
Use the sink function to redirect all output from both print and cat. Call sink with a
filename argument to begin redirecting console output to that file. When you are done,
use sink with no argument to close the file and resume output to the console:

> sink("filename") # Begin writing output to file

. . . other session work . . .

> sink() # Resume writing output to console

Discussion
The print and cat functions normally write their output to your console. The cat func-
tion writes to a file if you supply a file argument, which can be either a filename or a
connection. The print function cannot redirect its output, but the sink function can
force all output to a file. A common use for sink is to capture the output of an R script:

> sink("script_output.txt") # Redirect output to file
> source("script.R") # Run the script, capturing its output
> sink() # Resume writing output to console

If you are repeatedly cating items to one file, be sure to set append=TRUE. Otherwise,
each call to cat will simply overwrite the file’s contents:

cat(data, file="analysisReport.out")
cat(results, file="analysisRepart.out", append=TRUE)
cat(conclusion, file="analysisReport.out", append=TRUE)

Hard-coding file names like this is a tedious and error-prone process. Did you notice
that the filename is misspelled in the second line? Instead of hard-coding the filename
repeatedly, I suggest opening a connection to the file and writing your output to the
connection:

con <- file("analysisReport.out", "w")
cat(data, file=con)
cat(results, file=con)
cat(conclusion, file=con)
close(con)

(You don’t need append=TRUE when writing to a connection because it’s implied.) This
technique is especially valuable inside R scripts because it makes your code more reli-
able and more maintainable.

4.4 Listing Files
Problem
You want to see a listing of your files without the hassle of switching to your file browser.

4.4 Listing Files | 75

Study Material. Do not distribute.

Solution
The list.files function shows the contents of your working directory:

> list.files()

Discussion
This function is just plain handy. If I can’t remember the name of my data file (was it
sample_data.csv or sample-data.csv?), I do a quick list.files to refresh my memory:

> list.files()
[1] "sample-data.csv" "script.R"

To see all the files in your subdirectories, too, use list.files(recursive=T).

A possible “gotcha” of list.files is that it ignores hidden files—typically, any file
whose name begins with a period. If you don’t see the file you expected to see, try
setting all.files=TRUE:

> list.files(all.files=TRUE)

See Also
R has other handy functions for working with files; see help(files).

4.5 Dealing with “Cannot Open File” in Windows
Problem
You are running R on Windows, and you are using file names such as
C:\data\sample.txt. R says it cannot open the file, but you know the file does exist.

Solution
The backslashes in the file path are causing trouble. You can solve this problem in one
of two ways:

• Change the backslashes to forward slashes: "C:/data/sample.txt".

• Double the backslashes: "C:\\data\\sample.txt".

Discussion
When you open a file in R, you give the file name as a character string. Problems arise
when the name contains backslashes (\) because backslashes have a special meaning
inside strings. You’ll probably get something like this:

> samp <- read.csv("C:\Data\sample-data.csv")
Error in file(file, "rt") : cannot open the connection
In addition: Warning messages:
1: '\D' is an unrecognized escape in a character string

76 | Chapter 4: Input and Output

Study Material. Do not distribute.

2: '\s' is an unrecognized escape in a character string
3: unrecognized escapes removed from "C:\Data\sample-data.csv"
4: In file(file, "rt") :
 cannot open file 'C:Datasample-data.csv': No such file or directory

R escapes every character that follows a backslash and then removes the backslashes.
That leaves a meaningless file path, such as C:Datasample-data.csv in this example.

The simple solution is to use forward slashes instead of backslashes. R leaves the for-
ward slashes alone, and Windows treats them just like backslashes. Problem solved:

> samp <- read.csv("C:/Data/sample-data.csv")
>

An alternative solution is to double the backslashes, since R replaces two consecutive
backslashes with a single backslash:

> samp <- read.csv("C:\\Data\\sample-data.csv")
>

4.6 Reading Fixed-Width Records
Problem
You are reading data from a file of fixed-width records: records whose data items occur
at fixed boundaries.

