
CHAPTER 6

Data Transformations

Introduction
This chapter is all about the apply functions: apply, lapply, sapply, tapply, mapply; and
their cousins, by and split. These functions let you take data in great gulps and process
the whole gulp at once. Where traditional programming languages use loops, R uses
vectorized operations and the apply functions to crunch data in batches, greatly stream-
lining the calculations.

Defining Groups Via a Factor
An important idiom of R is using a factor to define a group. Suppose we have a vector
and a factor, both of the same length, that were created as follows:

> v <- c(40,2,83,28,58)
> f <- factor(c("A","C","C","B","C"))

We can visualize the vector elements and factors levels side by side, like this:

Vector Factor

40 A

2 C

83 A

28 B

58 C

The factor level identifies the group of each vector element: 40 and 83 are in group A;
28 is in group B; and 2 and 58 are in group C.

In this book, I refer to such factors as grouping factors. They effectively slice and dice
our data by putting them into groups. This is powerful because processing data in
groups occurs often in statistics when comparing group means, comparing group pro-
portions, performing ANOVA analysis, and so forth.

147

Study Material. Do not distribute.

This chapter has recipes that use grouping factors to split vector elements into their
respective groups (Recipe 6.1), apply a function to groups within a vector (Rec-
ipe 6.5), and apply a function to groups of rows within a data frame (Recipe 6.6). In
other chapters, the same idiom is used to test group means (Recipe 9.19), perform one-
way ANOVA analysis (Recipe 11.20), and plot data points by groups (Recipe 10.4),
among other uses.

6.1 Splitting a Vector into Groups
Problem
You have a vector. Each element belongs to a different group, and the groups are iden-
tified by a grouping factor. You want to split the elements into the groups.

Solution
Suppose the vector is x and the factor is f. You can use the split function:

> groups <- split(x, f)

Alternatively, you can use the unstack function:

> groups <- unstack(data.frame(x,f))

Both functions return a list of vectors, where each vector contains the elements for one
group.

The unstack function goes one step further: if all vectors have the same length, it
converts the list into a data frame.

Discussion
The Cars93 dataset contains a factor called Origin that has two levels, USA and non-
USA. It also contains a column called MPG.city. We can split the MPG data according
to origin as follows:

> library(MASS)
> split(Cars93$MPG.city, Cars93$Origin)
$USA
 [1] 22 19 16 19 16 16 25 25 19 21 18 15 17 17 20 23 20 29 23 22 17 21 18 29 20
[26] 31 23 22 22 24 15 21 18 17 18 23 19 24 23 18 19 23 31 23 19 19 19 28

$non-USA
 [1] 25 18 20 19 22 46 30 24 42 24 29 22 26 20 17 18 18 29 28 26 18 17 20 19 29
[26] 18 29 24 17 21 20 33 25 23 39 32 25 22 18 25 17 21 18 21 20

The usefulness of splitting is that we can analyze the data by group. This example
computes the median MPG for each group:

148 | Chapter 6: Data Transformations

Study Material. Do not distribute.

> g <- split(Cars93$MPG.city, Cars93$Origin)
> median(g[[1]])
[1] 20
> median(g[[2]])
[1] 22

See Also
See the “Introduction” to this chapter for more about grouping factors. Recipe 6.5
shows another way to apply functions, such as median, to each group. The unstack
function can perform other, more powerful transformations beside this; see the help
page.

6.2 Applying a Function to Each List Element
Problem
You have a list, and you want to apply a function to each element of the list.

Solution
Use either the lapply function or the sapply function, depending upon the desired form
of the result. lapply always returns the results in list, whereas sapply returns the results
in a vector if that is possible:

> lst <- lapply(lst, fun)
> vec <- sapply(lst, fun)

Discussion
These functions will call your function (fun, in the solution example) once for every
element on your list. Your function should expect one argument, an element from the
list. The lapply and sapply functions will collect the returned values. lapply collects
them into a list and returns the list.

The “s” in “sapply” stands for “simplify.” The function tries to simplify the results into
a vector or matrix. For that to happen, all the returned values must have the same
length. If that length is 1 then you get a vector; otherwise, you get a matrix. If the lengths
vary, simplification is impossible and you get a list.

