
CHAPTER 1

Getting Started and Getting Help

Introduction
This chapter sets the groundwork for the other chapters. It explains how to download,
install, and run R.

More importantly, it also explains how to get answers to your questions. The R com-
munity provides a wealth of documentation and help. You are not alone. Here are some
common sources of help:

Local, installed documentation
When you install R on your computer, a mass of documentation is also installed.
You can browse the local documentation (Recipe 1.6) and search it (Recipe 1.8).
I am amazed how often I search the Web for an answer only to discover it was
already available in the installed documentation.

Task views
A task view describes packages that are specific to one area of statistical work, such
as econometrics, medical imaging, psychometrics, or spatial statistics. Each task
view is written and maintained by an expert in the field. There are 28 such task
views, so there is likely to be one or more for your areas of interest. I recommend
that every beginner find and read at least one task view in order to gain a sense of
R’s possibilities (Recipe 1.11).

Package documentation
Most packages include useful documentation. Many also include overviews and
tutorials, called vignettes in the R community. The documentation is kept with the
packages in package repositories, such as CRAN, and it is automatically installed
on your machine when you install a package.

Mailing lists
Volunteers have generously donated many hours of time to answer beginners’
questions that are posted to the R mailing lists. The lists are archived, so you can
search the archives for answers to your questions (Recipe 1.12).

1

Study Material. Do not distribute.

Question and answer (Q&A) websites
On a Q&A site, anyone can post a question, and knowledgeable people can re-
spond. Readers vote on the answers, so the best answers tend to emerge over time.
All this information is tagged and archived for searching. These sites are a cross
between a mailing list and a social network; the Stack Overflow site is a good
example.

The Web
The Web is loaded with information about R, and there are R-specific tools for
searching it (Recipe 1.10). The Web is a moving target, so be on the lookout for
new, improved ways to organize and search information regarding R.

1.1 Downloading and Installing R
Problem
You want to install R on your computer.

Solution
Windows and OS X users can download R from CRAN, the Comprehensive R Archive
Network. Linux and Unix users can install R packages using their package management
tool:

Windows

1. Open http://www.r-project.org/ in your browser.

2. Click on “CRAN”. You’ll see a list of mirror sites, organized by country.

3. Select a site near you.

4. Click on “Windows” under “Download and Install R”.

5. Click on “base”.

6. Click on the link for downloading the latest version of R (an .exe file).

7. When the download completes, double-click on the .exe file and answer the
usual questions.

OS X

1. Open http://www.r-project.org/ in your browser.

2. Click on “CRAN”. You’ll see a list of mirror sites, organized by country.

3. Select a site near you.

4. Click on “MacOS X”.

5. Click on the .pkg file for the latest version of R, under “Files:”, to download it.

6. When the download completes, double-click on the .pkg file and answer the
usual questions.

2 | Chapter 1: Getting Started and Getting Help

Study Material. Do not distribute.

Linux or Unix
The major Linux distributions have packages for installing R. Here are some
examples:

Distribution Package name

Ubuntu or Debian r-base

Red Hat or Fedora R.i386

Suse R-base

Use the system’s package manager to download and install the package. Normally,
you will need the root password or sudo privileges; otherwise, ask a system ad-
ministrator to perform the installation.

Discussion
Installing R on Windows or OS X is straightforward because there are prebuilt binaries
for those platforms. You need only follow the preceding instructions. The CRAN Web
pages also contain links to installation-related resources, such as frequently asked
questions (FAQs) and tips for special situations (“How do I install R when using Win-
dows Vista?”) that you may find useful.

Theoretically, you can install R on Linux or Unix in one of two ways: by installing a
distribution package or by building it from scratch. In practice, installing a package is
the preferred route. The distribution packages greatly streamline both the initial in-
stallation and subsequent updates.

On Ubuntu or Debian, use apt-get to download and install R. Run under sudo to have
the necessary privileges:

$ sudo apt-get install r-base

On Red Hat or Fedora, use yum:

$ sudo yum install R.i386

Most platforms also have graphical package managers, which you might find more
convenient.

Beyond the base packages, I recommend installing the documentation packages, too.
On my Ubuntu machine, for example, I installed r-base-html (because I like browsing
the hyperlinked documentation) as well as r-doc-html, which installs the important R
manuals locally:

$ sudo apt-get install r-base-html r-doc-html

Some Linux repositories also include prebuilt copies of R packages available on CRAN.
I don’t use them because I’d rather get my software directly from CRAN itself, which
usually has the freshest versions.

1.1 Downloading and Installing R | 3

Study Material. Do not distribute.

In rare cases, you may need to build R from scratch. You might have an obscure, un-
supported version of Unix; or you might have special considerations regarding per-
formance or configuration. The build procedure on Linux or Unix is quite standard.
Download the tarball from the home page of your CRAN mirror; it’s called something
like R-2.12.1.tar.gz, except the “2.12.1” will be replaced by the latest version. Unpack
the tarball, look for a file called INSTALL, and follow the directions.

See Also
R in a Nutshell (O’Reilly) contains more details of downloading and installing R, in-
cluding instructions for building the Windows and OS X versions. Perhaps the ultimate
guide is the one entitled R Installation and Administration, available on CRAN, which
describes building and installing R on a variety of platforms.

This recipe is about installing the base package. See Recipe 3.9 for installing add-on
packages from CRAN.

1.2 Starting R
Problem
You want to run R on your computer.

Solution
Windows

Click on Start → All Programs → R; or double-click on the R icon on your desktop
(assuming the installer created an icon for you).

OS X
Either click on the icon in the Applications directory or put the R icon on the dock
and click on the icon there. Alternatively, you can just type R on a Unix command
line in a shell.

Linux or Unix
Start the R program from the shell prompt using the R command (uppercase R).

Discussion
How you start R depends upon your platform.

Starting on Windows
When you start R, it opens a new window. The window includes a text pane, called
the R Console, where you enter R expressions (see Figure 1-1).

4 | Chapter 1: Getting Started and Getting Help

Study Material. Do not distribute.

There is an odd thing about the Windows Start menu for R. Every time you upgrade
to a new version of R, the Start menu expands to contain the new version while keeping
all the previously installed versions. So if you’ve upgraded, you may face several choices
such as “R 2.8.1”, “R 2.9.1”, “R 2.10.1”, and so forth. Pick the newest one. (You might
also consider uninstalling the older versions to reduce the clutter.)

