replace NULL values).

If you expand the size of a vector (or matrix or array) beyond the size where values
were defined, the new spaces will have the value NA:

> v <- c(1,2,3)
> v

Special Values | 55

Overview of the R
Language

Study Material. Do not distribute.

[1] 1 2 3
> length(v) <- 4
> v
[1] 1 2 3 NA

Inf and -Inf
If a computation results in a number that is too big, R will return Inf for a positive
number and -Inf for a negative number (meaning positive and negative infinity,
respectively):

> 2 ^ 1024
[1] Inf
> - 2 ^ 1024
[1] -Inf

This is also the value returned when you divide by 0:

> 1 / 0
[1] Inf

NaN
Sometimes, a computation will produce a result that makes little sense. In these
cases, R will often return NaN (meaning “not a number”):

> Inf - Inf
[1] NaN
> 0 / 0
[1] NaN

NULL
Additionally, there is a null object in R, represented by the symbol NULL. (The symbol
NULL always points to the same object.) NULL is often used as an argument in functions
to mean that no value was assigned to the argument. Additionally, some functions
may return NULL. Note that NULL is not the same as NA, Inf, -Inf, or NaN.

Coercion
When you call a function with an argument of the wrong type, R will try to coerce
values to a different type so that the function will work. There are two types of
coercion that occur automatically in R: coercion with formal objects and coercion
with built-in types.

With generic functions, R will look for a suitable method. If no exact match exists,
then R will search for a coercion method that converts the object to a type for which
a suitable method does exist. (The method for creating coercion functions is de-
scribed in “Creating Coercion Methods” on page 131.)

Additionally, R will automatically convert between built-in object types when ap-
propriate. R will convert from more specific types to more general types. For exam-
ple, suppose that you define a vector x as follows:

56 | Chapter 5: An Overview of the R Language

Study Material. Do not distribute.

> x <- c(1, 2, 3, 4, 5)
> x
[1] 1 2 3 4 5
> typeof(x)
[1] "double"
> class(x)
[1] "numeric"

Let’s change the second element of the vector to the word “hat.” R will change the
object class to character and change all the elements in the vector to char:

> x[2] <- "hat"
> x
[1] "1" "hat" "3" "4" "5"
> typeof(x)
[1] "character"
> class(x)
[1] "character"

Here is an overview of the coercion rules:

• Logical values are converted to numbers: TRUE is converted to 1 and FALSE to 0.

• Values are converted to the simplest type required to represent all information.

• The ordering is roughly logical < integer < numeric < complex < character < list.

• Objects of type raw are not converted to other types.

• Object attributes are dropped when an object is coerced from one type to
another.

You can inhibit coercion when passing arguments to functions by using the AsIs
function (or, equivalently, the I function). For more information, see the help file
for AsIs.

Many newcomers to R find coercion nonintuitive. Strongly typed languages (like
Java) will raise exceptions when the object passed to a function is the wrong type
but will not try to convert the object to a compatible type. As John Chambers (who
developed the S language) describes:

In the early coding, there was a tendency to make as many cases “work” as
possible. In the later, more formal, stages the conclusion was that converting
richer types to simpler automatically in all situations would lead to confusing,
and therefore untrustworthy, results.3

In practice, I rarely encounter situations where values are coerced in undesirable
ways. Usually, I use R with numeric vectors that are all the same type, so coercion
simply doesn’t apply.

The R Interpreter
R is an interpreted language. When you enter expressions into the R console (or run
an R script in batch mode), a program within the R system, called the interpreter,

3. From [Chambers2008], p. 154.

The R Interpreter | 57

Overview of the R
Language

Study Material. Do not distribute.

executes the actual code that you wrote. Unlike C, C++, and Java, there is no need
to compile your programs into an object language. Other examples of interpreted
languages are Common Lisp, Perl, and JavaScript.

All R programs are composed of a series of expressions. These expressions often take
the form of function calls. The R interpreter begins by parsing each expression,
translating syntactic sugar into functional form. Next, R substitutes objects for sym-
bols (where appropriate). Finally, R evaluates each expression, returning an object.
For complex expressions, this process may be recursive. In some special cases (such
as conditional statements), R does not evaluate all arguments to a function. As an
example, let’s consider the following R expression:

> x <- 1

On an R console, you would typically type x <- 1 and then press the Enter key. The
R interpreter will first translate this expression into the following function call:

`<-`(x, 1)

Next, the interpreter evaluates this function. It assigns the constant value 1 to the
symbol x in the current environment and then returns the value 1.

Let’s consider another example. (We’ll assume it’s from the same session, so that
the symbol x is mapped to the value 1.)