Solution
Read the file using the read.fwf function. The main arguments are the file name and
the widths of the fields:

> records <- read.fwf("filename", widths=c(w1, w2, ..., wn))

Discussion
Suppose we want to read an entire file of fixed-width records, such as fixed-width.txt,
shown here:

Fisher R.A. 1890 1962
Pearson Karl 1857 1936
Cox Gertrude 1900 1978
Yates Frank 1902 1994
Smith Kirstine 1878 1939

We need to know the column widths. In this case the columns are: last name, 10 char-
acters; first name, 10 characters; year of birth, 4 characters; and year of death, 4 char-
acters. In between the two last columns is a 1-character space. We can read the file this
way:

> records <- read.fwf("fixed-width.txt", widths=c(10,10,4,-1,4))

4.6 Reading Fixed-Width Records | 77

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Study Material. Do not distribute.

The -1 in the widths argument says there is a one-character column that should be
ignored. The result of read.fwf is a data frame:

> records
 V1 V2 V3 V4
1 Fisher R.A. 1890 1962
2 Pearson Karl 1857 1936
3 Cox Gertrude 1900 1978
4 Yates Frank 1902 1994
5 Smith Kirstine 1878 1939

Note that R supplied some funky, synthetic column names. We can override that de-
fault by using a col.names argument:

> records <- read.fwf("fixed-width.txt", widths=c(10,10,4,-1,4),
+ col.names=c("Last","First","Born","Died"))
> records
 Last First Born Died
1 Fisher R.A. 1890 1962
2 Pearson Karl 1857 1936
3 Cox Gertrude 1900 1978
4 Yates Frank 1902 1994
5 Smith Kirstine 1878 1939

read.fwf interprets nonnumeric data as a factor (categorical variable) by default. For
instance, the Last and First columns just displayed were interpreted as factors. Set
stringsAsFactors=FALSE to have the function read them as character strings.

The read.fwf function has many bells and whistles that may be useful for reading your
data files. It also shares many bells and whistles with the read.table function. I suggest
reading the help pages for both functions.

See Also
See Recipe 4.7 for more discussion of reading text files.

4.7 Reading Tabular Data Files
Problem
You want to read a text file that contains a table of data.

Solution
Use the read.table function, which returns a data frame:

> dfrm <- read.table("filename")

Discussion
Tabular data files are quite common. They are text files with a simple format:

78 | Chapter 4: Input and Output

Study Material. Do not distribute.

• Each line contains one record.

• Within each record, fields (items) are separated by a one-character delimiter, such
as a space, tab, colon, or comma.

• Each record contains the same number of fields.

This format is more free-form than the fixed-width format because fields needn’t be
aligned by position. Here is the data file of Recipe 4.6 in tabular format, using a space
character between fields:

Fisher R.A. 1890 1962
Pearson Karl 1857 1936
Cox Gertrude 1900 1978
Yates Frank 1902 1994
Smith Kirstine 1878 1939

The read.table function is built to read this file. By default, it assumes the data fields
are separated by white space (blanks or tabs):

> dfrm <- read.table("statisticians.txt")
> print(dfrm)
 V1 V2 V3 V4
1 Fisher R.A. 1890 1962
2 Pearson Karl 1857 1936
3 Cox Gertrude 1900 1978
4 Yates Frank 1902 1994
5 Smith Kirstine 1878 1939

If your file uses a separator other than white space, specify it using the sep parameter.
If our file used colon (:) as the field separator, we would read it this way:

> dfrm <- read.table("statisticians.txt", sep=":")

You cannot tell from the printed output, but read.table interpreted the first and last
names as factors, not strings. We see that by checking the class of the resulting column:

> class(dfrm$V1)
[1] "factor"

To prevent read.table from interpreting character strings as factors, set the
stringsAsFactors parameter to FALSE:

> dfrm <- read.table("statisticians.txt", stringsAsFactor=FALSE)
> class(dfrm$V1)
[1] "character"

Now the class of the first column is character, not factor.

If any field contains the string “NA”, then read.table assumes that the value is missing
and converts it to NA. Your data file might employ a different string to signal missing
values, in which case use the na.strings parameter. The SAS convention, for example,
is that missing values are signaled by a single period (.). We can read such data files in
this way:

> dfrm <- read.table("filename.txt", na.strings=".")

4.7 Reading Tabular Data Files | 79

Study Material. Do not distribute.