Using the Start menu is cumbersome, so I suggest starting R in one of two other ways:
by creating a desktop shortcut or by double-clicking on your .RData file.

The installer may have created a desktop icon. If not, creating a shortcut is easy: follow
the Start menu to the R program, but instead of left-clicking to run R, press and hold
your mouse’s right button on the program name, drag the program name to your desk-
top, and release the mouse button. Windows will ask if you want to Copy Here or Move
Here. Select Copy Here, and the shortcut will appear on your desktop.

Another way to start R is by double-clicking on a .RData file in your working directory.
This is the file that R creates to save your workspace. The first time you create a direc-
tory, start R and change to that directory. Save your workspace there, either by exiting
or using the save.image function. That will create the .RData file. Thereafter, you can
simply open the directory in Windows Explorer and then double-click on the .RData
file to start R.

Perhaps the most baffling aspect of starting R on Windows is embodied in a simple
question: When R starts, what is the working directory? The answer, of course, is that
“it depends”:

Figure 1-1. R on Windows

1.2 Starting R | 5

Study Material. Do not distribute.

• If you start R from the Start menu, the working directory is normally either
C:\Documents and Settings\<username>\My Documents (Windows XP) or C:\Users
\<username>\Documents (Windows Vista, Windows 7). You can override this de-
fault by setting the R_USER environment variable to an alternative directory path.

• If you start R from a desktop shortcut, you can specify an alternative startup
directory that becomes the working directory when R is started. To specify the
alternative directory, right-click on the shortcut, select Properties, enter the direc-
tory path in the box labeled “Start in”, and click OK.

• Starting R by double-clicking on your .RData file is the most straightforward
solution to this little problem. R will automatically change its working directory
to be the file’s directory, which is usually what you want.

In any event, you can always use the getwd function to discover your current working
directory (Recipe 3.1).

Just for the record, Windows also has a console version of R called Rterm.exe. You’ll
find it in the bin subdirectory of your R installation. It is much less convenient than the
graphic user interface (GUI) version, and I never use it. I recommend it only for batch
(noninteractive) usage such as running jobs from the Windows scheduler. In this book,
I assume you are running the GUI version of R, not the console version.

Starting on OS X
Run R by clicking the R icon in the Applications folder. (If you use R frequently, you
can drag it from the folder to the dock.) That will run the GUI version, which is some-
what more convenient than the console version. The GUI version displays your working
directory, which is initially your home directory.

OS X also lets you run the console version of R by typing R at the shell prompt.

Starting on Linux and Unix
Start the console version of R from the Unix shell prompt simply by typing R, the name
of the program. Be careful to type an uppercase R, not a lowercase r.

The R program has a bewildering number of command line options. Use the --help
option to see the complete list.

See Also
See Recipe 1.4 for exiting from R, Recipe 3.1 for more about the current working
directory, Recipe 3.2 for more about saving your workspace, and Recipe 3.11 for sup-
pressing the start-up message. See Chapter 2 of R in a Nutshell.

6 | Chapter 1: Getting Started and Getting Help

Study Material. Do not distribute.

1.3 Entering Commands
Problem
You’ve started R, and you’ve got a command prompt. Now what?

Solution
Simply enter expressions at the command prompt. R will evaluate them and print (dis-
play) the result. You can use command-line editing to facilitate typing.

Discussion
R prompts you with “>”. To get started, just treat R like a big calculator: enter an
expression, and R will evaluate the expression and print the result:

> 1+1
[1] 2

The computer adds one and one, giving two, and displays the result.

The [1] before the 2 might be confusing. To R, the result is a vector, even though it has
only one element. R labels the value with [1] to signify that this is the first element of
the vector...which is not surprising, since it’s the only element of the vector.

R will prompt you for input until you type a complete expression. The expression
max(1,3,5) is a complete expression, so R stops reading input and evaluates what it’s
got:

> max(1,3,5)
[1] 5

In contrast, “max(1,3,” is an incomplete expression, so R prompts you for more input.
The prompt changes from greater-than (>) to plus (+), letting you know that R expects
more:

> max(1,3,
+ 5)
[1] 5

It’s easy to mistype commands, and retyping them is tedious and frustrating. So R
includes command-line editing to make life easier. It defines single keystrokes that let
you easily recall, correct, and reexecute your commands. My own typical command-
line interaction goes like this:

1. I enter an R expression with a typo.

2. R complains about my mistake.

3. I press the up-arrow key to recall my mistaken line.

4. I use the left and right arrow keys to move the cursor back to the error.

5. I use the Delete key to delete the offending characters.

1.3 Entering Commands | 7

Study Material. Do not distribute.

6. I type the corrected characters, which inserts them into the command line.

7. I press Enter to reexecute the corrected command.

That’s just the basics. R supports the usual keystrokes for recalling and editing com-
mand lines, as listed in Table 1-1.

Table 1-1. Keystrokes for command-line editing

Labeled key Ctrl-key combination Effect

Up arrow Ctrl-P Recall previous command by moving backward through the history of commands.

Down arrow Ctrl-N Move forward through the history of commands.

Backspace Ctrl-H Delete the character to the left of cursor.

Delete (Del) Ctrl-D Delete the character to the right of cursor.

Home Ctrl-A Move cursor to the start of the line.

End Ctrl-E Move cursor to the end of the line.

Right arrow Ctrl-F Move cursor right (forward) one character.

Left arrow Ctrl-B Move cursor left (back) one character.

 Ctrl-K Delete everything from the cursor position to the end of the line.

 Ctrl-U Clear the whole darn line and start over.

Tab Name completion (on some platforms).

On Windows and OS X, you can also use the mouse to highlight commands and then
use the usual copy and paste commands to paste text into a new command line.

See Also
See Recipe 2.13. From the Windows main menu, follow Help → Console for a complete
list of keystrokes useful for command-line editing.

1.4 Exiting from R
Problem
You want to exit from R.

Solution
Windows

Select File → Exit from the main menu; or click on the red X in the upper-right
corner of the window frame.

8 | Chapter 1: Getting Started and Getting Help

Study Material. Do not distribute.

OS X
Press CMD-q (apple-q); or click on the red X in the upper-left corner of the window
frame.

