
You can remove multiple elements this way, too:

> years[c("Carter","Clinton")] <- NULL # Remove two elements
> years
$Kennedy
[1] 1960

5.11 Flatten a List into a Vector
Problem
You want to flatten all the elements of a list into a vector.

Solution
Use the unlist function.

Discussion
There are many contexts that require a vector. Basic statistical functions work on vec-
tors but not on lists, for example. If iq.scores is a list of numbers, then we cannot
directly compute their mean:

> mean(iq.scores)
[1] NA
Warning message:
In mean.default(iq.scores) :
 argument is not numeric or logical: returning NA

Instead, we must flatten the list into a vector using unlist and then compute the mean
of the result:

> mean(unlist(iq.scores))
[1] 106.4452

Here is another example. We can cat scalars and vectors, but we cannot cat a list:

> cat(iq.scores, "\n")
Error in cat(list(...), file, sep, fill, labels, append) :
 argument 1 (type 'list') cannot be handled by 'cat'

One solution is to flatten the list into a vector before printing:

> cat("IQ Scores:", unlist(iq.scores), "\n")
IQ Scores: 89.73383 116.5565 113.0454

See Also
Conversions such as this are discussed more fully in Recipe 5.33.

5.11 Flatten a List into a Vector | 115

Study Material. Do not distribute.

5.12 Removing NULL Elements from a List
Problem
Your list contains NULL values. You want to remove them.

Solution
Suppose lst is a list some of whose elements are NULL. This expression will remove the
NULL elements:

> lst[sapply(lst, is.null)] <- NULL

Discussion
Finding and removing NULL elements from a list is surprisingly tricky. I wrote the fol-
lowing expression after trying several other ways, including the obvious ones, and fail-
ing. Here’s how it works:

1. R calls sapply to apply the is.null function to every element of the list.

2. sapply returns a vector of logical values that are TRUE wherever the corresponding
list element is NULL.

3. R selects values from the list according to that vector.

4. R assigns NULL to the selected items, removing them from the list.

The curious reader may be wondering how a list can contain NULL elements, given that
we remove elements by setting them to NULL (Recipe 5.10). The answer is that we can
create a list containing NULL elements:

> lst <- list("Moe", NULL, "Curly") # Create list with NULL element
> lst
[[1]]
[1] "Moe"

[[2]]
NULL

[[3]]
[1] "Curly"

> lst[sapply(lst, is.null)] <- NULL # Remove NULL element from list
> lst
[[1]]
[1] "Moe"

[[2]]
[1] "Curly"

116 | Chapter 5: Data Structures

Study Material. Do not distribute.

See Also
See Recipe 5.10 for how to remove list elements.

5.13 Removing List Elements Using a Condition
Problem
You want to remove elements from a list according to a conditional test, such as re-
moving elements that are negative or smaller than some threshold.

Solution
Build a logical vector based on the condition. Use the vector to select list elements and
then assign NULL to those elements. This assignment, for example, removes all negative
value from lst:

> lst[lst < 0] <- NULL

Discussion
This recipe is based on two useful features of R. First, a list can be indexed by a logical
vector. Wherever the vector element is TRUE, the corresponding list element is selected.
Second, you can remove a list element by assigning NULL to it.

Suppose we want to remove elements from lst whose value is zero. We construct a
logical vector which identifies the unwanted values (lst == 0). Then we select those
elements from the list and assign NULL to them:

> lst[lst == 0] <- NULL

This expression will remove NA values from the list:

> lst[is.na(lst)] <- NULL

So far, so good. The problems arise when you cannot easily build the logical vector.
That often happens when you want to use a function that cannot handle a list. Suppose
you want to remove list elements whose absolute value is less than 1. The abs function
will not handle a list, unfortunately:

> lst[abs(lst) < 1] <- NULL
Error in abs(lst) : non-numeric argument to function

The simplest solution is flattening the list into a vector by calling unlist and then testing
the vector:

> lst[abs(unlist(lst)) < 1] <- NULL

A more elegant solution uses lapply to apply the function to every element of the list:

> lst[lapply(lst,abs) < 1] <- NULL

5.13 Removing List Elements Using a Condition | 117

Study Material. Do not distribute.

Lists can hold complex objects, too, not just atomic values. Suppose that mods is a list
of linear models created by the lm function. This expression will remove any model
whose R2 value is less than 0.30:

> mods[sapply(mods, function(m) summary(m)$r.squared < 0.3)] <- NULL

See Also
See Recipes 5.7, 5.10, 5.11, 6.2, and 11.1.

5.14 Initializing a Matrix
Problem
You want to create a matrix and initialize it from given values.

Solution
Capture the data in a vector or list, and then use the matrix function to shape the data
into a matrix. This example shapes a vector into a 2 × 3 matrix (i.e., two rows and three
columns):

> matrix(vec, 2, 3)

Discussion
Suppose we want to create and initialize a 2 × 3 matrix. We can capture the initial data
inside a vector and then shape it using the matrix function:

> theData <- c(1.1, 1.2, 2.1, 2.2, 3.1, 3.2)
> mat <- matrix(theData, 2, 3)
> mat
 [,1] [,2] [,3]
[1,] 1.1 2.1 3.1
[2,] 1.2 2.2 3.2

The first argument of matrix is the data, the second argument is the number of rows,
and the third argument is the number of columns. Observe that the matrix was filled
column by column, not row by row.

It’s common to initialize an entire matrix to one value such as zero or NA. If the first
argument of matrix is a single value, then R will apply the Recycling Rule and auto-
matically replicate the value to fill the entire matrix:

> matrix(0, 2, 3) # Create an all-zeros matrix
 [,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 0
> matrix(NA, 2, 3) # Create a matrix populated with NA
 [,1] [,2] [,3]

118 | Chapter 5: Data Structures

Study Material. Do not distribute.

[1,] NA NA NA
[2,] NA NA NA

You can create a matrix with a one-liner, of course, but it becomes difficult to read:

> mat <- matrix(c(1.1, 1.2, 1.3, 2.1, 2.2, 2.3), 2, 3)

A common idiom in R is typing the data itself in a rectangular shape that reveals the
matrix structure:

> theData <- c(1.1, 1.2, 1.3,
+ 2.1, 2.2, 2.3)
> mat <- matrix(theData, 2, 3, byrow=TRUE)

Setting byrow=TRUE tells matrix that the data is row-by-row and not column-by-column
(which is the default). In condensed form, that becomes:

> mat <- matrix(c(1.1, 1.2, 1.3,
+ 2.1, 2.2, 2.3),
+ 2, 3, byrow=TRUE)

Expressed this way, the reader quickly sees the two rows and three columns of data.