I am a huge fan of self-describing data: data files which describe their own contents. (A
computer scientist would say the file contains its own metadata.) The read.table func-
tion has two features that support this characteristic. First, you can include a header
line at the top of your file that gives names to the columns. The line contains one name
for every column, and it uses the same field separator as the data. Here is our data file
with a header line that names the columns:

lastname firstname born died
Fisher R.A. 1890 1962
Pearson Karl 1857 1936
Cox Gertrude 1900 1978
Yates Frank 1902 1994
Smith Kirstine 1878 1939

Now we can tell read.table that our file contains a header line, and it will use the
column names when it builds the data frame:

> dfrm <- read.table("statisticians.txt", header=TRUE, stringsAsFactor=FALSE)
> print(dfrm)
 lastname firstname born died
1 Fisher R.A. 1890 1962
2 Pearson Karl 1857 1936
3 Cox Gertrude 1900 1978
4 Yates Frank 1902 1994
5 Smith Kirstine 1878 1939

The second feature of read.table is comment lines. Any line that begins with a pound
sign (#) is ignored, so you can put comments on those lines:

This is a data file of famous statisticians.
Last edited on 1994-06-18
lastname firstname born died
Fisher R.A. 1890 1962
Pearson Karl 1857 1936
Cox Gertrude 1900 1978
Yates Frank 1902 1994
Smith Kirstine 1878 1939

read.table has many parameters for controlling how it reads and interprets the input
file. See the help page for details.

See Also
If your data items are separated by commas, see Recipe 4.8 for reading a CSV file.

4.8 Reading from CSV Files
Problem
You want to read data from a comma-separated values (CSV) file.

80 | Chapter 4: Input and Output

Study Material. Do not distribute.

Solution
The read.csv function can read CSV files. If your CSV file has a header line, use this:

> tbl <- read.csv("filename")

If your CSV file does not contain a header line, set the header option to FALSE:

> tbl <- read.csv("filename", header=FALSE)

Discussion
The CSV file format is popular because many programs can import and export data in
that format. Such programs include R, Excel, other spreadsheet programs, many
database managers, and most statistical packages. It is a flat file of tabular data, where
each line in the file is a row of data, and each row contains data items separated by
commas. Here is a very simple CSV file with three rows and three columns (the first
line is a header line that contains the column names, also separated by commas):

label,lbound,ubound
low,0,0.674
mid,0.674,1.64
high,1.64,2.33

The read.csv file reads the data and creates a data frame, which is the usual R repre-
sentation for tabular data. The function assumes that your file has a header line unless
told otherwise:

> tbl <- read.csv("table-data.csv")
> tbl
 label lbound ubound
1 low 0.000 0.674
2 mid 0.674 1.640
3 high 1.640 2.330

Observe that read.csv took the column names from the header line for the data frame.
If the file did not contain a header, then we would specify header=FALSE and R would
synthesize column names for us (V1, V2, and V3 in this case):

> tbl <- read.csv("table-data-with-no-header.csv", header=FALSE)
> tbl
 V1 V2 V3
1 low 0.000 0.674
2 mid 0.674 1.640
3 high 1.640 2.330

A good feature of read.csv is that is automatically interprets nonnumeric data as a
factor (categorical variable), which is often what you want since after all this is a
statistical package, not Perl. The label variable in the tbl data frame just shown is
actually a factor, not a character variable. You see that by inspecting the structure of tbl:

4.8 Reading from CSV Files | 81

Study Material. Do not distribute.

> str(tbl)
'data.frame': 3 obs. of 3 variables:
 $ label : Factor w/ 3 levels "high","low","mid": 2 3 1
 $ lbound: num 0 0.674 1.64
 $ ubound: num 0.674 1.64 2.33

Sometimes you really want your data interpreted as strings, not as a factor. In that case,
set the as.is parameter to TRUE; this indicates that R should not interpret nonnumeric
data as a factor:

> tbl <- read.csv("table-data.csv", as.is=TRUE)
> str(tbl)
'data.frame': 3 obs. of 3 variables:
 $ label : chr "low" "mid" "high"
 $ lbound: num 0 0.674 1.64
 $ ubound: num 0.674 1.64 2.33

Notice that the label variable now has character-string values and is no longer a factor.

Another useful feature is that input lines starting with a pound sign (#) are ignored,
which lets you embed comments in your data file. Disable this feature by specifying
comment.char="".