> if (x > 1) "orange" else "apple"
[1] "apple"

Here is how the R interpreter would evaluate this expression. I typed if (x > 1)
"orange" else "apple" into the R console and pressed the Enter key. The entire line
is the expression that was evaluated by the R interpreter. The R interpreter parsed
this expression and identified it as a set of R expressions in an if-then-else control
structure. To evaluate that expression, the R interpreter begins by evaluating the
condition (x > 1). If the condition is true, then R would evaluate the next statement
(in this example, "orange"). Otherwise, R would evaluate the statement after the
else keyword (in this example, "apple"). We know that x is equal to 1. When R
evaluates the condition statement, the result is false. So R does not evaluate the
statement after the condition. Instead, R will evaluate the expression after the else
keyword. The result of this expression is the character vector "apple". As you can
see, this is the value that is returned on the R console.

If you are entering R expressions into the R console, then the interpreter will pass
objects returned to the console to the print function.

Some functionality is implemented internally within the R system. These calls are
made using the .Internal function. Many functions use .Internal to call internal R
system code. For example, the graphics function plot.xy is implemented us-
ing .Internal:

> plot.xy
function (xy, type, pch = par("pch"), lty = par("lty"), col = par("col"),
 bg = NA, cex = 1, lwd = par("lwd"), ...)
.Internal(plot.xy(xy, type, pch, lty, col, bg, cex, lwd, ...))

58 | Chapter 5: An Overview of the R Language

Study Material. Do not distribute.

<bytecode: 0x11949f828>
<environment: namespace:graphics>

In a few cases, the overhead for calling .Internal within an R function is too high.
R includes a mechanism to define functions that are implemented completely
internally.

You can identify these functions because the body of the function contains a call to
the function .Primitive. For example, the assignment operator is implemented
through a primitive function:

> `<-`
.Primitive("<-")

This mechanism is used for only a few basic functions where performance is critical.
You can find a current list of these functions in [RInternals2009].

Seeing How R Works
To end this overview of the R language, I wanted to share a few functions that are
convenient for seeing how R works. As you may recall, R expressions are R objects.
This means that it is possible to parse expressions in R, or partially evaluate expres-
sions in R, and see how R interprets them. This can be very useful for learning how
R works or for debugging R code.

As noted above, the R interpreter goes through several steps when evaluating state-
ments. The first step is to parse a statement, changing it into proper functional form.
It is possible to view the R interpreter to see how a given expression is evaluated. As
an example, let’s use the same R code fragment that we used in “The R Inter-
preter” on page 57:

> if (x > 1) "orange" else "apple"
[1] "apple"

To show how this expression is parsed, we can use the quote() function. This func-
tion will parse its argument but not evaluate it. By calling quote, an R expression
returns a “language” object:

> typeof(quote(if (x > 1) "orange" else "apple"))
[1] "language"

Unfortunately, the print function for language objects is not very informative:

> quote(if (x > 1) "orange" else "apple")
if (x > 1) "orange" else "apple"

However, it is possible to convert a language object into a list. By displaying the
language object as a list, it is possible to see how R evaluates an expression. This is
the parse tree for the expression:

> as(quote(if (x > 1) "orange" else "apple"),"list")
[[1]]
`if`

[[2]]
x > 1

Seeing How R Works | 59

Overview of the R
Language

Study Material. Do not distribute.

[[3]]
[1] "orange"

[[4]]
[1] "apple"

We can also apply the typeof function to every element in the list to see the type of
each object in the parse tree:4

> lapply(as(quote(if (x > 1) "orange" else "apple"), "list"),typeof)
[[1]]
[1] "symbol"

[[2]]
[1] "language"

[[3]]
[1] "character"

[[4]]
[1] "character"

In this case, we can see how this expression is interpreted. Notice that some parts
of the if-then statement are not included in the parsed expression (in particular, the
else keyword). Also, notice that the first item in the list is a symbol. In this case, the
symbol refers to the if function. So, although the syntax for the if-then statement is
different from a function call, the R parser translates the expression into a function
call before evaluating the expression. The function name is the first item, and the
arguments are the remaining items in the list.

For constants, there is only one item in the returned list:

> as.list(quote(1))
[[1]]
[1] 1

By using the quote function, you can see that many constructions in the R language
are just syntactic sugar for function calls. For example, let’s consider looking up the
second item in a vector x. The standard way to do this is through R’s bracket nota-
tion, so the expression would be x[2]. An alternative way to represent this expression
is as a function: `[`(x,2). (Function names that contain special characters need to
be encapsulated in backquotes.) Both of these expressions are interpreted the same
way by R:

> as.list(quote(x[2]))
[[1]]
`[`

4. As a convenient shorthand, you can omit the as function because R will automatically coerce
the language object to a list. This means you can just use a command like:

> lapply(quote(if (x > 1) "orange" else "apple"),typeof)

Coercion is explained in “Coercion” on page 56.

60 | Chapter 5: An Overview of the R Language

Study Material. Do not distribute.