There is a quick-and-dirty way to turn a vector into a matrix: just assign dimensions to
the vector. This was discussed in the “Introduction”. The following example creates a
vanilla vector and then shapes it into a 2 × 3 matrix:

> v <- c(1.1, 1.2, 1.3, 2.1, 2.2, 2.3)
> dim(v) <- c(2,3)
> v
 [,1] [,2] [,3]
[1,] 1.1 1.3 2.2
[2,] 1.2 2.1 2.3

Personally, I find this more opaque than using matrix, especially since there is no
byrow option here.

See Also
See Recipe 5.3.

5.15 Performing Matrix Operations
Problem
You want to perform matrix operations such as transpose, matrix inversion, matrix
multiplication, or constructing an identity matrix.

Solution
t(A)

Matrix transposition of A

5.15 Performing Matrix Operations | 119

Study Material. Do not distribute.

solve(A)
Matrix inverse of A

A %*% B
Matrix multiplication of A and B

diag(n)
An n-by-n diagonal (identity) matrix

Discussion
Recall that A*B is element-wise multiplication whereas A %*% B is matrix multiplication.

All these functions return a matrix. Their arguments can be either matrices or data
frames. If they are data frames then R will first convert them to matrices (although this
is useful only if the data frame contains exclusively numeric values).

5.16 Giving Descriptive Names to the Rows and Columns of a
Matrix
Problem
You want to assign descriptive names to the rows or columns of a matrix.

Solution
Every matrix has a rownames attribute and a colnames attribute. Assign a vector of char-
acter strings to the appropriate attribute:

> rownames(mat) <- c("rowname1", "rowname2", ..., "rownamem")
> colnames(mat) <- c("colname1", "colname2", ..., "colnamen")

Discussion
R lets you assign names to the rows and columns of a matrix, which is useful for printing
the matrix. R will display the names if they are defined, enhancing the readability of
your output. Consider this matrix of correlations between the prices of IBM, Microsoft,
and Google stock:

> print(tech.corr)
 [,1] [,2] [,3]
[1,] 1.000 0.556 0.390
[2,] 0.556 1.000 0.444
[3,] 0.390 0.444 1.000

In this form, the matrix output’s interpretation is not self-evident. Yet if we define
names for the rows and columns, then R will annotate the matrix output with the
names:

120 | Chapter 5: Data Structures

Study Material. Do not distribute.

> colnames(tech.corr) <- c("IBM","MSFT","GOOG")
> rownames(tech.corr) <- c("IBM","MSFT","GOOG")
> print(tech.corr)
 IBM MSFT GOOG
IBM 1.000 0.556 0.390
MSFT 0.556 1.000 0.444
GOOG 0.390 0.444 1.000

Now the reader knows at a glance which rows and columns apply to which stocks.

Another advantage of naming rows and columns is that you can refer to matrix elements
by those names:

> tech.corr["IBM","GOOG"] # What is the correlation between IBM and GOOG?
[1] 0.39

5.17 Selecting One Row or Column from a Matrix
Problem
You want to select a single row or a single column from a matrix.

Solution
The solution depends on what you want. If you want the result to be a simple vector,
just use normal indexing:

> vec <- mat[1,] # First row
> vec <- mat[,3] # Third column

If you want the result to be a one-row matrix or a one-column matrix, then include the
drop=FALSE argument:

> row <- mat[1,,drop=FALSE] # First row in a one-row matrix
> col <- mat[,3,drop=FALSE] # Third column in a one-column matrix

Discussion
Normally, when you select one row or column from a matrix, R strips off the dimen-
sions. The result is a dimensionless vector:

> mat[1,]
[1] 1 4 7 10
> mat[,3]
[1] 7 8 9

When you include the drop=FALSE argument, however, R retains the dimensions. In that
case, selecting a row returns a row vector (a 1 × n matrix):

> mat[1,,drop=FALSE]
 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10

5.17 Selecting One Row or Column from a Matrix | 121

Study Material. Do not distribute.

Likewise, selecting a column with drop=FALSE returns a column vector (an n × 1 matrix):

> mat[,3,drop=FALSE]
 [,1]
[1,] 7
[2,] 8
[3,] 9

5.18 Initializing a Data Frame from Column Data
Problem
Your data is organized by columns, and you want to assemble it into a data frame.

Solution
If your data is captured in several vectors and/or factors, use the data.frame function
to assemble them into a data frame:

> dfrm <- data.frame(v1, v2, v3, f1, f2)

If your data is captured in a list that contains vectors and/or factors, use instead
as.data.frame:

> dfrm <- as.data.frame(list.of.vectors)

Discussion
A data frame is a collection of columns, each of which corresponds to an observed
variable (in the statistical sense, not the programming sense). If your data is already
organized into columns, then it’s easy to build a data frame.

The data.frame function can construct a data frame from vectors, where each vector is
one observed variable. Suppose you have two numeric predictor variables, one cate-
gorical predictor variable, and one response variable. The data.frame function can cre-
ate a data frame from your vectors:

> dfrm <- data.frame(pred1, pred2, pred3, resp)
> dfrm
 pred1 pred2 pred3 resp
1 -2.7528917 -1.40784130 AM 12.57715
2 -0.3626909 0.31286963 AM 21.02418
3 -1.0416039 -0.69685664 PM 18.94694
4 1.2666820 -1.27511434 PM 18.98153
5 0.7806372 -0.27292745 AM 19.59455
6 -1.0832624 0.73383339 AM 20.71605
7 -2.0883305 0.96816822 PM 22.70062
8 -0.7063653 -0.84476203 PM 18.40691
9 -0.8394022 0.31530793 PM 21.00930
10 -0.4966884 -0.08030948 AM 19.31253

122 | Chapter 5: Data Structures

Study Material. Do not distribute.