Let’s say I teach an introductory statistics class four times and administer comparable
final exams each time. Here are the exam scores from the four semesters:

> scores
$S1
 [1] 89 85 85 86 88 89 86 82 96 85 93 91 98 87 94 77 87 98 85 89
[21] 95 85 93 93 97 71 97 93 75 68 98 95 79 94 98 95

$S2
 [1] 60 98 94 95 99 97 100 73 93 91 98 86 66 83 77

6.2 Applying a Function to Each List Element | 149

Study Material. Do not distribute.

[16] 97 91 93 71 91 95 100 72 96 91 76 100 97 99 95
[31] 97 77 94 99 88 100 94 93 86

$S3
 [1] 95 86 90 90 75 83 96 85 83 84 81 98 77 94 84 89 93 99 91 77
[21] 95 90 91 87 85 76 99 99 97 97 97 77 93 96 90 87 97 88

$S4
 [1] 67 93 63 83 87 97 96 92 93 96 87 90 94 90 82 91 85 93 83 90
[21] 87 99 94 88 90 72 81 93 93 94 97 89 96 95 82 97

Each semester starts with 40 students but, alas, not everyone makes it to the finish line;
hence each semester has a different number of scores. We can count this number with
the length function: lapply will return a list of lengths, and sapply will return a vector
of lengths:

> lapply(scores, length)
$S1
[1] 36

$S2
[1] 39

$S3
[1] 38

$S4
[1] 36

> sapply(scores, length)
S1 S2 S3 S4
36 39 38 36

We can see the mean and standard deviation of the scores just as easily:

> sapply(scores, mean)
 S1 S2 S3 S4
88.77778 89.79487 89.23684 88.86111
> sapply(scores, sd)
 S1 S2 S3 S4
 7.720515 10.543592 7.178926 8.208542

If the called function returns a vector, sapply will form the results into a matrix. The
range function, for example, returns a two-element vector:

> sapply(scores, range)
 S1 S2 S3 S4
[1,] 68 60 75 63
[2,] 98 100 99 99

If the called function returns a structured object, such as a list, then you will need to
use lapply rather than sapply. Structured objects cannot be put into a vector. Suppose
we want to perform a t test on every semester. The t.test function returns a list, so we
must use lapply:

> tests <- lapply(scores, t.test)

150 | Chapter 6: Data Transformations

Study Material. Do not distribute.

Now the result tests is a list: it is a list of t.test results. We can use sapply to extract
elements from the t.test results, such as the bounds of the confidence interval:

> sapply(tests, function(t) t$conf.int)
 S1 S2 S3 S4
[1,] 86.16553 86.37703 86.87719 86.08374
[2,] 91.39002 93.21271 91.59650 91.63848

See Also
See Recipe 2.12.

6.3 Applying a Function to Every Row
Problem
You have a matrix. You want to apply a function to every row, calculating the function
result for each row.

Solution
Use the apply function. Set the second argument to 1 to indicate row-by-row application
of a function:

> results <- apply(mat, 1, fun) # mat is a matrix, fun is a function

The apply function will call fun once for each row, assemble the returned values into a
vector, and then return that vector.

Discussion
Suppose your matrix long is longitudinal data. Each row contains data for one subject,
and the columns contain the repeated observations over time:

> long
 trial1 trial2 trial3 trial4 trial5
Moe -1.8501520 -1.406571 -1.0104817 -3.7170704 -0.2804896
Larry 0.9496313 1.346517 -0.1580926 1.6272786 2.4483321
Curly -0.5407272 -1.708678 -0.3480616 -0.2757667 -1.2177024

You could calculate the average observation for each subject by applying the mean func-
tion to the rows. The result is a vector:

> apply(long, 1, mean)
 Moe Larry Curly
-1.6529530 1.2427334 -0.8181872

Note that apply uses the rownames from your matrix to identify the elements of the
resulting vector, which is handy.

6.3 Applying a Function to Every Row | 151

Study Material. Do not distribute.

The function being called (fun, described previously) should expect one argument, a
vector, which will be one row from the matrix. The function can return a scalar or a
vector. In the vector case, apply assembles the results into a matrix. The range function
returns a vector of two elements, the minimum and the maximum, so applying it to
long produces a matrix:

> apply(long, 1, range)
 Moe Larry Curly
[1,] -3.7170704 -0.1580926 -1.7086779
[2,] -0.2804896 2.4483321 -0.2757667

You can employ this recipe on data frames as well. It works if the data frame is
homogeneous—either all numbers or all character strings. When the data frame has
columns of different types, extracting vectors from the rows isn’t sensible because vec-
tors must be homogeneous.