[[2]]
x

[[3]]
[1] 2

> as.list(quote(`[`(x,2)))
[[1]]
`[`

[[2]]
x

[[3]]
[1] 2

As you can see, R interprets both of these expressions identically. Clearly, the op-
eration is not reversible (because both expressions are translated into the same parse
tree). The deparse function can take the parse tree and turn it back into properly
formatted R code. (The deparse function will use proper R syntax when translating
a language object back into the original code.) Here’s how it acts on these two bits
of code:

> deparse(quote(x[2]))
[1] "x[2]"
> deparse(quote(`[`(x,2)))
[1] "x[2]"

As you read through this book, you might want to try using quote, substitute,
typeof, class, and methods to see how the R interpreter parses expressions.

Seeing How R Works | 61

Overview of the R
Language

Study Material. Do not distribute.

Study Material. Do not distribute.

6
R Syntax

Every expression in R can be rewritten as a function call. However, R has some
special syntax to write common operations like assignments, lookups, and numer-
ical expressions more naturally. This chapter gives an overview of how to write valid
R expressions. It’s not intended to be a formal or complete description of all valid
syntax in R, but just a readable description of how to write valid R expressions.1

Constants
Let’s start by looking at constants. Constants are the basic building blocks for data
objects in R: numbers, character values, and symbols.

Numeric Vectors
Numbers are interpreted literally in R:

> 1.1
[1] 1.1
> 2
[1] 2
> 2^1023
[1] 8.988466e+307

You may specify values in hexadecimal notation by prefixing them with 0x:

> 0x1
[1] 1
> 0xFFFF
[1] 65535

1. You could write R code as a series of function calls with lots of function calls. This would look
a lot like LISP code, with all the parentheses. Incidentally, the S language was inspired by LISP
and uses many of the same data structures and evaluation techniques that are used by LISP
interpreters.

63

Study Material. Do not distribute.

By default, numbers in R expressions are interpreted as double-precision floating-
point numbers, even when you enter simple integers:

> typeof(1)
[1] "double"

If you want an integer, you can use the sequence notation or the as function to obtain
an integer:

> typeof(1:1)
[1] "integer"
> typeof(as(1, "integer"))
[1] "integer"

The sequence operator a:b will return a vector of integers between a and b. To com-
bine an arbitrary set of numbers into a vector, use the c function:

> v <- c(173, 12, 1.12312, -93)

R allows a lot of flexibility when entering numbers. However, there is a limit to the
size and precision of numbers that R can represent:

> # limits of precision
> (2^1023 + 1) == 2^1023
[1] TRUE
> # limits of size
> 2^1024
[1] Inf

In practice, this is rarely a problem. Most R users will load data from other sources
on a computer (like a database) that also can’t represent very large numbers.

R also supports complex numbers. Complex values are written as real_part
+imaginary_parti. For example:

> 0+1i ^ 2
[1] -1+0i
> sqrt(-1+0i)
[1] 0+1i
> exp(0+1i * pi)
[1] -1+0i

Note that the sqrt function returns a value of the same type as its input; it will return
the value 0+1i when passed -1+0i but will return an NaN value when just passed the
numeric value -1:

> sqrt(-1)
[1] NaN
Warning message:
In sqrt(-1) : NaNs produced

Character Vectors
A character object contains all the text between a pair of quotes. Most commonly,
character objects are denoted by double quotes:

> "hello"
[1] "hello"

64 | Chapter 6: R Syntax

Study Material. Do not distribute.

A character string may also be enclosed by single quotes:

> 'hello'
[1] "hello"

This can be convenient if the enclosed text contains double quotes (or vice versa).
Equivalently, you may also escape the quotes by placing a backslash in front of each
quote:

> identical("\"hello\"", '"hello"')
[1] TRUE

> identical('\'hello\'', "'hello'")
[1] TRUE

These examples are all vectors with only one element. To stitch together longer
vectors, use the c function:

> numbers <- c("one", "two", "three", "four", "five")
> numbers
[1] "one" "two" "three" "four" "five"

Symbols
An important class of constants is symbols. A symbol is an object in R that refers to
another object; a symbol is the name of a variable in R. For example, let’s assign the
numeric value 1 to the symbol x:

> x <- 1

In this expression, x is a symbol. The statement x <- 1 means “map the symbol x to
the numeric value 1 in the current environment.” (We’ll discuss environments in
Chapter 8.)

A symbol that begins with a character and contains other characters, numbers, pe-
riods, and underscores may be used directly in R statements. Here are a few examples
of symbol names that can be typed without escape characters:

> x <- 1
> # case matters
> x1 <- 1
> X1 <- 2
> x1
[1] 1
> X1
[1] 2
> x1.1 <- 1
> x1.1_1 <- 1

Some symbols contain special syntax. In order to refer to these objects, you enclose
them in backquotes. For example, to get help on the assignment operator (<-), you
would use a command like this:

?`<-`

If you really wanted to, you could use backquotes to define a symbol that contains
special characters or starts with a number:

Constants | 65

R Syntax
Study Material. Do not distribute.