Linux or Unix
At the command prompt, press Ctrl-D.

On all platforms, you can also use the q function (as in quit) to terminate the program.

> q()

Note the empty parentheses, which are necessary to call the function.

Discussion
Whenever you exit, R asks if you want to save your workspace. You have three choices:

• Save your workspace and exit.

• Don’t save your workspace, but exit anyway.

• Cancel, returning to the command prompt rather than exiting.

If you save your workspace, then R writes it to a file called .RData in the current working
directory. This will overwrite the previously saved workspace, if any, so don’t save if
you don’t like the changes to your workspace (e.g., if you have accidentally erased
critical data).

See Also
See Recipe 3.1 for more about the current working directory and Recipe 3.2 for more
about saving your workspace. See Chapter 2 of R in a Nutshell.

1.5 Interrupting R
Problem
You want to interrupt a long-running computation and return to the command prompt
without exiting R.

Solution
Windows or OS X

Either press the Esc key or click on the Stop-sign icon.

Linux or Unix
Press Ctrl-C. This will interrupt R without terminating it.

1.5 Interrupting R | 9

Study Material. Do not distribute.

Discussion
Interrupting R can leave your variables in an indeterminate state, depending upon how
far the computation had progressed. Check your workspace after interrupting.

See Also
See Recipe 1.4.

1.6 Viewing the Supplied Documentation
Problem
You want to read the documentation supplied with R.

Solution
Use the help.start function to see the documentation’s table of contents:

> help.start()

From there, links are available to all the installed documentation.

Discussion
The base distribution of R includes a wealth of documentation—literally thousands of
pages. When you install additional packages, those packages contain documentation
that is also installed on your machine.

It is easy to browse this documentation via the help.start function, which opens a
window on the top-level table of contents; see Figure 1-2.

The two links in the Reference section are especially useful:

Packages
Click here to see a list of all the installed packages, both in the base packages and
the additional, installed packages. Click on a package name to see a list of its func-
tions and datasets.

Search Engine & Keywords
Click here to access a simple search engine, which allows you to search the docu-
mentation by keyword or phrase. There is also a list of common keywords,
organized by topic; click one to see the associated pages.

See Also
The local documentation is copied from the R Project website, which may have updated
documents.

10 | Chapter 1: Getting Started and Getting Help

Study Material. Do not distribute.

1.7 Getting Help on a Function
Problem
You want to know more about a function that is installed on your machine.

Solution
Use help to display the documentation for the function:

> help(functionname)

Use args for a quick reminder of the function arguments:

> args(functionname)

Use example to see examples of using the function:

> example(functionname)

Discussion
I present many R functions in this book. Every R function has more bells and whistles
than I can possibly describe. If a function catches your interest, I strongly suggest read-

Figure 1-2. Documentation table of contents

1.7 Getting Help on a Function | 11

Study Material. Do not distribute.

ing the help page for that function. One of its bells or whistles might be very useful to
you.

Suppose you want to know more about the mean function. Use the help function like
this:

> help(mean)

This will either open a window with function documentation or display the documen-
tation on your console, depending upon your platform. A shortcut for the help com-
mand is to simply type ? followed by the function name:

> ?mean

Sometimes you just want a quick reminder of the arguments to a function: What are
they, and in what order do they occur? Use the args function:

> args(mean)
function (x, ...)
NULL
> args(sd)
function (x, na.rm = FALSE)
NULL

The first line of output from args is a synopsis of the function call. For mean, the synopsis
shows one argument, x, which is a vector of numbers. For sd, the synopsis shows the
same vector, x, and an optional argument called na.rm. (You can ignore the second line
of output, which is often just NULL.)

Most documentation for functions includes examples near the end. A cool feature of
R is that you can request that it execute the examples, giving you a little demonstration
of the function’s capabilities. The documentation for the mean function, for instance,
contains examples, but you don’t need to type them yourself. Just use the example
function to watch them run:

> example(mean)

mean> x <- c(0:10, 50)

mean> xm <- mean(x)

mean> c(xm, mean(x, trim = 0.1))
[1] 8.75 5.50

mean> mean(USArrests, trim = 0.2)
 Murder Assault UrbanPop Rape
 7.42 167.60 66.20 20.16

The user typed example(mean). Everything else was produced by R, which executed the
examples from the help page and displayed the results.

12 | Chapter 1: Getting Started and Getting Help

Study Material. Do not distribute.

See Also
See Recipe 1.8 for searching for functions and Recipe 3.5 for more about the search
path.

1.8 Searching the Supplied Documentation
Problem
You want to know more about a function that is installed on your machine, but the
help function reports that it cannot find documentation for any such function.

Alternatively, you want to search the installed documentation for a keyword.

Solution
Use help.search to search the R documentation on your computer:

> help.search("pattern")

A typical pattern is a function name or keyword. Notice that it must be enclosed in
quotation marks.

For your convenience, you can also invoke a search by using two question marks (in
which case the quotes are not required):

> ??pattern

Discussion
You may occasionally request help on a function only to be told R knows nothing about
it:

> help(adf.test)
No documentation for 'adf.test' in specified packages and libraries:
you could try 'help.search("adf.test")'

This can be frustrating if you know the function is installed on your machine. Here the
problem is that the function’s package is not currently loaded, and you don’t know
which package contains the function. It’s a kind of catch-22 (the error message indicates
the package is not currently in your search path, so R cannot find the help file; see
Recipe 3.5 for more details).

The solution is to search all your installed packages for the function. Just use the
help.search function, as suggested in the error message:

> help.search("adf.test")

1.8 Searching the Supplied Documentation | 13

Study Material. Do not distribute.

The search will produce a listing of all packages that contain the function:

Help files with alias or concept or title matching 'adf.test' using
regular expression matching:

tseries::adf.test Augmented Dickey-Fuller Test

Type '?PKG::FOO' to inspect entry 'PKG::FOO TITLE'.

The following output, for example, indicates that the tseries package contains the
adf.test function. You can see its documentation by explicitly telling help which pack-
age contains the function:

> help(adf.test, package="tseries")

Alternatively, you can insert the tseries package into your search list and repeat
the original help command, which will then find the function and display the
documentation.