Notice that data.frame takes the column names from your program variables. You can
override that default by supplying explicit column names:

> dfrm <- data.frame(p1=pred1, p2=pred2, p3=pred3, r=resp)
> dfrm
 p1 p2 p3 r
1 -2.7528917 -1.40784130 AM 12.57715
2 -0.3626909 0.31286963 AM 21.02418
3 -1.0416039 -0.69685664 PM 18.94694
.
. (etc.)
.

Alternatively, your data may be organized into vectors but those vectors are held in a
list, not individual program variables, like this:

> lst <- list(p1=pred1, p2=pred2, p3=pred3, r=resp)

No problem. Use the as.data.frame function to create a data frame from the list of
vectors:

> as.data.frame(lst)
 p1 p2 p3 r
1 -2.7528917 -1.40784130 AM 12.57715
2 -0.3626909 0.31286963 AM 21.02418
3 -1.0416039 -0.69685664 PM 18.94694
.
. (etc.)
.

5.19 Initializing a Data Frame from Row Data
Problem
Your data is organized by rows, and you want to assemble it into a data frame.

Solution
Store each row in a one-row data frame. Store the one-row data frames in a list. Use
rbind and do.call to bind the rows into one, large data frame:

> dfrm <- do.call(rbind, obs)

Here, obs is a list of one-row data frames.

Discussion
Data often arrives as a collection of observations. Each observation is a record or tuple
that contains several values, one for each observed variable. The lines of a flat file are
usually like that: each line is one record, each record contains several columns, and
each column is a different variable (see Recipe 4.12). Such data is organized by

5.19 Initializing a Data Frame from Row Data | 123

Study Material. Do not distribute.

observation, not by variable. In other words, you are given rows one at a time rather
than columns one at a time.

Each such row might be stored in several ways. One obvious way is as a vector. If you
have purely numerical data, use a vector.

However, many datasets are a mixture of numeric, character, and categorical data, in
which case a vector won’t work. I recommend storing each such heterogeneous row in
a one-row data frame. (You could store each row in a list, but this recipe gets a little
more complicated.)

For concreteness, let’s assume that you have ten rows with four variables per observa-
tion: pred1, pred2, pred2, and resp. Each row is stored in a one-row data frame, so you
have ten such data frames. Those data frames are stored in a list called obs. The first
element of obs might look like this:

> obs[[1]]
 pred1 pred2 pred3 resp
1 -1.197 0.36 AM 18.701

This recipe works also if your observations are stored in vectors rather than one-row
data frames.

We need to bind together those rows into a data frame. That’s what the rbind function
does. It binds its arguments in such a way that each argument becomes one row in the
result. If we rbind the first two observations, for example, we get a two-row data frame:

> rbind(obs[[1]], obs[[2]])
 pred1 pred2 pred3 resp
1 -1.197 0.36 AM 18.701
2 -0.952 1.23 PM 25.709

We want to bind together every observation, not just the first two, so we tap into the
vector processing of R. The do.call function will expand obs into one, long argument
list and call rbind with that long argument list:

> do.call(rbind,obs)
 pred1 pred2 pred3 resp
1 -1.197 0.360 AM 18.701
2 -0.952 1.230 PM 25.709
3 0.279 0.423 PM 21.572
4 -1.445 -1.846 AM 14.392
5 0.822 -0.246 AM 19.841
6 1.247 1.254 PM 25.637
7 -0.394 1.563 AM 24.585
8 -1.248 -1.264 PM 16.770
9 -0.652 -2.344 PM 14.915
10 -1.171 -0.776 PM 17.948

The result is a data frame built from our rows of data.

Sometimes, for reasons beyond your control, the rows of your data are stored in lists
rather than one-row data frames. You may be dealing with rows returned by a database
package, for example. In that case, obs will be a list of lists, not a list of data frames.

124 | Chapter 5: Data Structures

Study Material. Do not distribute.

We first transform the rows into data frames using the Map function and then apply this
recipe:

> dfrm <- do.call(rbind,Map(as.data.frame,obs))

See Also
See Recipe 5.18 if your data is organized by columns, not rows; see Recipe 12.18 to
learn more about do.call.

5.20 Appending Rows to a Data Frame
Problem
You want to append one or more new rows to a data frame.

Solution
Create a second, temporary data frame containing the new rows. Then use the rbind
function to append the temporary data frame to the original data frame.

Discussion
Suppose we want to append a new row to our data frame of Chicago-area cities. First,
we create a one-row data frame with the new data:

> newRow <- data.frame(city="West Dundee", county="Kane", state="IL", pop=5428)

Next, we use the rbind function to append that one-row data frame to our existing data
frame:

> suburbs <- rbind(suburbs, newRow)
> suburbs
 city county state pop
1 Chicago Cook IL 2853114
2 Kenosha Kenosha WI 90352
3 Aurora Kane IL 171782
4 Elgin Kane IL 94487
5 Gary Lake(IN) IN 102746
6 Joliet Kendall IL 106221
7 Naperville DuPage IL 147779
8 Arlington Heights Cook IL 76031
9 Bolingbrook Will IL 70834
10 Cicero Cook IL 72616
11 Evanston Cook IL 74239
12 Hammond Lake(IN) IN 83048
13 Palatine Cook IL 67232
14 Schaumburg Cook IL 75386
15 Skokie Cook IL 63348
16 Waukegan Lake(IL) IL 91452
17 West Dundee Kane IL 5428

5.20 Appending Rows to a Data Frame | 125

Study Material. Do not distribute.

The rbind function tells R that we are appending a new row to suburbs, not a new
column. It may be obvious to you that newRow is a row and not a column, but it is not
obvious to R. (Use the cbind function to append a column.)

One word of caution. The new row must use the same column names as the data frame.
Otherwise, rbind will fail.

We can combine these two steps into one, of course:

> suburbs <- rbind(suburbs,
+ data.frame(city="West Dundee", county="Kane", state="IL", pop=5428))

We can even extend this technique to multiple new rows because rbind allows multiple
arguments:

> suburbs <- rbind(suburbs,
+ data.frame(city="West Dundee", county="Kane", state="IL", pop=5428),
+ data.frame(city="East Dundee", county="Kane", state="IL", pop=2955))

Do not use this recipe to append many rows to a large data frame. That
would force R to reallocate a large data structure repeatedly, which is a
very slow process. Build your data frame using more efficient means,
such as those in Recipes 5.19 or 5.21.