> `1+2=3` <- "hello"
> `1+2=3`
[1] "hello"

Not all words are valid as symbols; some words are reserved in R. Specifically, you
can’t use if, else, repeat, while, function, for, in, next, break, TRUE, FALSE, NULL,
Inf, NaN, NA, NA_integer_, NA_real_, NA_complex_, NA_character_, ..., ..1, ..2, ..
3, ..4, ..5, ..6, ..7, ..8, or ..9.

You can redefine primitive functions that are not on this list. For example, when
you start R, the symbol c normally refers to the primitive function c, which combines
elements into vectors:

> c
function (..., recursive = FALSE) .Primitive("c")

However, you can redefine the symbol c to point to something else:

> c <- 1
> c
[1] 1

Even after you redefine the symbol c, you can continue to use the “combine” function
as before:

> v <- c(1, 2, 3)
> v
[1] 1 2 3

See Chapter 2 for more information on the combine function.

Operators
Many functions in R can be written as operators. An operator is a function that takes
one or two arguments and can be written without parentheses.

One familiar set of operators is binary operators for arithmetic. R supports arithmetic
operations:

> # addition
> 1 + 19
[1] 20

> # multiplication
> 5 * 4
[1] 20

R also includes notation for other mathematical operations, including moduli,
exponents, and integer division:

> # modulus
> 41 %% 21
[1] 20?

> # exponents
> 20 ^ 1
[1] 20

66 | Chapter 6: R Syntax

Study Material. Do not distribute.

> # integer division
> 21 %/% 2
[1] 10

You can define your own binary operators. User-defined binary operators consist of
a string of characters between two % characters. To do this, create a function of two
variables and assign it to an appropriate symbol. For example, let’s define an oper-
ator %myop% that doubles each operand and then adds them together:

> `%myop%` <- function(a, b) {2*a + 2*b}
> 1 %myop% 1
[1] 4
> 1 %myop% 2
[1] 6

Some language constructs are also binary operators. For example, assignment, in-
dexing, and function calls are binary operators:2

> # assignment is a binary operator
> # the left side is a symbol, the right is a value
> x <- c(1, 2, 3, 4, 5)

> # indexing is a binary operator too
> # the left side is a symbol, the right is an index
> x[3]
[1] 3

> # a function call is also a binary operator
> # the left side is a symbol pointing to the function argument
> # the right side are the arguments
> max(1, 2)
[1] 2

There are also unary operators that take only one variable. Here are two familiar
examples:

> # negation is a unary operator
> -7
[1] -7

> # ? (for help) is also a unary operator
> ?`?`

Order of Operations
You may remember from high school math that you always evaluate mathematical
expressions in a certain order. For example, when you evaluate the expression 1 +
2 • 5, you first multiply 2 and 5 and then add 1. The same thing is true in computer

2. Don’t be confused by the closing bracket in an indexing operation or the closing parenthesis
in a function call; although this syntax uses two symbols, both operations are still technically
binary operators. For example, a function call has the form f(arguments), where f is a function
and arguments are the arguments for the function.

Operators | 67

R Syntax
Study Material. Do not distribute.

languages like R. When you enter an expression in R, the R interpreter will always
evaluate some expressions first.

In order to resolve ambiguity, operators in R are always interpreted in the same order.
Here is a summary of the precedence rules:

• Function calls and grouping expressions

• Index and lookup operators

• Arithmetic

• Comparison

• Formulas

• Assignment

• Help

Table 6-1 shows a complete list of operators in R and their precedence.

Table 6-1. Operator precedence, from the help(syntax) file

Operators (in order of priority) Description

({ Function calls and grouping expressions (respectively)

[[[Indexing

:: ::: Access variables in a namespace

$ @ Component / slot extraction

^ Exponentiation (right to left)

- + Unary operators for minus and plus

: Sequence operator

%any% Special operators

* / Multiply, divide

+ - Binary operators for add, subtract

< > <= >= == != Ordering and comparison

! Negation

& && And

| || Or

~ As in formulas

-> ->> Rightward assignment

= Assignment (right to left)

<- <<- Assignment (right to left)

? Help (unary and binary)

For a current list of built-in operators and their precedence, see the help file for
syntax.

68 | Chapter 6: R Syntax

Study Material. Do not distribute.