You can broaden your search by using keywords. R will then find any installed docu-
mentation that contains the keywords. Suppose you want to find all functions that
mention the Augmented Dickey–Fuller (ADF) test. You could search on a likely pattern:

> help.search("dickey-fuller")

On my machine, the result looks like this because I’ve installed two additional packages
(fUnitRoots and urca) that implement the ADF test:

Help files with alias or concept or title matching 'dickey-fuller' using
fuzzy matching:

fUnitRoots::DickeyFullerPValues
 Dickey-Fuller p Values
tseries::adf.test Augmented Dickey-Fuller Test
urca::ur.df Augmented-Dickey-Fuller Unit Root Test

Type '?PKG::FOO' to inspect entry 'PKG::FOO TITLE'.

See Also
You can also access the local search engine through the documentation browser; see
Recipe 1.6 for how this is done. See Recipe 3.5 for more about the search path and
Recipe 4.4 for getting help on functions.

1.9 Getting Help on a Package
Problem
You want to learn more about a package installed on your computer.

14 | Chapter 1: Getting Started and Getting Help

Study Material. Do not distribute.

Solution
Use the help function and specify a package name (without a function name):

> help(package="packagename")

Discussion
Sometimes you want to know the contents of a package (the functions and datasets).
This is especially true after you download and install a new package, for example. The
help function can provide the contents plus other information once you specify the
package name.

This call to help will display the information for the tseries package, a standard pack-
age in the base distribution:

> help(package="tseries")

The information begins with a description and continues with an index of functions
and datasets. On my machine, the first few lines look like this:

 Information on package 'tseries'

Description:

Package: tseries
Version: 0.10-22
Date: 2009-11-22
Title: Time series analysis and computational finance
Author: Compiled by Adrian Trapletti
 <a.trapletti@swissonline.ch>
Maintainer: Kurt Hornik <Kurt.Hornik@R-project.org>
Description: Package for time series analysis and computational
 finance
Depends: R (>= 2.4.0), quadprog, stats, zoo
Suggests: its
Imports: graphics, stats, utils
License: GPL-2
Packaged: 2009-11-22 19:03:45 UTC; hornik
Repository: CRAN
Date/Publication: 2009-11-22 19:06:50
Built: R 2.10.0; i386-pc-mingw32; 2009-12-01 19:32:47 UTC;
 windows

Index:

NelPlo Nelson-Plosser Macroeconomic Time Series
USeconomic U.S. Economic Variables
adf.test Augmented Dickey-Fuller Test
arma Fit ARMA Models to Time Series

.

. (etc.)

.

1.9 Getting Help on a Package | 15

Study Material. Do not distribute.

Some packages also include vignettes, which are additional documents such as intro-
ductions, tutorials, or reference cards. They are installed on your computer as part of
the package documentation when you install the package. The help page for a package
includes a list of its vignettes near the bottom.

You can see a list of all vignettes on your computer by using the vignette function:

> vignette()

You can see the vignettes for a particular package by including its name:

> vignette(package="packagename")

Each vignette has a name, which you use to view the vignette:

> vignette("vignettename")

See Also
See Recipe 1.7 for getting help on a particular function in a package.

1.10 Searching the Web for Help
Problem
You want to search the Web for information and answers regarding R.

Solution
Inside R, use the RSiteSearch function to search by keyword or phrase:

> RSiteSearch("key phrase")

Inside your browser, try using these sites for searching:

http://rseek.org
This is a Google custom search that is focused on R-specific websites.

http://stackoverflow.com/
Stack Overflow is a searchable Q&A site oriented toward programming issues such
as data structures, coding, and graphics.

http://stats.stackexchange.com/
The Statistical Analysis area on Stack Exchange is also a searchable Q&A site, but
it is oriented more toward statistics than programming.

Discussion
The RSiteSearch function will open a browser window and direct it to the search engine
on the R Project website. There you will see an initial search that you can refine. For
example, this call would start a search for “canonical correlation”:

> RSiteSearch("canonical correlation")

16 | Chapter 1: Getting Started and Getting Help

Study Material. Do not distribute.

This is quite handy for doing quick web searches without leaving R. However, the
search scope is limited to R documentation and the mailing-list archives.

The rseek.org site provides a wider search. Its virtue is that it harnesses the power of
the Google search engine while focusing on sites relevant to R. That eliminates the
extraneous results of a generic Google search. The beauty of rseek.org is that it organizes
the results in a useful way.

Figure 1-3 shows the results of visiting rseek.org and searching for “canonical correla-
tion”. The left side of the page shows general results for search R sites. The right side
is a tabbed display that organizes the search results into several categories:

• Introductions

• Task Views

• Support Lists

• Functions

• Books

• Blogs

• Related Tools

Figure 1-3. Search results from rseek.org

1.10 Searching the Web for Help | 17

Study Material. Do not distribute.

If you click on the Introductions tab, for example, you’ll find tutorial material. The
Task Views tab will show any Task View that mentions your search term. Likewise,
clicking on Functions will show links to relevant R functions. This is a good way to
zero in on search results.

Stack Overflow is a so-called Q&A site, which means that anyone can submit a question
and experienced users will supply answers—often there are multiple answers to each
question. Readers vote on the answers, so good answers tend to rise to the top. This
creates a rich database of Q&A dialogs, which you can search. Stack Overflow is
strongly problem oriented, and the topics lean toward the programming side of R.

Stack Overflow hosts questions for many programming languages; therefore, when
entering a term into their search box, prefix it with “[r]” to focus the search on questions
tagged for R. For example, searching via “[r] standard error” will select only the ques-
tions tagged for R and will avoid the Python and C++ questions.

Stack Exchange (not Overflow) has a Q&A area for Statistical Analysis. The area is
more focused on statistics than programming, so use this site when seeking answers
that are more concerned with statistics in general and less with R in particular.

See Also
If your search reveals a useful package, use Recipe 3.9 to install it on your machine.

1.11 Finding Relevant Functions and Packages
Problem
Of the 2,000+ packages for R, you have no idea which ones would be useful to you.

Solution
• Visit the list of task views at http://cran.r-project.org/web/views/. Find and read the

task view for your area, which will give you links to and descriptions of relevant
packages. Or visit http://rseek.org, search by keyword, click on the Task Views tab,
and select an applicable task view.

• Visit crantastic and search for packages by keyword.

• To find relevant functions, visit http://rseek.org, search by name or keyword, and
click on the Functions tab.