6.4 Applying a Function to Every Column
Problem
You have a matrix or data frame, and you want to apply a function to every column.

Solution
For a matrix, use the apply function. Set the second argument to 2, which indicates
column-by-column application of the function:

> results <- apply(mat, 2, fun)

For a data frame, use the lapply or sapply functions. Either one will apply a function
to successive columns of your data frame. Their difference is that lapply assembles the
return values into a list whereas sapply assembles them into a vector:

> lst <- lapply(dfrm, fun)
> vec <- sapply(dfrm, fun)

You can use apply on data frames, too, but only if the data frame is homogeneous (i.e.,
either all numeric values or all character strings).

Discussion
The apply function is intended for processing a matrix. In Recipe 6.3 we used apply to
process the rows of a matrix. This is the same situation, but now we are processing the
columns. The second argument of apply determines the direction:

• 1 means process row by row.

• 2 means process column by column.

This is more mnemonic than it looks. We speak of matrices in “rows and columns”,
so rows are first and columns second; 1 and 2, respectively.

152 | Chapter 6: Data Transformations

Study Material. Do not distribute.

A data frame is a more complicated data structure than a matrix, so there are more
options. You can simply use apply, in which case R will convert your data frame to a
matrix and then apply your function. That will work if your data frame contains only
numeric data or character data. It probably will not work if you have mixed data types.
In that case, R will force all columns to have identical types, likely performing an un-
wanted conversion as a result.

Fortunately, there is an alternative. Recall that a data frame is a kind of list: it is a list
of the columns of the data frame. You can use lapply and sapply to process the columns,
as described in Recipe 6.2:

> lst <- lapply(dfrm, fun) # Returns a list
> vec <- sapply(dfrm, fun) # Returns a vector

The function fun should expect one argument: a column from the data frame.

I often use this recipe to check the types of columns in data frames. The batch column
of this data frame seems to contain numbers:

> head(batches)
 batch clinic dosage shrinkage
1 1 IL 3 -0.11810714
2 3 IL 4 -0.29932107
3 2 IL 4 -0.27651716
4 1 IL 5 -0.18925825
5 2 IL 2 -0.06804804
6 3 NJ 5 -0.38279193

But printing the classes of the columns reveals it to be a factor instead:

> sapply(batches, class)
 batch clinic dosage shrinkage
 "factor" "factor" "integer" "numeric"

A cool example of this recipe is removing low-correlation variables from a set of pre-
dictors. Suppose that resp is a response variable and pred is a data frame of predictor
variables. Suppose further that we have too many predictors and therefore want to
select the top 10 as measured by correlation with the response.

The first step is to calculate the correlation between each variable and resp. In R, that’s
a one-liner:

> cors <- sapply(pred, cor, y=resp)

The sapply function will call the function cor for every column in pred. Note that we
gave a third argument, y=resp, to sapply. Any arguments beyond the second one are
passed to cor. Every time that sapply calls cor, the first argument will be a column and
the second argument will be y=resp. With those arguments, the function call will be
cor(column,y=resp), which calculates the correlation between the given column and
resp.

6.4 Applying a Function to Every Column | 153

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Study Material. Do not distribute.

The result from sapply is a vector of correlations, one for each column. We use the
rank function to find the positions of the correlations that have the largest magnitude:

> mask <- (rank(-abs(cors)) <= 10)

This expression is a comparison (<=), so it returns a vector of logical values. It is cleverly
constructed so that the top 10 correlations have corresponding TRUE values and all
others are FALSE. Using that vector of logical values, we can select just those columns
from the data frame:

> best.pred <- pred[,mask]

At this point, we can regress resp against best.pred, knowing that we have chosen the
predictors with the highest correlations:

> lm(resp ~ best.pred)

That’s pretty good for four lines of code.

See Also
See Recipes 5.22, 6.2, and 6.3.

6.5 Applying a Function to Groups of Data
Problem
Your data elements occur in groups. You want to process the data by groups—for
example, summing by group or averaging by group.

Solution
Create a grouping factor (of the same length as your vector) that identifies the group
of each corresponding datum. Then use the tapply function, which will apply a function
to each group of data:

> tapply(x, f, fun)

Here, x is a vector, f is a grouping factor, and fun is a function. The function should
expect one argument, which is a vector of elements taken from x according to their
group.