Assignments
Most assignments that we’ve seen so far simply assign an object to a symbol. For
example:

> x <- 1
> y <- list(shoes="loafers", hat="Yankees cap", shirt="white")
> z <- function(a, b, c) {a ^ b / c}
> v <- c(1, 2, 3, 4, 5, 6, 7, 8)

There is an alternative type of assignment statement in R that acts differently: as-
signments with a function on the left-hand side of the assignment operator. These
statements replace an object with a new object that has slightly different properties.
Here are a few examples:

> dim(v) <- c(2, 4)

> v[2, 2] <- 10

> formals(z) <- alist(a=1, b=2, c=3)

There is a little bit of magic going on behind the scenes. An assignment statement
of the form:

fun(sym) <- val

is really syntactic sugar for a function of the form:

`fun<-`(sym,val)

Each of these functions replaces the object associated with sym in the current envi-
ronment. By convention, fun refers to a property of the object represented by sym. If
you write a method with the name method_name<-, then R will allow you to place
method_name on the left-hand side of an assignment statement.

Expressions
R provides different constructs for grouping together expressions: semicolons,
parentheses, and curly braces.

Separating Expressions
You can write a series of expressions on separate lines:

> x <- 1
> y <- 2
> z <- 3

Alternatively, you can place them on the same line, separated by semicolons:

> x <- 1; y <- 2; z <- 3

Expressions | 69

R Syntax
Study Material. Do not distribute.

Parentheses
The parentheses notation returns the result of evaluating the expression inside the
parentheses:

(expression)

The operator has the same precedence as a function call. In fact, grouping a set of
expressions inside parentheses is equivalent to evaluating a function of one argument
that just returns its argument:

> 2 * (5 + 1)
[1] 12
> # equivalent expression
> f <- function (x) x
> 2 * f(5 + 1)
[1] 12

Grouping expressions with parentheses can be used to override the default order of
operations. For example:

> 2 * 5 + 1
[1] 11
> 2 * (5 + 1)
[1] 12

Curly Braces
Curly braces are used to evaluate a series of expressions (separated by new lines or
semicolons) and return only the last expression:

{expression_1; expression_2; ... expression_n}

Often, curly braces are used to group a set of operations in the body of a function:

> f <- function() {x <- 1; y <- 2; x + y}
> f()
[1] 3

However, curly braces can also be used as expressions in other contexts:

> {x <- 1; y <- 2; x + y}
[1] 3

The contents of the curly braces are evaluated inside the current environment; a new
environment is created by a function call but not by the use of curly braces:

> # when evaluated in a function, u and v are assigned
> # only inside the function environment
> f <- function() {u <- 1; v <- 2; u + v}
> u
Error: object "u" not found
> v
Error: object "v" not found
> # when evaluated outside the function, u and v are
> # assigned in the current environment
> {u <- 1; v <- 2; u + v}
[1] 3

70 | Chapter 6: R Syntax

Study Material. Do not distribute.

> u
[1] 1
> v
[1] 2

For more information about variable scope and environments, see Chapter 8.

The curly brace notation is translated internally as a call to the `{` function. (Note,
however, that the arguments are not evaluated the same way as in a standard
function.)

Control Structures
Nearly every operation in R can be written as a function, but it isn’t always
convenient to do so. Therefore, R provides special syntax that you can use in com-
mon program structures. We’ve already described two important sets of construc-
tions: operators and grouping brackets. This section describes a few other key
language structures and explains what they do.

Conditional Statements
Conditional statements take the form:

if (condition) true_expression else false_expression

or, alternatively:

if (condition) expression

Because the expressions expression, true_expression, and false_expression are not
always evaluated, the function if has the type special:

> typeof(`if`)
[1] "special"

Here are a few examples of conditional statements:

> if (FALSE) "this will not be printed"
> if (FALSE) "this will not be printed" else "this will be printed"
[1] "this will be printed"
> if (is(x, "numeric")) x/2 else print("x is not numeric")
[1] 5

In R, conditional statements are not vector operations. If the condition statement is
a vector of more than one logical value, then only the first item will be used. For
example:

> x <- 10
> y <- c(8, 10, 12, 3, 17)
> if (x < y) x else y
[1] 8 10 12 3 17
Warning message:
In if (x < y) x else y :
 the condition has length > 1 and only the first element will be used

Control Structures | 71

R Syntax
Study Material. Do not distribute.

If you would like a vector operation, use the ifelse function instead:

> a <- c("a", "a", "a", "a", "a")
> b <- c("b", "b", "b", "b", "b")
> ifelse(c(TRUE, FALSE, TRUE, FALSE, TRUE), a, b)
[1] "a" "b" "a" "b" "a"

Often, it’s convenient to return different values (or call different functions) depend-
ing on a single input value. You can code these as

> switcheroo.if.then <- function(x) {
+ if (x == "a")
+ "camel"
+ else if (x == "b")
+ "bear"
+ else if (x == "c")
+ "camel"
+ else
+ "moose"
+ }

but that is verbose. A better alternative is to use the switch function:

> switcheroo.switch <- function(x) {
+ switch(x,
+ a="alligator",
+ b="bear",
+ c="camel",
+ "moose")
+ }

The first argument is a character value to switch on, the named arguments specify
what to do for each value of the argument, and an unnamed argument specifies the
default value. As you can see, these two expressions are equivalent:

> switcheroo.if.then("a")
[1] "camel"
> switcheroo.if.then("f")
[1] "moose"
> switcheroo.switch("a")
[1] "camel"
> switcheroo.switch("f")
[1] "moose"

Loops
There are three different looping constructs in R. Simplest is repeat, which just
repeats the same expression:

repeat expression

To stop repeating the expression, you can use the keyword break. To skip to the
next iteration in a loop, you can use the command next.