Discussion
This problem is especially vexing for beginners. You think R can solve your problems,
but you have no idea which packages and functions would be useful. A common
question on the mailing lists is: “Is there a package to solve problem X?” That is the
silent scream of someone drowning in R.

18 | Chapter 1: Getting Started and Getting Help

Study Material. Do not distribute.

As of this writing, there are more than 2,000 packages available for free download from
CRAN. Each package has a summary page with a short description and links to the
package documentation. Once you’ve located a potentially interesting package, you
would typically click on the “Reference manual” link to view the PDF documentation
with full details. (The summary page also contains download links for installing the
package, but you’ll rarely install the package that way; see Recipe 3.9.)

Sometimes you simply have a generic interest—such as Bayesian analysis, economet-
rics, optimization, or graphics. CRAN contains a set of task view pages describing
packages that may be useful. A task view is a great place to start since you get an
overview of what’s available. You can see the list of task view pages at http://cran.r
-project.org/web/views/ or search for them as described in the Solution.

Suppose you happen to know the name of a useful package—say, by seeing it men-
tioned online. A complete, alphabetical list of packages is available at http://cran.r
-project.org/web/packages/ with links to the package summary pages.

See Also
You can download and install an R package called sos that provides powerful other
ways to search for packages; see the vignette at http://cran.r-project.org/web/packages/
sos/vignettes/sos.pdf.

1.12 Searching the Mailing Lists
Problem
You have a question, and you want to search the archives of the mailing lists to see
whether your question was answered previously.

Solution
• Open http://rseek.org in your browser. Search for a keyword or other search term

from your question. When the search results appear, click on the “Support Lists”
tab.

• You can perform a search within R itself. Use the RSiteSearch function to initiate
a search:

> RSiteSearch("keyphrase")

The initial search results will appear in a browser. Under “Target”, select the
R-help sources, clear the other sources, and resubmit your query.

1.12 Searching the Mailing Lists | 19

Study Material. Do not distribute.

Discussion
This recipe is really just an application of Recipe 1.10. But it’s an important application
because you should search the mailing list archives before submitting a new question
to the list. Your question has probably been answered before.

See Also
CRAN has a list of additional resources for searching the Web; see http://cran.r-project
.org/search.html.

1.13 Submitting Questions to the Mailing Lists
Problem
You want to submit a question to the R community via the R-help mailing list.

Solution
The Mailing Lists page contains general information and instructions for using the R-
help mailing list. Here is the general process:

1. Subscribe to the R-help list at the Main R Mailing List.

2. Read the Posting Guide for instructions on writing an effective submission.

3. Write your question carefully and correctly. If appropriate, include a minimal self-
reproducing example so that others can reproduce your error or problem.

4. Mail your question to r-help@r-project.org.

Discussion
The R mailing list is a powerful resource, but please treat it as a last resort. Read the
help pages, read the documentation, search the help list archives, and search the Web.
It is most likely that your question has already been answered. Don’t kid yourself: very
few questions are unique.

After writing your question, submitting it is easy. Just mail it to r-help@r-project.org.
You must be a list subscriber, however; otherwise your email submission may be
rejected.

Your question might arise because your R code is causing an error or giving unexpected
results. In that case, a critical element of your question is the minimal self-contained
example:

Minimal
Construct the smallest snippet of R code that displays your problem. Remove
everything that is irrelevant.

20 | Chapter 1: Getting Started and Getting Help

Study Material. Do not distribute.

Self-contained
Include the data necessary to exactly reproduce the error. If the list readers can’t
reproduce it, they can’t diagnose it. For complicated data structures, use the
dump function to create an ASCII representation of your data and include it in your
message.

Including an example clarifies your question and greatly increases the probability of
getting a useful answer.

There are actually several mailing lists. R-help is the main list for general questions.
There are also many special interest group (SIG) mailing lists dedicated to particular
domains such as genetics, finance, R development, and even R jobs. You can see the
full list at https://stat.ethz.ch/mailman/listinfo. If your question is specific to one such
domain, you’ll get a better answer by selecting the appropriate list. As with R-help,
however, carefully search the SIG list archives before submitting your question.

See Also
An excellent essay by Eric Raymond and Rick Moen is entitled “How to Ask Questions
the Smart Way”. I suggest that you read it before submitting any question.

1.13 Submitting Questions to the Mailing Lists | 21

Study Material. Do not distribute.

2.14 Avoiding Some Common Mistakes
Problem
You want to avoid some of the common mistakes made by beginning users—and also
by experienced users, for that matter.

Discussion
Here are some easy ways to make trouble for yourself:

Forgetting the parentheses after a function invocation
You call an R function by putting parentheses after the name. For instance, this
line invokes the ls function:

> ls()
[1] "x" "y" "z"

However, if you omit the parentheses then R does not execute the function. Instead,
it shows the function definition, which is almost never what you want:

> ls
function (name, pos = -1, envir = as.environment(pos), all.names = FALSE,
 pattern)
{
 if (!missing(name)) {
 nameValue <- try(name)
 if (identical(class(nameValue), "try-error")) {
 name <- substitute(name)
.
. (etc.)
.

Forgetting to double up backslashes in Windows file paths
This function call appears to read a Windows file called F:\research\bio\assay.csv,
but it does not:

> tbl <- read.csv("F:\research\bio\assay.csv")

Backslashes (\) inside character strings have a special meaning and therefore need
to be doubled up. R will interpret this file name as F:researchbioassay.csv, for ex-
ample, which is not what the user wanted. See Recipe 4.5 for possible solutions.

Mistyping “<-” as “< (blank) -”
The assignment operator is <-, with no space between the < and the -:

> x <- pi # Set x to 3.1415926...

If you accidentally insert a space between < and -, the meaning changes completely:

> x < - pi # Oops! We are comparing x instead of setting it!

46 | Chapter 2: Some Basics

Study Material. Do not distribute.