5.21 Preallocating a Data Frame
Problem
You are building a data frame, row by row. You want to preallocate the space instead
of appending rows incrementally.

Solution
Create a data frame from generic vectors and factors using the functions numeric(n),
character(n), and factor(n):

> dfrm <- data.frame(colname1=numeric(n), colname2=character(n), ... etc. ...)

Here, n is the number of rows needed for the data frame.

Discussion
Theoretically, you can build a data frame by appending new rows, one by one. That’s
OK for small data frames, but building a large data frame in that way can be tortuous.
The memory manager in R works poorly when one new row is repeatedly appended to
a large data structure. Hence your R code will run very slowly.

One solution is to preallocate the data frame—assuming you know the required num-
ber of rows. By preallocating the data frame once and for all, you sidestep problems
with the memory manager.

126 | Chapter 5: Data Structures

Study Material. Do not distribute.

Suppose you want to create a data frame with 1,000,000 rows and three columns: two
numeric and one character. Use the numeric and character functions to preallocate the
columns; then join them together using data.frame:

> N <- 1000000
> dfrm <- data.frame(dosage=numeric(N), lab=character(N), response=numeric(N))

Now you have a data frame with the correct dimensions, 1,000,000 × 3, waiting to
receive its contents.

Data frames can contain factors, but preallocating a factor is a little trickier. You can’t
simply call factor(n). You need to specify the factor’s levels because you are creating
it. Continuing our example, suppose you want the lab column to be a factor, not a
character string, and that the possible levels are NJ, IL, and CA. Include the levels in the
column specification, like this:

> N <- 1000000
> dfrm <- data.frame(dosage=numeric(N),
+ lab=factor(N, levels=c("NJ", "IL", "CA")),
+ response=numeric(N))

5.22 Selecting Data Frame Columns by Position
Problem
You want to select columns from a data frame according to their position.

Solution
To select a single column, use this list operator:

dfrm[[n]]
Returns one column—specifically, the nth column of dfrm.

To select one or more columns and package them in a data frame, use the following
sublist expressions:

dfrm[n]
Returns a data frame consisting solely of the nth column of dfrm.

dfrm[c(n1, n2, ..., nk)]
Returns a data frame built from the columns in positions n1, n2, ..., nk of dfrm.

You can use matrix-style subscripting to select one or more columns:

dfrm[, n]
Returns the nth column (assuming that n contains exactly one value).

dfrm[, c(n1, n2, ..., nk)]
Returns a data frame built from the columns in positions n1, n2, ..., nk.

5.22 Selecting Data Frame Columns by Position | 127

Study Material. Do not distribute.

Note that the matrix-style subscripting can return two different data types (either col-
umn or data frame) depending upon whether you select one column or multiple
columns.

Discussion
There are a bewildering number of ways to select columns from a data frame. The
choices can be confusing until you understand the logic behind the alternatives. As you
read this explanation, notice how a slight change in syntax—a comma here, a double-
bracket there—changes the meaning of the expression.

Let’s play with the population data for the 16 largest cities in the Chicago metropolitan
area:

> suburbs
 city county state pop
1 Chicago Cook IL 2853114
2 Kenosha Kenosha WI 90352
3 Aurora Kane IL 171782
4 Elgin Kane IL 94487
5 Gary Lake(IN) IN 102746
6 Joliet Kendall IL 106221
7 Naperville DuPage IL 147779
8 Arlington Heights Cook IL 76031
9 Bolingbrook Will IL 70834
10 Cicero Cook IL 72616
11 Evanston Cook IL 74239
12 Hammond Lake(IN) IN 83048
13 Palatine Cook IL 67232
14 Schaumburg Cook IL 75386
15 Skokie Cook IL 63348
16 Waukegan Lake(IL) IL 91452

Use simple list notation to select exactly one column, such as the first column:

> suburbs[[1]]
 [1] "Chicago" "Kenosha" "Aurora" "Elgin"
 [5] "Gary" "Joliet" "Naperville" "Arlington Heights"
 [9] "Bolingbrook" "Cicero" "Evanston" "Hammond"
[13] "Palatine" "Schaumburg" "Skokie" "Waukegan"

The first column of suburbs is a vector, so that’s what suburbs[[1]] returns: a vector.
If the first column were a factor, we’d get a factor.

The result differs when you use the single-bracket notation, as in suburbs[1]
or suburbs[c(1,3)]. You still get the requested columns, but R wraps them in a data
frame. This example returns the first column wrapped in a data frame:

> suburbs[1]
 city
1 Chicago
2 Kenosha
3 Aurora
4 Elgin

128 | Chapter 5: Data Structures

Study Material. Do not distribute.

5 Gary
6 Joliet
7 Naperville
8 Arlington Heights
9 Bolingbrook
10 Cicero
11 Evanston
12 Hammond
13 Palatine
14 Schaumburg
15 Skokie
16 Waukegan

The next example returns the first and third columns wrapped in a data frame:

> suburbs[c(1,3)]
 city pop
1 Chicago 2853114
2 Kenosha 90352
3 Aurora 171782
4 Elgin 94487
5 Gary 102746
6 Joliet 106221
7 Naperville 147779
8 Arlington Heights 76031
9 Bolingbrook 70834
10 Cicero 72616
11 Evanston 74239
12 Hammond 83048
13 Palatine 67232
14 Schaumburg 75386
15 Skokie 63348
16 Waukegan 91452

A major source of confusion is that suburbs[[1]] and suburbs[1] look similar but pro-
duce very different results:

suburbs[[1]]
This returns one column.

suburbs[1]
This returns a data frame, and the data frame contains exactly one column. This
is a special case of dfrm[c(n1,n2, ..., nk)]. We don’t need the c(...) construct
because there is only one n.

The point here is that “one column” is different from “a data frame that contains one
column.” The first expression returns a column, so it’s a vector or a factor. The second
expression returns a data frame, which is different.

R lets you use matrix notation to select columns, as shown in the Solution. But an odd
quirk can bite you: you might get a column or you might get a data frame, depending
upon many subscripts you use. In the simple case of one index you get a column, like
this:

5.22 Selecting Data Frame Columns by Position | 129

Study Material. Do not distribute.