As an example, the following R code prints out multiples of 5 up to 25:

> i <- 5
> repeat {if (i > 25) break else {print(i); i <- i + 5;}}

72 | Chapter 6: R Syntax

Study Material. Do not distribute.

[1] 5
[1] 10
[1] 15
[1] 20
[1] 25

If you do not include a break command, the R code will be an infinite loop. (This
can be useful for creating an interactive application.)

Another useful construction is while loops, which repeat an expression while a con-
dition is true:

while (condition) expression

As a simple example, let’s rewrite the example above using a while loop:

> i <- 5
> while (i <= 25) {print(i); i <- i + 5}
[1] 5
[1] 10
[1] 15
[1] 20
[1] 25

You can also use break and next inside while loops. The break statement is used to
stop iterating through a loop. The next statement skips to the next loop iteration
without evaluating the remaining expressions in the loop body.

Finally, R provides for loops, which iterate through each item in a vector (or a list):

for (var in list) expression

Let’s use the same example for a for loop:

> for (i in seq(from=5, to=25, by=5)) print(i)
[1] 5
[1] 10
[1] 15
[1] 20
[1] 25

You can also use break and next inside for loops.

There are two important properties of looping statements to remember. First, results
are not printed inside a loop unless you explicitly call the print function. For
example:

> for (i in seq(from=5, to=25, by=5)) i

Second, the variable var that is set in a for loop is changed in the calling environment:

> i <- 1
> for (i in seq(from=5, to=25, by=5)) i
> i
[1] 25

Like conditional statements, the looping functions ̀ repeat`, ̀ while`, and ̀ for` have
type special, because expression is not necessarily evaluated.

Control Structures | 73

R Syntax
Study Material. Do not distribute.

Looping Extensions
If you’ve used modern programming languages like Java, you might be disap-
pointed that R doesn’t provide iterators or foreach loops. Luckily, these mech-
anisms are available through add-on packages. (These packages were written by
Revolution Computing and are available through CRAN.)

Iterators are abstract objects that return elements from another object. Using iter-
ators can help make code easier to understand. Additionally, iterators can make
code easier to parallelize. To use iterators, you’ll need to install the iterators
package. Iterators can return elements of a vector, array, data frame, or other
object. You can even use an iterator to return values returned by a function (such
as a function that returns random values). To create an iterator in R, you would
use the iter function:

iter(obj, checkFunc=function(...) TRUE, recycle=FALSE,...)

The argument obj specifies the object, recycle specifies whether the iterator
should reset when it runs out of elements, and checkFunc specifies a function that
filters values returned by the iterator.

You fetch the next item with the function nextElem. This function will implicitly
call checkFunc. If the next value matches checkFunc, it will be returned. If it doesn’t
match, then the function will try another value. nextElem will continue checking
values until it finds one that matches checkFunc, or it runs out of values. When
there are no elements left, the iterator calls stop with the message “StopIteration.”

For example, let’s create an iterator that returns values between 1 and 5:

> library(iterators)
> onetofive <- iter(1:5)
> nextElem(onetofive)
[1] 1
> nextElem(onetofive)
[1] 2
> nextElem(onetofive)
[1] 3
> nextElem(onetofive)
[1] 4
> nextElem(onetofive)
[1] 5
> nextElem(onetofive)
Error: StopIteration

A second extension is the foreach loop, available through the foreach package.
Foreach provides an elegant way to loop through multiple elements of another
object (such as a vector, matrix, data frame, or iterator), evaluate an expression
for each element, and return the results. Within the foreach function, you assign
elements to a temporary value, just like in a for loop.

Here is the prototype for the foreach function:

foreach(..., .combine, .init, .final=NULL, .inorder=TRUE,
 .multicombine=FALSE,
 .maxcombine=if (.multicombine) 100 else 2,
 .errorhandling=c('stop', 'remove', 'pass'),

74 | Chapter 6: R Syntax

Study Material. Do not distribute.