This is now a comparison (<) between x and negative π (- pi). It does not change
x. If you are lucky, x is undefined and R will complain, alerting you that something
is fishy:

> x < - pi
Error: object "x" not found

If x is defined, R will perform the comparison and print a logical value, TRUE or
FALSE. That should alert you that something is wrong: an assignment does not
normally print anything:

> x <- 0 # Initialize x to zero
> x < - pi # Oops!
[1] FALSE

Incorrectly continuing an expression across lines
R reads your typing until you finish a complete expression, no matter how many
lines of input that requires. It prompts you for additional input using the + prompt
until it is satisfied. This example splits an expression across two lines:

> total <- 1 + 2 + 3 + # Continued on the next line
+ 4 + 5
> print(total)
[1] 15

Problems begin when you accidentally finish the expression prematurely, which
can easily happen:

> total <- 1 + 2 + 3 # Oops! R sees a complete expression
> + 4 + 5 # This is a new expression; R prints its value
[1] 9
> print(total)
[1] 6

There are two clues that something is amiss: R prompted you with a normal prompt
(>), not the continuation prompt (+); and it printed the value of 4 + 5.

This common mistake is a headache for the casual user. It is a nightmare for pro-
grammers, however, because it can introduce hard-to-find bugs into R scripts.

Using = instead of ==
Use the double-equal operator (==) for comparisons. If you accidentally use the
single-equal operator (=), you will irreversibly overwrite your variable:

> v == 0 # Compare v against zero
> v = 0 # Assign 0 to v, overwriting previous contents

Writing 1:n+1 when you mean 1:(n+1)
You might think that 1:n+1 is the sequence of numbers 1, 2, ..., n, n + 1. It’s not.
It is the sequence 1, 2, ..., n with 1 added to every element, giving 2, 3, ..., n, n +
1. This happens because R interprets 1:n+1 as (1:n)+1. Use parentheses to get ex-
actly what you want:

2.14 Avoiding Some Common Mistakes | 47

Study Material. Do not distribute.

> n <- 5
> 1:n+1
[1] 2 3 4 5 6
> 1:(n+1)
[1] 1 2 3 4 5 6

Getting bitten by the Recycling Rule
Vector arithmetic and vector comparisons work well when both vectors have the
same length. However, the results can be baffling when the operands are vectors
of differing lengths. Guard against this possibility by understanding and remem-
bering the Recycling Rule, Recipe 5.3.

Installing a package but not loading it with library() or require()
Installing a package is the first step toward using it, but one more step is required.
Use library or require to load the package into your search path. Until you do so,
R will not recognize the functions or datasets in the package. See Recipe 3.6:

> truehist(x,n)
Error: could not find function "truehist"
> library(MASS) # Load the MASS package into R
> truehist(x,n)
>

Writing aList[i] when you mean aList[[i]], or vice versa
If the variable lst contains a list, it can be indexed in two ways: lst[[n]] is the
nth element of the list; whereas lst[n] is a list whose only element is the nth element
of lst. That’s a big difference. See Recipe 5.7.

Using & instead of &&, or vice versa; same for | and ||
Use & and | in logical expressions involving the logical values TRUE and FALSE. See
Recipe 2.9.

Use && and || for the flow-of-control expressions inside if and while statements.

Programmers accustomed to other programming languages may reflexively use
&& and || everywhere because “they are faster.” But those operators give peculiar
results when applied to vectors of logical values, so avoid them unless that’s really
what you want.

Passing multiple arguments to a single-argument function
What do you think is the value of mean(9,10,11)? No, it’s not 10. It’s 9. The mean
function computes the mean of the first argument. The second and third arguments
are being interpreted as other, positional arguments.

Some functions, such as mean, take one argument. Other arguments, such as max
and min, take multiple arguments and apply themselves across all arguments. Be
sure you know which is which.

Thinking that max behaves like pmax, or that min behaves like pmin
The max and min functions have multiple arguments and return one value: the
maximum or minimum of all their arguments.

48 | Chapter 2: Some Basics

Study Material. Do not distribute.

The pmax and pmin functions have multiple arguments but return a vector with
values taken element-wise from the arguments. See Recipe 12.9.

Misusing a function that does not understand data frames
Some functions are quite clever regarding data frames. They apply themselves to
the individual columns of the data frame, computing their result for each individual
column. The mean and sd functions are good examples. These functions can com-
pute the mean or standard deviation of each column because they understand that
each column is a separate variable and that mixing their data is not sensible.

Sadly, not all functions are that clever. This includes the median, max, and min func-
tions. They will lump together every value from every column and compute their
result from the lump, which might not be what you want. Be aware of which func-
tions are savvy to data frames and which are not.

Posting a question to the mailing list before searching for the answer
Don’t waste your time. Don’t waste other people’s time. Before you post a question
to a mailing list or to Stack Overflow, do your homework and search the archives.
Odds are, someone has already answered your question. If so, you’ll see the answer
in the discussion thread for the question. See Recipe 1.12.

See Also
See Recipes 1.12, 2.9, 5.3, and 5.7.

2.14 Avoiding Some Common Mistakes | 49

Study Material. Do not distribute.

Study Material. Do not distribute.

CHAPTER 3

Navigating the Software

Introduction
R is a big chunk of software, first and foremost. You will inevitably spend time doing
what one does with any big piece of software: configuring it, customizing it, updating
it, and fitting it into your computing environment. This chapter will help you perform
those tasks. There is nothing here about numerics, statistics, or graphics. This is all
about dealing with R as software.

3.1 Getting and Setting the Working Directory
Problem
You want to change your working directory. Or you just want to know what it is.

Solution
Command line

Use getwd to report the working directory, and use setwd to change it:

> getwd()
[1] "/home/paul/research"
> setwd("Bayes")
> getwd()
[1] "/home/paul/research/Bayes"

Windows
From the main menu, select File → Change dir... .

OS X
From the main menu, select Misc → Change Working Directory.

For both Windows and OS X, the menu selection opens the current working directory
in a file browser. From there, you can navigate to a new working directory if desired.

51

Study Material. Do not distribute.

Discussion
Your working directory is important because it is the default location for all file input
and output—including reading and writing data files, opening and saving script files,
and saving your workspace image. When you open a file and do not specify an absolute
path, R will assume that the file is in your working directory.

The initial working directory depends upon how you started R. See Recipe 1.2.

See Also
See Recipe 4.5 for dealing with filenames in Windows.

3.2 Saving Your Workspace
Problem
You want to save your workspace without exiting from R.

Solution
Call the save.image function:

> save.image()

Discussion
Your workspace holds your R variables and functions, and it is created when R starts.
The workspace is held in your computer’s main memory and lasts until you exit from
R, at which time you can save it.