> suburbs[,1]
 [1] "Chicago" "Kenosha" "Aurora" "Elgin"
 [5] "Gary" "Joliet" "Naperville" "Arlington Heights"
 [9] "Bolingbrook" "Cicero" "Evanston" "Hammond"
[13] "Palatine" "Schaumburg" "Skokie" "Waukegan"

But using the same matrix-style syntax with multiple indexes returns a data frame:

> suburbs[,c(1,4)]
 city pop
1 Chicago 2853114
2 Kenosha 90352
3 Aurora 171782
4 Elgin 94487
5 Gary 102746
6 Joliet 106221
7 Naperville 147779
8 Arlington Heights 76031
9 Bolingbrook 70834
10 Cicero 72616
11 Evanston 74239
12 Hammond 83048
13 Palatine 67232
14 Schaumburg 75386
15 Skokie 63348
16 Waukegan 91452

This creates a problem. Suppose you see this expression in some old R script:

dfrm[,vec]

Quick, does that return a column or a data frame? Well, it depends. If vec contains one
value then you get a column; otherwise, you get a data frame. You cannot tell from the
syntax alone.

To avoid this problem, you can include drop=FALSE in the subscripts; this forces R to
return a data frame:

dfrm[,vec,drop=FALSE]

Now there is no ambiguity about the returned data structure. It’s a data frame.

When all is said and done, using matrix notation to select columns from data frames
is not the best procedure. I recommend that you instead use the list operators described
previously. They just seem clearer.

See Also
See Recipe 5.17 for more about using drop=FALSE.

130 | Chapter 5: Data Structures

Study Material. Do not distribute.

5.23 Selecting Data Frame Columns by Name
Problem
You want to select columns from a data frame according to their name.

Solution
To select a single column, use one of these list expressions:

dfrm[["name"]]
Returns one column, the column called name.

dfrm$name
Same as previous, just different syntax.

To select one or more columns and package them in a data frame, use these list
expressions:

dfrm["name"]
Selects one column and packages it inside a data frame object.

dfrm[c("name1", "name2", ..., "namek")]
Selects several columns and packages them in a data frame.

You can use matrix-style subscripting to select one or more columns:

dfrm[, "name"]
Returns the named column.

dfrm[, c("name1", "name2", ..., "namek")]
Selects several columns and packages in a data frame.

Once again, the matrix-style subscripting can return two different data types (column
or data frame) depending upon whether you select one column or multiple columns.

Discussion
All columns in a data frame must have names. If you know the name, it’s usually more
convenient and readable to select by name, not by position.

The solutions just described are similar to those for Recipe 5.22, where we selected
columns by position. The only difference is that here we use column names instead of
column numbers. All the observations made in Recipe 5.22 apply here:

• dfrm[["name"]] returns one column, not a data frame.

• dfrm[c("name1", "name2", ..., "namek")] returns a data frame, not a column.

• dfrm["name"] is a special case of the previous expression and so returns a data frame,
not a column.

5.23 Selecting Data Frame Columns by Name | 131

Study Material. Do not distribute.

• The matrix-style subscripting can return either a column or a data frame, so be
careful how many names you supply. See Recipe 5.22 for a discussion of this
“gotcha” and using drop=FALSE.

There is one new addition:

dfrm$name

This is identical in effect to dfrm[["name"]], but it’s easier to type and to read.

See Also
See Recipe 5.22 to understand these ways to select columns.

5.24 Selecting Rows and Columns More Easily
Problem
You want an easier way to select rows and columns from a data frame or matrix.

Solution
Use the subset function. The select argument is a column name, or a vector of column
names, to be selected:

> subset(dfrm, select=colname)
> subset(dfrm, select=c(colname1, ..., colnameN))

Note that you do not quote the column names.

The subset argument is a logical expression that selects rows. Inside the expression,
you can refer to the column names as part of the logical expression. In this example,
response is a column in the data frame, and we are selecting rows with a positive
response:

> subset(dfrm, subset=(response > 0))

subset is most useful when you combine the select and subset arguments:

> subset(dfrm, select=c(predictor,response), subset=(response > 0))

Discussion
Indexing is the “official” way to select rows and columns from a data frame, as described
in Recipes 5.22 and 5.23. However, indexing is cumbersome when the index expres-
sions become complicated.

The subset function provides a more convenient and readable way to select rows and
columns. It’s beauty is that you can refer to the columns of the data frame right inside
the expressions for selecting columns and rows.

132 | Chapter 5: Data Structures

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Study Material. Do not distribute.

Here are some examples using the Cars93 dataset in the MASS package. Recall that the
dataset includes columns for Manufacturer, Model, MPG.city, MPG.highway, Min.Price,
and Max.Price:

Select the model name for cars that can exceed 30 miles per gallon (MPG) in the city

> subset(Cars93, select=Model, subset=(MPG.city > 30))
 Model
31 Festiva
39 Metro
42 Civic
.
. (etc.)
.

Select the model name and price range for four-cylinder cars made in the United States

> subset(Cars93, select=c(Model,Min.Price,Max.Price),
+ subset=(Cylinders == 4 & Origin == "USA"))
 Model Min.Price Max.Price
6 Century 14.2 17.3
12 Cavalier 8.5 18.3
13 Corsica 11.4 11.4
.
. (etc.)
.

Select the manufacturer’s name and the model name for all cars whose highway MPG
value is above the median

> subset(Cars93, select=c(Manufacturer,Model),
+ subset=c(MPG.highway > median(MPG.highway)))
 Manufacturer Model
1 Acura Integra
5 BMW 535i
6 Buick Century
.
. (etc.)
.

The subset function is actually more powerful than this recipe implies. It can select
from lists and vectors, too. See the help page for details.

5.25 Changing the Names of Data Frame Columns
Problem
You converted a matrix or list into a data frame. R gave names to the columns, but the
names are at best uninformative and at worst bizarre.

5.25 Changing the Names of Data Frame Columns | 133

Study Material. Do not distribute.

Solution
Data frames have a colnames attribute that is a vector of column names. You can update
individual names or the entire vector:

> colnames(dfrm) <- newnames # newnames is a vector of character strings

Discussion
The columns of data frames must have names. If you convert a vanilla matrix into a
data frame, R will synthesize names that are reasonable but boring—for example, V1,
V2, V3, and so forth:

> mat
 [,1] [,2] [,3]
[1,] -0.818 -0.667 -0.494
[2,] -0.819 -0.946 -0.205
[3,] 0.385 1.531 -0.611
[4,] -2.155 -0.535 -0.316
> as.data.frame(mat)
 V1 V2 V3
1 -0.818 -0.667 -0.494
2 -0.819 -0.946 -0.205
3 0.385 1.531 -0.611
4 -2.155 -0.535 -0.316

If the matrix had column names defined, R would have used those names instead of
synthesizing new ones.