The read.csv function has many useful bells and whistles. These include the ability to
skip leading lines in the input file, control the conversion of individual columns, fill out
short rows, limit the number of lines, and control the quoting of strings. See the R help
page for details.

See Also
See Recipe 4.9. See the R help page for read.table, which is the basis for read.csv.

4.9 Writing to CSV Files
Problem
You want to save a matrix or data frame in a file using the comma-separated values
format.

Solution
The write.csv function can write a CSV file:

> write.csv(x, file="filename", row.names=FALSE)

Discussion
The write.csv function writes tabular data to an ASCII file in CSV format. Each row
of data creates one line in the file, with data items separated by commas (,):

> print(tbl)
 label lbound ubound

82 | Chapter 4: Input and Output

Study Material. Do not distribute.

1 low 0.000 0.674
2 mid 0.674 1.640
3 high 1.640 2.330
> write.csv(tbl, file="table-data.csv", row.names=T)

This example creates a file called table-data.csv in the current working directory. The
file looks like this:

"label","lbound","ubound"
"low",0,0.674
"mid",0.674,1.64
"high",1.64,2.33

Notice that the function writes a column header line by default. Set col.names=FALSE
to change that.

If we do not specify row.names=FALSE, the function prepends each row with a label taken
from the row.names attribute of your data. If your data doesn’t have row names then
the function just uses the row numbers, which creates a CSV file like this:

"","label","lbound","ubound"
"1","low",0,0.674
"2","mid",0.674,1.64
"3","high",1.64,2.33

I rarely want row labels in my CSV files, which is why I recommend setting
row.names=FALSE.

The function is intentionally inflexible. You cannot easily change the defaults because
it really, really wants to write files in a valid CSV format. Use the write.table function
to save your tabular data in other formats.

A sad limitation of write.csv is that it cannot append lines to a file. Use write.table
instead.

See Also
See Recipe 3.1 for more about the current working directory and Recipe 4.14 for other
ways to save data to files.

4.10 Reading Tabular or CSV Data from the Web
Problem
You want to read data directly from the Web into your R workspace.

Solution
Use the read.csv, read.table, and scan functions, but substitute a URL for a file name.
The functions will read directly from the remote server:

> tbl <- read.csv("http://www.example.com/download/data.csv")

4.10 Reading Tabular or CSV Data from the Web | 83

Study Material. Do not distribute.

You can also open a connection using the URL and then read from the connection,
which may be preferable for complicated files.

Discussion
The Web is a gold mine of data. You could download the data into a file and then read
the file into R, but it’s more convenient to read directly from the Web. Give the URL
to read.csv, read.table, or scan (depending upon the format of the data), and the data
will be downloaded and parsed for you. No fuss, no muss.

Aside from using a URL, this recipe is just like reading from a CSV file (Recipe 4.8) or
a complex file (Recipe 4.12), so all the comments in those recipes apply here, too.

Remember that URLs work for FTP servers, not just HTTP servers. This means that R
can also read data from FTP sites using URLs:

> tbl <- read.table("ftp://ftp.example.com/download/data.txt")

See Also
See Recipes 4.8 and 4.12.

4.11 Reading Data from HTML Tables
Problem
You want to read data from an HTML table on the Web.

Solution
Use the readHTMLTable function in the XML package. To read all tables on the page, simply
give the URL:

> library(XML)
> url <- 'http://www.example.com/data/table.html'
> tbls <- readHTMLTable(url)

To read only specific tables, use the which parameter. This example reads the third table
on the page:

> tbl <- readHTMLTable(url, which=3)

Discussion
Web pages can contain several HTML tables. Calling readHTMLTable(url) reads all ta-
bles on the page and returns them in a list. This can be useful for exploring a page, but
it’s annoying if you want just one specific table. In that case, use which=n to select the
desired table. You’ll get only the nth table.

84 | Chapter 4: Input and Output

Study Material. Do not distribute.