However, you may want to save your workspace without exiting R. You might go to
lunch, for example, and want to protect your work against an unexpected power outage
or machine crash. Use the save.image function.

The workspace is written to a file called .RData in the working directory. When R starts,
it looks for that file and, if found, initializes the workspace from it.

A sad fact is that the workspace does not include your open graphs: that cool graph on
your screen disappears when you exit R, and there is no simple way to save and restore
it. So before you exit, save the data and the R code that will re-create your graphs.

See Also
See Recipe 1.2 for how to save your workspace when exiting R and Recipe 3.1 for setting
the working directory.

52 | Chapter 3: Navigating the Software

Study Material. Do not distribute.

3.3 Viewing Your Command History
Problem
You want to see your recent sequence of commands.

Solution
Scroll backward by pressing the up arrow or Ctrl-P. Or use the history function to view
your most recent input:

> history()

Discussion
The history function will display your most recent commands. By default it shows the
most recent 25 lines, but you can request more:

> history(100) # Show 100 most recent lines of history
> history(Inf) # Show entire saved history

For very recent commands, simply scroll backward through your input using the
command-line editing feature: pressing either the up arrow or Ctrl-P will cause your
previous typing to reappear, one line at a time.

If you’ve exited from R then you can still see your command history. It saves the history
in a file called .Rhistory in the working directory, if requested. Open the file with a text
editor and then scroll to the bottom; you will see your most recent typing.

3.4 Saving the Result of the Previous Command
Problem
You typed an expression into R that calculated the value, but you forgot to save the
result in a variable.

Solution
A special variable called .Last.value saves the value of the most recently evaluated
expression. Save it to a variable before you type anything else.

Discussion
It is frustrating to type a long expression or call a long-running function but then forget
to save the result. Fortunately, you needn’t retype the expression nor invoke the func-
tion again—the result was saved in the .Last.value variable:

3.4 Saving the Result of the Previous Command | 53

Study Material. Do not distribute.

> aVeryLongRunningFunction() # Oops! Forgot to save the result!
[1] 147.6549
> x <- .Last.value # Capture the result now
> x
[1] 147.6549

A word of caution: the contents of .Last.value are overwritten every time you type
another expression, so capture the value immediately. If you don’t remember until
another expression has been evaluated, it’s too late.

See Also
See Recipe 3.3 to recall your command history.

3.5 Displaying the Search Path
Problem
You want to see the list of packages currently loaded into R.

Solution
Use the search function with no arguments:

> search()

Discussion
The search path is a list of packages that are currently loaded into memory and available
for use. Although many packages may be installed on your computer, only a few of
them are actually loaded into the R interpreter at any given moment. You might be
wondering which packages are loaded right now.

With no arguments, the search function returns the list of loaded packages. It produces
an output like this:

> search()
[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"

Your machine may return a different result, depending on what’s installed there. The
return value of search is a vector of strings. The first string is ".GlobalEnv", which refers
to your workspace. Most strings have the form "package:packagename", which indicates
that the package called packagename is currently loaded into R. In this example, the
loaded packages include stats, graphics, grDevices, utils, and so forth.

R uses the search path to find functions. When you type a function name, R searches
the path—in the order shown—until it finds the function in a loaded package. If the
function is found, R executes it. Otherwise, it prints an error message and stops. (There

54 | Chapter 3: Navigating the Software

Study Material. Do not distribute.

is actually a bit more to it: the search path can contain environments, not just packages,
and the search algorithm is different when initiated by an object within a package; see
the R Language Definition for details.)

Since your workspace (.GlobalEnv) is first in the list, R looks for functions in your
workspace before searching any packages. If your workspace and a package both con-
tain a function with the same name, your workspace will “mask” the function; this
means that R stops searching after it finds your function and so never sees the package
function. This is a blessing if you want to override the package function...and a curse
if you still want access to the package function.

R also uses the search path to find R datasets (not files) via a similar procedure.

Unix users: don’t confuse the R search path with the Unix search path (the PATH envi-
ronment variable). They are conceptually similar but two distinct things. The R search
path is internal to R and is used by R only to locate functions and datasets, whereas the
Unix search path is used by Unix to locate executable programs.

See Also
See Recipe 3.6 for loading packages into R, Recipe 3.8 for the list of installed packages
(not just loaded packages), and Recipe 5.31 for inserting data frames into the search
path.

3.6 Accessing the Functions in a Package
Problem
A package installed on your computer is either a standard package or a package down-
loaded by you. When you try using functions in the package, however, R cannot find
them.

Solution
Use either the library function or the require function to load the package into R:

> library(packagename)

Discussion
R comes with several standard packages, but not all of them are automatically loaded
when you start R. Likewise, you can download and install many useful packages from
CRAN, but they are not automatically loaded when you run R. The MASS package comes
standard with R, for example, but you could get this message when using the lda func-
tion in that package:

> lda(x)
Error: could not find function "lda"

3.6 Accessing the Functions in a Package | 55

Study Material. Do not distribute.

R is complaining that it cannot find the lda function among the packages currently
loaded into memory.

When you use the library function or the require function, R loads the package into
memory and its contents become immediately available to you:

> lda(f ~ x + y)
Error: could not find function "lda"
> library(MASS) # Load the MASS library into memory
> lda(f ~ x + y) # Now R can find the function
Call:
lda(f ~ x + y)

Prior probabilities of groups:
.
. (etc.)
.

Before calling library, R does not recognize the function name. Afterward, the package
contents are available and calling the lda function works.

Notice that you needn’t enclose the package name in quotes.

The require function is nearly identical to library. It has two features that are useful
for writing scripts. It returns TRUE if the package was successfully loaded and FALSE
otherwise. It also generates a mere warning if the load fails—unlike library, which
generates an error.

Both functions have a key feature: they do not reload packages that are already loaded,
so calling twice for the same package is harmless. This is especially nice for writing
scripts. The script can load needed packages while knowing that loaded packages will
not be reloaded.

The detach function will unload a package that is currently loaded:

> detach(package:MASS)

Observe that the package name must be qualified, as in package:MASS.

One reason to unload a package is that it contains a function whose name conflicts
with a same-named function lower on the search list. When such a conflict occurs, we
say the higher function masks the lower function. You no longer “see” the lower func-
tion because R stops searching when it finds the higher function. Hence unloading the
higher package unmasks the lower name.