However, converting a list into a data frame produces some strange synthetic names:

> lst
[[1]]
[1] -0.284 -1.114 -1.097 -0.873

[[2]]
[1] -1.673 0.929 0.306 0.778

[[3]]
[1] 0.323 0.368 0.067 -0.080

> as.data.frame(lst)
 c..0.284...1.114...1.097...0.873. c..1.673..0.929..0.306..0.778.
1 -0.284 -1.673
2 -1.114 0.929
3 -1.097 0.306
4 -0.873 0.778
 c.0.323..0.368..0.067...0.08.
1 0.323
2 0.368
3 0.067
4 -0.080

Again, if the list elements had names then R would have used them.

134 | Chapter 5: Data Structures

Study Material. Do not distribute.

Fortunately, you can overwrite the synthetic names with names of your own by setting
the colnames attribute:

> dfrm <- as.data.frame(lst)
> colnames(dfrm) <- c("before","treatment","after")
> dfrm
 before treatment after
1 -0.284 -1.673 0.323
2 -1.114 0.929 0.368
3 -1.097 0.306 0.067
4 -0.873 0.778 -0.080

See Also
See Recipe 5.33.

5.26 Editing a Data Frame
Problem
Data in a data frame are incorrect or missing. You want a convenient way to edit the
data frame contents.

Solution
R includes a data editor that displays your data frame in a spreadsheet-like window.
Invoke the editor using the edit function:

> temp <- edit(dfrm)
> dfrm <- temp # Overwrite only if you're happy with the changes!

Make your changes and then close the editor window. The edit function will return the
updated data, which here are assigned to temp. If you are happy with the changes,
overwrite your data frame with the results.

If you are feeling brave, the fix function invokes the editor and overwrites your variable
with the result. There is no “undo”, however:

> fix(dfrm)

Discussion
Figure 5-1 is a screenshot of the data editor on Windows during the editing of data
from Recipe 5.22.

As of this writing, the editor is quite primitive. It does not include the common features
of a modern editor—not even an “undo” command, for instance. I cannot recommend
the data editor for regular use, but it’s OK for emergency touch-ups.

5.26 Editing a Data Frame | 135

Study Material. Do not distribute.

Since there is no undo, take note of the solution that assigns the edited result to a
temporary, intermediate variable. If you mess up your data, you can just delete the
temporary variable without affecting the original data.

See Also
Several of the add-on GUI frontends provide data editors that are better than the native
editor.

5.27 Removing NAs from a Data Frame
Problem
Your data frame contains NA values, which is creating problems for you.

Solution
Use na.omit to remove rows that contain any NA values.

> clean <- na.omit(dfrm)

Figure 5-1. Editing a data frame

136 | Chapter 5: Data Structures

Study Material. Do not distribute.

Discussion
I frequently stumble upon situations where just a few NA values in my data frame cause
everything to fall apart. One solution is simply to remove all rows that contain NAs.
That’s what na.omit does.

Here we can see cumsum fail because the input contains NA values:

> dfrm
 x y
1 -0.9714511 -0.4578746
2 NA 3.1663282
3 0.3367627 NA
4 1.7520504 0.7406335
5 0.4918786 1.4543427
> cumsum(dfrm)
 x y
1 -0.971451 -0.4578746
2 NA 2.7084536
3 NA NA
4 NA NA
5 NA NA

If we remove the NA values, cumsum can complete its summations:

> cumsum(na.omit(dfrm))
 x y
1 -0.9714511 -0.4578746
4 0.7805993 0.2827589
5 1.2724779 1.7371016

This recipe works for vectors and matrices, too, but not for lists.

Will You Still Have Enough Data?
The obvious danger here is that simply dropping observations from your data could
render the results computationally or statistically meaningless. Make sure that omitting
data makes sense in your context. Remember that na.omit will remove entire rows, not
just the NA values, which could eliminate a lot of useful information.

5.28 Excluding Columns by Name
Problem
You want to exclude a column from a data frame using its name.

Solution
Use the subset function with a negated argument for the select parameter:

> subset(dfrm, select = -badboy) # All columns except badboy

5.28 Excluding Columns by Name | 137

Study Material. Do not distribute.

Discussion
We can exclude a column by position (e.g., dfrm[-1]), but how do we exclude a column
by name? The subset function can exclude columns from a data frame. The select
parameter is a normally a list of columns to include, but prefixing a minus sign (-) to
the name causes the column to be excluded instead.

I often encounter this problem when calculating the correlation matrix of a data frame
and I want to exclude nondata columns such as labels:

> cor(patient.data)
 patient.id pre dosage post
patient.id 1.00000000 0.02286906 0.3643084 -0.13798149
pre 0.02286906 1.00000000 0.2270821 -0.03269263
dosage 0.36430837 0.22708208 1.0000000 -0.42006280
post -0.13798149 -0.03269263 -0.4200628 1.00000000

This correlation matrix includes the meaningless “correlation” between patient ID and
other variables, which is annoying. We can exclude the patient ID column to clean up
the output:

> cor(subset(patient.data, select = -patient.id))
 pre dosage post
pre 1.00000000 0.2270821 -0.03269264
dosage 0.22708207 1.0000000 -0.42006280
post -0.03269264 -0.4200628 1.00000000

We can exclude multiple columns by giving a vector of negated names:

> cor(subset(patient.data, select = c(-patient.id,-dosage)))
 pre post
pre 1.00000000 -0.03269264
post -0.03269264 1.00000000

See Also
See Recipe 5.24 for more about the subset function.

5.29 Combining Two Data Frames
Problem
You want to combine the contents of two data frames into one data frame.

Solution
To combine the columns of two data frames side by side, use cbind:

> all.cols <- cbind(dfrm1,dfrm2)

To “stack” the rows of two data frames, use rbind:

> all.rows <- rbind(dfrm1,dfrm2)

138 | Chapter 5: Data Structures

Study Material. Do not distribute.