 .packages=NULL, .export=NULL, .noexport=NULL,
 .verbose=FALSE)

Technically, the foreach function returns a foreach object. To actually evaluate
the loop, you need to apply the foreach loop to an R expression using the %do% or
%dopar% operators. That sounds weird, but it’s actually pretty easy to use in prac-
tice. For example, you can use a foreach loop to calculate the square roots of
numbers between 1 and 5:

> sqrts.1to5 <- foreach(i=1:5) %do% sqrt(i)
> sqrts.1to5
[[1]]
[1] 1

[[2]]
[1] 1.414214

[[3]]
[1] 1.732051

[[4]]
[1] 2

[[5]]
[1] 2.236068

The %do% operator evaluates the expression in serial, while the %dopar% can be used
to evaluate expressions in parallel. For more about parallel computing with R, see
Chapter 26.

Accessing Data Structures
R has some specialized syntax for accessing data structures. You can fetch a single
item from a structure, or multiple items (possibly as a multidimensional array) using
R’s index notation. You can fetch items by location within a data structure or by
name.

Data Structure Operators
Table 6-2 shows the operators in R used for accessing objects in a data structure.

Table 6-2. Data structure access notation

Syntax Objects Description

x[i] Vectors,
lists

Returns objects from object x, described by i. i may be an integer vector, character vector (of
object names), or logical vector. Does not allow partial matches. When used with lists, returns
a list. When used with vectors, returns a vector.

x[[i]] Vectors,
lists

Returns a single element of x, matching i. i may be an integer or character vector of length
1. Allows partial matches (with exact=FALSE option).

x$n Lists Returns object with name n from object x.

x@n S4 objects Returns element stored in object x in slot named n.

Accessing Data Structures | 75

R SyntaxD
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Study Material. Do not distribute.

Although the single-bracket notation and double-bracket notation look very similar,
there are three important differences. First, double brackets always return a single
element, while single brackets may return multiple elements. Second, when elements
are referred to by name (as opposed to by index), single brackets match only named
objects exactly, while double brackets allow partial matches. Finally, when used
with lists, the single-bracket notation returns a list, but the double-bracket notation
returns a vector.

I’ll explain how to use this notation below.

Indexing by Integer Vector
The most familiar way to look up an element in R is by numeric vector. As an ex-
ample, let’s create a very simple vector of 20 integers:

> v <- 100:119

You can look up individual elements by position in the vector using the bracket
notation x[s], where x is the vector from which you want to return elements and s
is a second vector representing the set of element indices you would like to query.
You can use an integer vector to look up a single element or multiple elements:

> v[5]
[1] 104
> v[1:5]
[1] 100 101 102 103 104
> v[c(1, 6, 11, 16)]
[1] 100 105 110 115

As a special case, you can use the double-bracket notation to reference a single
element:

> v[[3]]
[1] 102

The double-bracket notation works the same as the single-bracket notation in this
case; see “Indexing by Name” on page 79 for an explanation of references that do
not work with the single-bracket notation.

You can also use negative integers to return a vector consisting of all elements except
the specified elements:

> # exclude elements 1:15 (by specifying indexes -1 to -15)
> v[-15:-1]
[1] 115 116 117 118 119

The same notation applies to lists:

> l <- list(a=1, b=2, c=3, d=4, e=5, f=6, g=7, h=8, i=9, j=10)
> l[1:3]
$a
[1] 1

$b
[1] 2

76 | Chapter 6: R Syntax

Study Material. Do not distribute.

$c
[1] 3

> l[-7:-1]
$h
[1] 8

$i
[1] 9

$j
[1] 10

You can also use this notation to extract parts of multidimensional data structures:

> m <- matrix(data=c(101:112), nrow=3, ncol=4)
> m
 [,1] [,2] [,3] [,4]
[1,] 101 104 107 110
[2,] 102 105 108 111
[3,] 103 106 109 112
> m[3]
[1] 103
> m[3,4]
[1] 112
> m[1:2,1:2]
 [,1] [,2]
[1,] 101 104
[2,] 102 105

If you omit a vector specifying a set of indices for a dimension, then elements for all
indices are returned:

> m[1:2,]
 [,1] [,2] [,3] [,4]
[1,] 101 104 107 110
[2,] 102 105 108 111
> m[3:4]
[1] 103 104
> m[, 3:4]
 [,1] [,2]
[1,] 107 110
[2,] 108 111
[3,] 109 112

When selecting a subset, R will automatically coerce the result to the most appro-
priate number of dimensions. If you select a subset of elements that corresponds to
a matrix, R will return a matrix object; if you select a subset that corresponds to only
a vector, R will return a vector object. To disable this behavior, you can use the
drop=FALSE option:

> a <- array(data=c(101:124), dim=c(2, 3, 4))
> class(a[1, 1,])
[1] "integer"
> class(a[1, ,])
[1] "matrix"
> class(a[1:2, 1:2, 1:2])

Accessing Data Structures | 77

R Syntax
Study Material. Do not distribute.

[1] "array"
> class(a[1, 1, 1, drop=FALSE])
[1] "array"

It is possible to create an array object with dimensions of length 1. However, when
selecting subsets, R simplifies the returned objects.