Discussion
Suppose I have a vector with the populations of the 16 largest cities in the greater
Chicago metropolitan area, taken from the data frame called suburbs:

> attach(suburbs)
> pop
 [1] 2853114 90352 171782 94487 102746 106221 147779 76031 70834
[10] 72616 74239 83048 67232 75386 63348 91452

154 | Chapter 6: Data Transformations

Study Material. Do not distribute.

We can easily compute sums and averages for all the cities:

> sum(pop)
[1] 4240667
> mean(pop)
[1] 265041.7

What if we want the sum and average broken out by county? We will need a factor, say
county, the same length as pop, where each level of the factor gives the corresponding
county (there are two Lake counties: one in Illinois and one in Indiana) :

> county
 [1] Cook Kenosha Kane Kane Lake(IN) Kendall DuPage Cook
 [9] Will Cook Cook Lake(IN) Cook Cook Cook Lake(IL)
Levels: Cook DuPage Kane Kendall Kenosha Lake(IL) Lake(IN) Will

Now I can use the county factor and tapply function to process items in groups. The
tapply function has three main parameters: the vector of data, the factor that defines
the groups, and a function. It will extract each group, apply the function to each group,
and return a vector with the collected results. This example shows summing the pop-
ulations by county:

> tapply(pop,county,sum)
 Cook DuPage Kane Kendall Kenosha Lake(IL) Lake(IN) Will
 3281966 147779 266269 106221 90352 91452 185794 70834

The next example computes average populations by county:

> tapply(pop,county,mean)
 Cook DuPage Kane Kendall Kenosha Lake(IL) Lake(IN) Will
468852.3 147779.0 133134.5 106221.0 90352.0 91452.0 92897.0 70834.0

The function given to tapply should expect a single argument: a vector containing all
the members of one group. A good example is the length function, which takes a vector
parameter and returns the vector’s length. Use it to count the number of data in each
group; in this case, the number of cities in each county:

> tapply(pop,county,length)
 Cook DuPage Kane Kendall Kenosha Lake(IL) Lake(IN) Will
 7 1 2 1 1 1 2 1

In most cases you will use functions that return a scalar and tapply will collect the
returned scalars into a vector. Your function can return complex objects, too, in which
case tapply will return them in a list. See the tapply help page for details.

See Also
See this chapter’s “Introduction” for more about grouping factors.

6.5 Applying a Function to Groups of Data | 155

Study Material. Do not distribute.

6.6 Applying a Function to Groups of Rows
Problem
You want to apply a function to groups of rows within a data frame.

Solution
Define a grouping factor—that is, a factor with one level (element) for every row in
your data frame—that identifies the data groups.

For each such group of rows, the by function puts the rows into a temporary data frame
and calls your function with that argument. The by function collects the returned values
into a list and returns the list:

> by(dfrm, fact, fun)

Here, dfrm is the data frame, fact is the grouping factor, and fun is a function. The
function should expect one argument, a data frame.

Discussion
The advantage of the by function is that it calls your function with a data frame, which
is useful if your function handles data frames in a special way. For instance, the print,
summary, and mean functions perform special processing for data frames.

Suppose you have a data frame from clinical trials, called trials, where the dosage was
randomized to study its effect:

> trials
 sex pre dose1 dose2 post
1 F 5.931640 2 1 3.162600
2 F 4.496187 1 2 3.293989
3 M 6.161944 1 1 4.446643
4 F 4.322465 2 1 3.334748
5 M 4.153510 1 1 4.429382
.
. (etc.)
.

The data includes a factor for the subject’s sex, so by can split the data according to sex
and call summary for the two groups. The result is two summaries, one for men and one
for women:

> by(trials, trials$sex, summary)
trials$sex: F
 sex pre dose1 dose2 post
 F:7 Min. :4.156 Min. :1.000 Min. :1.000 Min. :2.886
 M:0 1st Qu.:4.409 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:3.075
 Median :4.895 Median :1.000 Median :2.000 Median :3.163
 Mean :5.020 Mean :1.429 Mean :1.571 Mean :3.174
 3rd Qu.:5.668 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:3.314
 Max. :5.932 Max. :2.000 Max. :2.000 Max. :3.389

156 | Chapter 6: Data Transformations

Study Material. Do not distribute.