Discussion
You can combine data frames in one of two ways: either by putting the columns side
by side to create a wider data frame; or by “stacking” the rows to create a taller data
frame. The cbind function will combine data frames side by side, as shown here when
combining stooges and birth:

> stooges
 name n.marry n.child
1 Moe 1 2
2 Larry 1 2
3 Curly 4 2
> birth
 birth.year birth.place
1 1887 Bensonhurst
2 1902 Philadelphia
3 1903 Brooklyn
> cbind(stooges,birth)
 name n.marry n.child birth.year birth.place
1 Moe 1 2 1887 Bensonhurst
2 Larry 1 2 1902 Philadelphia
3 Curly 4 2 1903 Brooklyn

You would normally combine columns with the same height (number of rows). Tech-
nically speaking, however, cbind does not require matching heights. If one data frame
is short, it will invoke the Recycling Rule to extend the short columns as necessary
(Recipe 5.3), which may or may not be what you want.

The rbind function will “stack” the rows of two data frames, as shown here when
combining stooges and guys:

> stooges
 name n.marry n.child
1 Moe 1 2
2 Larry 1 2
3 Curly 4 2
> guys
 name n.marry n.child
1 Tom 4 2
2 Dick 1 4
3 Harry 1 1
> rbind(stooges,guys)
 name n.marry n.child
1 Moe 1 2
2 Larry 1 2
3 Curly 4 2
4 Tom 4 2
5 Dick 1 4
6 Harry 1 1

The rbind function requires that the data frames have the same width: same number
of columns and same column names. The columns need not be in the same order,
however; rbind will sort that out.

5.29 Combining Two Data Frames | 139

Study Material. Do not distribute.

Finally, this recipe is slightly more general than the title implies. First, you can combine
more than two data frames because both rbind and cbind accept multiple arguments.
Second, you can apply this recipe to other data types because rbind and cbind work
also with vectors, lists, and matrices.

See Also
The merge function can combine data frames that are otherwise incompatible owing to
missing or different columns. The reshape2 and plyr packages, available on CRAN,
include some powerful functions for slicing, dicing, and recombining data frames.

5.30 Merging Data Frames by Common Column
Problem
You have two data frames that share a common column. You want to merge their rows
into one data frame by matching on the common column.

Solution
Use the merge function to join the data frames into one new data frame based on the
common column:

> m <- merge(df1, df2, by="name")

Here name is the name of the column that is common to data frames df1 and df2.

Discussion
Suppose you have two data frames, born and died, that each contain a column called
name:

> born
 name year.born place.born
1 Moe 1887 Bensonhurst
2 Larry 1902 Philadelphia
3 Curly 1903 Brooklyn
4 Harry 1964 Moscow
> died
 name year.died
1 Curly 1952
2 Moe 1975
3 Larry 1975

We can merge them into one data frame by using name to combine matched rows:

> merge(born, died, by="name")
 name year.born place.born year.died
1 Curly 1903 Brooklyn 1952
2 Larry 1902 Philadelphia 1975
3 Moe 1887 Bensonhurst 1975

140 | Chapter 5: Data Structures

Study Material. Do not distribute.

Notice that merge does not require the rows to be sorted or even to occur in the same
order. It found the matching rows for Curly even though they occur in different posi-
tions. It also discards rows that appear in only one data frame or the other.

In SQL terms, the merge function essentially performs a join operation on the two data
frames. It has many options for controlling that join operation, all of which are
described on the help page for merge.

See Also
See Recipe 5.29 for other ways to combine data frames.

5.31 Accessing Data Frame Contents More Easily
Problem
Your data is stored in a data frame. You are getting tired of repeatedly typing the data
frame name and want to access the columns more easily.

Solution
For quick, one-off expressions, use the with function to expose the column names:

> with(dataframe, expr)

Inside expr, you can refer to the columns of dataframe by their names—as if they were
simple variables.

For repetitive access, use the attach function to insert the data frame into your search
list. You can then refer to the data frame columns by name without mentioning the
data frame:

> attach(dataframe)

Use the detach function to remove the data frame from your search list.

Discussion
A data frame is a great way to store your data, but accessing individual columns can
become tedious. For a data frame called suburbs that contains a column called pop, here
is the naïve way to calculate the z-scores of pop:

> z <- (suburbs$pop - mean(suburbs$pop)) / sd(suburbs$pop)

Call me a whiner, but all that typing gets tedious. The with function lets you expose
the columns of a data frame as distinct variables. It takes two arguments, a data frame
and an expression to be evaluated. Inside the expression, you can refer to the data frame
columns by their names:

> z <- with(suburbs, (pop - mean(pop)) / sd(pop))

5.31 Accessing Data Frame Contents More Easily | 141

Study Material. Do not distribute.

That is useful for one-liners. If you will be working repeatedly with columns in your
data frame, attach the data frame to your search list and the columns will become
available as variables:

> attach(suburbs)

After the attach, the second item in the search list is the suburbs data frame:

> search()
 [1] ".GlobalEnv" "suburbs" "package:stats"
 [4] "package:graphics" "package:grDevices" "package:utils"
 [7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"

Now we can refer to the columns of the data frame as if they were variables:

> z <- (pop - mean(pop)) / sd(pop)

When you are done, use a detach (with no arguments) to remove the second location
in the search list:

> detach()
> search()
[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"

Observe that suburbs is no longer in the search list.

Attaching a data frame has a big quirk: R attaches a temporary copy of the data frame,
which means that changes to the original data frame are hidden. In this session frag-
ment, notice how changing the data frame does not change our view of the attached
data:

> attach(suburbs)
> pop
 [1] 2853114 90352 171782 94487 102746 106221 147779 76031 70834
[10] 72616 74239 83048 67232 75386 63348 91452
> suburbs$pop <- 0 # Overwrite data frame contents
> pop # Hey! It seems nothing changed
 [1] 2853114 90352 171782 94487 102746 106221 147779 76031 70834
[10] 72616 74239 83048 67232 75386 63348 91452
> suburbs$pop # Contents of data frame did indeed change
 [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Another source of confusion is that assigning values to the exposed names does not
work as you might expect. In the following fragment, you might think we are scaling
pop by 1,000 but we are actually creating a new local variable:

> attach(suburbs)
> pop
 [1] 2853114 90352 171782 94487 102746 106221 147779 76031 70834
[10] 72616 74239 83048 67232 75386 63348 91452
> pop <- pop / 1000 # Achtung! This is creating a local variable called "pop"
> ls() # We can see the new variable in our workspace
[1] "pop" "suburbs"

142 | Chapter 5: Data Structures

Study Material. Do not distribute.