It is also possible to replace elements in a vector, matrix, or array using the same
notation:

> m[1] <- 1000
> m
 [,1] [,2] [,3] [,4]
[1,] 1000 104 107 110
[2,] 102 105 108 111
[3,] 103 106 109 112
> m[1:2, 1:2] <- matrix(c(1001:1004), nrow=2, ncol=2)
> m
 [,1] [,2] [,3] [,4]
[1,] 1001 1003 107 110
[2,] 1002 1004 108 111
[3,] 103 106 109 112

It is even possible to extend a data structure using this notation. A special NA element
is used to represent values that are not defined:

> v <- 1:12
> v[15] <- 15
> v
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 NA NA 15

You can also index a data structure by a factor; the factor is interpreted as an integer
vector.

Indexing by Logical Vector
As an alternative to indexing by an integer vector, you can also index through a
logical vector. As a simple example, let’s construct a vector of alternating true and
false elements to apply to v:

> rep(c(TRUE, FALSE), 10)
 [1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
[12] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
> v[rep(c(TRUE, FALSE), 10)]
 [1] 100 102 104 106 108 110 112 114 116 118

Often, it is useful to calculate a logical vector from the vector itself:

> # trivial example: return element that is equal to 103
> v[(v==103)]
> # more interesting example: multiples of three
> v[(v %% 3 == 0)]
[1] 102 105 108 111 114 117

The index vector does not need to be the same length as the vector itself. R will
repeat the shorter vector, returning matching values:

78 | Chapter 6: R Syntax

Study Material. Do not distribute.

> v[c(TRUE, FALSE, FALSE)]
[1] 100 103 106 109 112 115 118

As above, the same notation applies to lists:

> l[(l > 7)]
$h
[1] 8

$i
[1] 9

$j
[1] 10

Indexing by Name
With lists, each element may be assigned a name. You can index an element by name
using the $ notation:

> l <- list(a=1, b=2, c=3, d=4, e=5, f=6, g=7, h=8, i=9, j=10)
> l$j
[1] 10

You can also use the single-bracket notation to index a set of elements by name:

> l[c("a", "b", "c")]
$a
[1] 1

$b
[1] 2

$c
[1] 3

You can also index by name using the double-bracket notation when selecting a
single element. It is even possible to index by partial name using the exact=FALSE
option:

> dairy <- list(milk="1 gallon", butter="1 pound", eggs=12)
> dairy$milk
[1] "1 gallon"
> dairy[["milk"]]
[1] "1 gallon"
> dairy[["mil"]]
NULL
> dairy[["mil",exact=FALSE]]
[1] "1 gallon"

Sometimes, an object is a list of lists. You can also use the double-bracket notation
to reference an element in this type of data structure. To do this, use a vector as an
argument. R will iterate through the elements in the vector, referencing sublists:

> fruit <- list(apples=6, oranges=3, bananas=10)
> shopping.list <- list (dairy=dairy, fruit=fruit)
> shopping.list
$dairy

Accessing Data Structures | 79

R Syntax
Study Material. Do not distribute.

$dairy$milk
[1] "1 gallon"

$dairy$butter
[1] "1 pound"

$dairy$eggs
[1] 12

$fruit
$fruit$apples
[1] 6

$fruit$oranges
[1] 3

$fruit$bananas
[1] 10

> shopping.list[[c("dairy", "milk")]]
[1] "1 gallon"
> shopping.list[[c(1,2)]]
[1] "1 pound"

R Code Style Standards
Standards for code style aren’t the same as syntax, although they are sort of related.
It is usually wise to be careful about code style to maximize the readability of your
code, making it easier for you and others to maintain.

In this book, I’ve tried to stick to Google’s R Style Guide, which is available at http:
//google-styleguide.googlecode.com/svn/trunk/google-r-style.html. Here is a summary
of its suggestions:

Indentation
Indent lines with two spaces, not tabs. If code is inside parentheses, indent to
the innermost parentheses.

Spacing
Use only single spaces. Add spaces between binary operators and operands. Do
not add spaces between a function name and the argument list. Add a single
space between items in a list, after each comma.

Blocks
Don’t place an opening brace (“{”) on its own line. Do place a closing brace
(“}”) on its own line. Indent inner blocks (by two spaces).

Semicolons
Omit semicolons at the end of lines when they are optional.

80 | Chapter 6: R Syntax

Study Material. Do not distribute.

Naming
Name objects with lowercase words, separated by periods. For function names,
capitalize the name of each word that is joined together, with no periods. Try
to make function names verbs.

Assignment
Use <-, not = for assignment statements.

Don’t be confused by the object names. You don’t have to name objects things like
“field.goals” or “sanfrancisco.home.prices” or “top.bacon.searching.cities.” It’s just
convention.

R Code Style Standards | 81

R Syntax
Study Material. Do not distribute.

Study Material. Do not distribute.