--
trials$sex: M
 sex pre dose1 dose2 post
 F:0 Min. :3.998 Min. :1.000 Min. :1.000 Min. :3.738
 M:9 1st Qu.:4.773 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:3.800
 Median :5.110 Median :2.000 Median :1.000 Median :4.194
 Mean :5.189 Mean :1.556 Mean :1.444 Mean :4.148
 3rd Qu.:5.828 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:4.429
 Max. :6.658 Max. :2.000 Max. :2.000 Max. :4.517

We can also build linear models of post as a function of the dosages, with one model
for men and one model for women:

> models <- by(trials, trials$sex, function(df) lm(post~pre+dose1+dose2, data=df))

Observe that the parameter to our function is a data frame, so we can use it as the
data argument of lm. The result is a two-element list of linear models. When we print
the list, we see a model for each sex:

> print(models)
trials$sex: F

Call:
lm(formula = post ~ pre + dose1 + dose2, data = df)

Coefficients:
(Intercept) pre dose1 dose2
 4.30804 -0.08161 -0.16225 -0.31354

--
trials$sex: M

Call:
lm(formula = post ~ pre + dose1 + dose2, data = df)

Coefficients:
(Intercept) pre dose1 dose2
 5.29981 -0.02713 -0.36851 -0.30323

We have a list of models, so we can apply the confint function to each list element and
see the confidence intervals for each model’s coefficients:

> lapply(models, confint)
$F
 2.5 % 97.5 %
(Intercept) 3.0841733 5.53191431
pre -0.2950747 0.13184560
dose1 -0.4711773 0.14667409
dose2 -0.6044273 -0.02264593

$M
 2.5 % 97.5 %
(Intercept) 4.8898433 5.70978218
pre -0.1070276 0.05277108
dose1 -0.4905828 -0.24644057
dose2 -0.4460200 -0.16043211

6.6 Applying a Function to Groups of Rows | 157

Study Material. Do not distribute.

In this case, we see that pre is not significant for either model because its confidence
interval contains zero; in contrast, dose1 and dose2 are significant for both models. The
key fact, however, is that the models have significantly different intercepts, alerting us
to a potentially different response for men and women.

See Also
See this chapter’s “Introduction” for more about grouping factors. See Recipe 6.2 for
more about lapply.

6.7 Applying a Function to Parallel Vectors or Lists
Problem
You have a function, say f, that takes multiple arguments. You want to apply the func-
tion element-wise to vectors and obtain a vector result. Unfortunately, the function is
not vectorized; that is, it works on scalars but not on vectors.

Solution
Use the mapply function. It will apply the function f to your arguments element-wise:

> mapply(f, vec1, vec2, ..., vecN)

There must be one vector for each argument expected by f. If the vector arguments are
of unequal length, the Recycling Rule is applied.

The mapply function also works with list arguments:

> mapply(f, list1, list2, ..., listN)

Discussion
The basic operators of R, such as x + y, are vectorized; this means that they compute
their result element-by-element and return a vector of results. Also, many R functions
are vectorized.

Not all functions are vectorized, however, and those that are not work only on scalars.
Using vector arguments produces errors at best and meaningless results at worst. In
such cases, the mapply function can effectively vectorize the function for you.

Consider the gcd function from Recipe 2.12, which takes two arguments:

> gcd <- function(a,b) {
+ if (b == 0) return(a)
+ else return(gcd(b, a %% b))
+ }

158 | Chapter 6: Data Transformations

Study Material. Do not distribute.

If we apply gcd to two vectors, the result is wrong answers and a pile of error messages:

> gcd(c(1,2,3), c(9,6,3))
[1] 1 2 0
Warning messages:
1: In if (b == 0) return(a) else return(gcd(b, a%%b)) :
 the condition has length > 1 and only the first element will be used
2: In if (b == 0) return(a) else return(gcd(b, a%%b)) :
 the condition has length > 1 and only the first element will be used
3: In if (b == 0) return(a) else return(gcd(b, a%%b)) :
 the condition has length > 1 and only the first element will be used

The function is not vectorized, but we can use mapply to vectorize it. This gives the
element-wise GCDs between two vectors:

> mapply(gcd, c(1,2,3), c(9,6,3))
[1] 1 2 3

6.7 Applying a Function to Parallel Vectors or Lists | 159

Study Material. Do not distribute.

Study Material. Do not distribute.