> suburbs$pop # Original data is unchanged
 [1] 2853114 90352 171782 94487 102746 106221 147779 76031 70834
[10] 72616 74239 83048 67232 75386 63348 91452

5.32 Converting One Atomic Value into Another
Problem
You have a data value which has an atomic data type: character, complex, double,
integer, or logical. You want to convert this value into one of the other atomic data
types.

Solution
For each atomic data type, there is a function for converting values to that type. The
conversion functions for atomic types include:

• as.character(x)

• as.complex(x)

• as.numeric(x) or as.double(x)

• as.integer(x)

• as.logical(x)

Discussion
Converting one atomic type into another is usually pretty simple. If the conversion
works, you get what you would expect. If it does not work, you get NA:

> as.numeric(" 3.14 ")
[1] 3.14
> as.integer(3.14)
[1] 3
> as.numeric("foo")
[1] NA
Warning message:
NAs introduced by coercion
> as.character(101)
[1] "101"

If you have a vector of atomic types, these functions apply themselves to every value.
So the preceding examples of converting scalars generalize easily to converting entire
vectors:

> as.numeric(c("1","2.718","7.389","20.086"))
[1] 1.000 2.718 7.389 20.086
> as.numeric(c("1","2.718","7.389","20.086", "etc."))
[1] 1.000 2.718 7.389 20.086 NA
Warning message:
NAs introduced by coercion

5.32 Converting One Atomic Value into Another | 143

Study Material. Do not distribute.

> as.character(101:105)
[1] "101" "102" "103" "104" "105"

When converting logical values into numeric values, R converts FALSE to 0 and
TRUE to 1:

> as.numeric(FALSE)
[1] 0
> as.numeric(TRUE)
[1] 1

This behavior is useful when you are counting occurrences of TRUE in vectors of logical
values. If logvec is a vector of logical values, then sum(logvec) does an implicit conver-
sion from logical to integer and returns the number of TRUEs.

5.33 Converting One Structured Data Type into Another
Problem
You want to convert a variable from one structured data type to another—for example,
converting a vector into a list or a matrix into a data frame.

Solution
These functions convert their argument into the corresponding structured data type:

• as.data.frame(x)

• as.list(x)

• as.matrix(x)

• as.vector(x)

Some of these conversions may surprise you, however. I suggest you review Table 5-1.

Discussion
Converting between structured data types can be tricky. Some conversions behave as
you’d expect. If you convert a matrix into a data frame, for instance, the rows and
columns of the matrix become the rows and columns of the data frame. No sweat.

Table 5-1. Data conversions

Conversion How Notes

Vector→List as.list(vec) Don’t use list(vec); that
creates a 1-element list whose
only element is a copy of vec.

Vector→Matrix To create a 1-column matrix: cbind(vec) or as.matrix(vec) See Recipe 5.14.

To create a 1-row matrix: rbind(vec)

144 | Chapter 5: Data Structures

Study Material. Do not distribute.

Conversion How Notes

To create an n × m matrix: matrix(vec,n,m)

Vector→Data frame To create a 1-column data frame: as.data.frame(vec)

To create a 1-row data frame: as.data.frame(rbind(vec))

List→Vector unlist(lst) Use unlist rather than
as.vector; see Note 1 and
Recipe 5.11.

List→Matrix To create a 1-column matrix: as.matrix(lst)

To create a 1-row matrix: as.matrix(rbind(lst))

To create an n × m matrix: matrix(lst,n,m)

List→Data frame If the list elements are columns of data: as.data.frame(lst)

If the list elements are rows of data: Recipe 5.19

Matrix→Vector as.vector(mat) Returns all matrix elements in
a vector.

Matrix→List as.list(mat) Returns all matrix elements in
a list.

Matrix→Data frame as.data.frame(mat)

Data frame→Vector To convert a 1-row data frame: dfrm[1,] See Note 2.

To convert a 1-column data frame: dfrm[,1] or dfrm[[1]]

Data frame→List as.list(dfrm) See Note 3.

Data frame→Matrix as.matrix(dfrm) See Note 4.

In other cases, the results might surprise you. Table 5-1 summarizes some noteworthy
examples. The following Notes are cited in that table:

1. When you convert a list into a vector, the conversion works cleanly if your list
contains atomic values that are all of the same mode. Things become complicated
if either (a) your list contains mixed modes (e.g., numeric and character), in which
case everything is converted to characters; or (b) your list contains other structured
data types, such as sublists or data frames—in which case very odd things happen,
so don’t do that.

2. Converting a data frame into a vector makes sense only if the data frame contains
one row or one column. To extract all its elements into one, long vector, use
as.vector(as.matrix(dfrm)). But even that makes sense only if the data frame is
all-numeric or all-character; if not, everything is first converted to character strings.

3. Converting a data frame into a list may seem odd in that a data frame is already a
list (i.e., a list of columns). Using as.list essentially removes the class
(data.frame) and thereby exposes the underlying list. That is useful when you want
R to treat your data structure as a list—say, for printing.

5.33 Converting One Structured Data Type into Another | 145

Study Material. Do not distribute.

4. Be careful when converting a data frame into a matrix. If the data frame contains
only numeric values then you get a numeric matrix. If it contains only character
values, you get a character matrix. But if the data frame is a mix of numbers, char-
acters, and/or factors, then all values are first converted to characters. The result
is a matrix of character strings.

Problems with matrices

The matrix conversions detailed here assume that your matrix is homogeneous: all
elements have the same mode (e.g, all numeric or all character). A matrix can to be
heterogeneous, too, when the matrix is built from a list. If so, conversions become
messy. For example, when you convert a mixed-mode matrix to a data frame, the data
frame’s columns are actually lists (to accommodate the mixed data).

See Also
See Recipe 5.32 for converting atomic data types; see the “Introduction” to this chapter
for remarks on problematic conversions.

146 | Chapter 5: Data Structures

Study Material. Do not distribute.