See Also
See Recipe 3.5.

56 | Chapter 3: Navigating the Software

Study Material. Do not distribute.

3.7 Accessing Built-in Datasets
Problem
You want to use one of R’s built-in datasets.

Solution
The standard datasets distributed with R are already available to you, since the
datasets package is in your search path.

To access datasets in other packages, use the data function while giving the dataset
name and package name:

> data(dsname, package="pkgname")

Discussion
R comes with many built-in datasets. These datasets are useful when you are learning
about R, since they provide data with which to experiment.

Many datasets are kept in a package called (naturally enough) datasets, which is dis-
tributed with R. That package is in your search path, so you have instant access to its
contents. For example, you can use the built-in dataset called pressure:

> head(pressure)
 temperature pressure
1 0 0.0002
2 20 0.0012
3 40 0.0060
4 60 0.0300
5 80 0.0900
6 100 0.2700

If you want to know more about pressure, use the help function to learn about it and
other datasets:

> help(pressure) # Bring up help page for pressure dataset

You can see a table of contents for datasets by calling the data function with no
arguments:

> data() # Bring up a list of datasets

Any R package can elect to include datasets that supplement those supplied in
datasets. The MASS package, for example, includes many interesting datasets. Use the
data function to access a dataset in a specific package by using the package argument.
MASS includes a dataset called Cars93, which you can access in this way:

> data(Cars93, package="MASS")

After this call to data, the Cars93 dataset is available to you; then you can execute
summary(Cars93), head(Cars93), and so forth.

3.7 Accessing Built-in Datasets | 57

Study Material. Do not distribute.

When attaching a package to your search list (e.g., via library(MASS)), you don’t need
to call data. Its datasets become available automatically when you attach it.

You can see a list of available datasets in MASS, or any other package, by using the data
function with a package argument and no dataset name:

> data(package="pkgname")

See Also
See Recipe 3.5 for more about the search path and Recipe 3.6 for more about packages
and the library function.

3.8 Viewing the List of Installed Packages
Problem
You want to know what packages are installed on your machine.

Solution
Use the library function with no arguments for a basic list. Use installed.packages to
see more detailed information about the packages.

Discussion
The library function with no arguments prints a list of installed packages. The list can
be quite long. On a Linux computer, these might be the first few lines of output:

> library()
Packages in library '/usr/local/lib/R/site-library':

boot Bootstrap R (S-Plus) Functions (Canty)
CGIwithR CGI Programming in R
class Functions for Classification
cluster Cluster Analysis Extended Rousseeuw et al.
DBI R Database Interface
expsmooth Data sets for "Forecasting with exponential
 smoothing"
.
. (etc.)
.

On Windows and OS X, the list is displayed in a pop-up window.

You can get more details via the installed.packages function, which returns a matrix
of information regarding the packages on your machine. Each matrix row corresponds
to one installed package. The columns contain the information such as package name,
library path, and version. The information is taken from R’s internal database of in-
stalled packages.

58 | Chapter 3: Navigating the Software

Study Material. Do not distribute.

To extract useful information from this matrix, use normal indexing methods. This
Windows snippet calls installed.packages and extracts both the Package and
Version columns, letting you see what version of each package is installed:

> installed.packages()[,c("Package","Version")]
 Package Version
acepack "acepack" "1.3-2.2"
alr3 "alr3" "1.0.9"
base "base" "2.4.1"
boot "boot" "1.2-27"
bootstrap "bootstrap" "1.0-20"
calibrate "calibrate" "0.0"
car "car" "1.2-1"
chron "chron" "2.3-12"
class "class" "7.2-30"
cluster "cluster" "1.11.4"
.
. (etc.)
.

See Also
See Recipe 3.6 for loading a package into memory.

3.9 Installing Packages from CRAN
Problem
You found a package on CRAN, and now you want to install it on your computer.

Solution
Command line

Use the install.packages function, putting the name of the package in quotes:

> install.packages("packagename")

Windows
You can also download and install via Packages → Install package(s)... from the
main menu.

OS X
You can also download and install via Packages & Data → Package Installer from
the main menu.

On all platforms, you will be asked to select a CRAN mirror.

On Windows and OS X, you will also be asked to select the packages for download.

3.9 Installing Packages from CRAN | 59

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Study Material. Do not distribute.

System-wide Installation on Linux or Unix
On Linux or Unix systems, root privileges are required to install packages into the
system-wide libraries because those directories are not usually writable by mere mor-
tals. For that reason, installations are usually performed by a system administrator. If
the administrator is unwilling or unable to do a system-wide installation, you can still
install packages in your personal library.

If you have root privileges:

1. Run su or sudo to start a root shell.

2. Start an R session in the root shell.

3. From there, execute the install.packages function.

If you don’t have root privileges, you’ll know very quickly. The install.packages func-
tion will stop, warning you that it cannot write into the necessary directories. Then it
will ask if you want to create a personal library instead. If you do, it will create the
necessary directories in your home directory and install the package there.

Discussion
Installing a package locally is the first step toward using it. The installer will prompt
you for a mirror site from which it can download the package files:

--- Please select a CRAN mirror for use in this session ---

It will then display a list of CRAN mirror sites. Select one close to you.

The official CRAN server is a relatively modest machine generously hosted by the
Department of Statistics and Mathematics at WU Wien, Vienna, Austria. If every R
user downloaded from the official server, it would buckle under the load, so there are
numerous mirror sites around the globe. You are strongly encouraged to find and use
a nearby mirror.

If the new package depends upon other packages that are not already installed locally,
then the R installer will automatically download and install those required packages.
This is a huge benefit that frees you from the tedious task of identifying and resolving
those dependencies.

There is a special consideration when installing on Linux or Unix. You can install the
package either in the system-wide library or in your personal library. Packages in the
system-wide library are available to everyone; packages in your personal library are
(normally) used only by you. So a popular, well-tested package would likely go in the
system-wide library whereas an obscure or untested package would go into your per-
sonal library.

By default, install.packages assumes you are performing a system-wide install. To
install into your personal library, first create a directory for the library—for example,
~/lib/R:

60 | Chapter 3: Navigating the Software

Study Material. Do not distribute.