The following example, which is taken from the help page for readHTMLTable, loads all
tables from the Wikipedia page entitled “World population”:

> library(XML)
> url <- 'http://en.wikipedia.org/wiki/World_population'
> tbls <- readHTMLTable(url)

As it turns out, that page contains 17 tables:

> length(tbls)
[1] 17

In this example we care only about the third table (which lists the largest populations
by country), so we specify which=3:

> tbl <- readHTMLTable(url, which=3)

In that table, columns 2 and 3 contain the country name and population, respectively:

> tbl[,c(2,3)]
 Country / Territory Population
1 Â People's Republic of China[44] 1,338,460,000
2 Â India 1,182,800,000
3 Â United States 309,659,000
4 Â Indonesia 231,369,500
5 Â Brazil 193,152,000
6 Â Pakistan 169,928,500
7 Â Bangladesh 162,221,000
8 Â Nigeria 154,729,000
9 Â Russia 141,927,297
10 Â Japan 127,530,000
11 Â Mexico 107,550,697
12 Â Philippines 92,226,600
13 Â Vietnam 85,789,573
14 Â Germany 81,882,342
15 Â Ethiopia 79,221,000
16 Â Egypt 78,459,000

Right away, we can see problems with the data: the country names have some funky
Unicode character stuck to the front. I don’t know why; it probably has something to
do with formatting the Wikipedia page. Also, the name of the People’s Republic of
China has “[44]” appended. On the Wikipedia website, that was a footnote reference,
but now it’s just a bit of unwanted text. Adding insult to injury, the population numbers
have embedded commas, so you cannot easily convert them to raw numbers. All these
problems can be solved by some string processing, but each problem adds at least one
more step to the process.

This illustrates the main obstacle to reading HTML tables. HTML was designed for
presenting information to people, not to computers. When you “scrape” information
off an HTML page, you get stuff that’s useful to people but annoying to computers. If
you ever have a choice, choose instead a computer-oriented data representation such
as XML, JSON, or CSV.

4.11 Reading Data from HTML Tables | 85

Study Material. Do not distribute.

The readHTMLTable function is part of the XML package, which (by necessity) is large and
complex. The XML package depends on a software library called libxml2, which you will
need to obtain and install first. On Linux, you will also need the Linux package
xml2-config, which is necessary for building the R package.

See Also
See Recipe 3.9 for downloading and installing packages such as the XML package.

4.12 Reading Files with a Complex Structure
Problem
You are reading data from a file that has a complex or irregular structure.

Solution
• Use the readLines function to read individual lines; then process them as strings

to extract data items.

• Alternatively, use the scan function to read individual tokens and use the argument
what to describe the stream of tokens in your file. The function can convert tokens
into data and then assemble the data into records.

Discussion
Life would be simple and beautiful if all our data files were organized into neat tables
with cleanly delimited data. We could read those files using read.table and get on with
living.

Dream on.

You will eventually encounter a funky file format, and your job—no matter how
painful—is to read the file contents into R. The read.table and read.csv functions are
line-oriented and probably won’t help. However, the readLines and scan functions are
useful here because they let you process the individual lines and even tokens of the file.

The readLines function is pretty simple. It reads lines from a file and returns them as
a list of character strings:

> lines <- readLines("input.txt")

You can limit the number of lines by using the n parameter, which gives the number of
maximum number of lines to be read:

> lines <- readLines("input.txt", n=10) # Read 10 lines and stop

86 | Chapter 4: Input and Output

Study Material. Do not distribute.

The scan function is much richer. It reads one token at a time and handles it according
to your instructions. The first argument is either a filename or a connection (more on
connections later). The second argument is called what, and it describes the tokens that
scan should expect in the input file. The description is cryptic but quite clever:

what=numeric(0)
Interpret the next token as a number.

what=integer(0)
Interpret the next token as an integer.

what=complex(0)
Interpret the next token as complex number.

what=character(0)
Interpret the next token as a character string.

what=logical(0)
Interpret the next token as a logical value.

The scan function will apply the given pattern repeatedly until all data is read.

Suppose your file is simply a sequence of numbers, like this:

2355.09 2246.73 1738.74 1841.01 2027.85

Use what=numeric(0) to say, “My file is a sequence of tokens, each of which is a
number”:

> singles <- scan("singles.txt", what=numeric(0))
Read 5 items
> singles
[1] 2355.09 2246.73 1738.74 1841.01 2027.85

A key feature of scan is that the what can be a list containing several token types. The
scan function will assume your file is a repeating sequence of those types. Suppose your
file contains triplets of data, like this:

15-Oct-87 2439.78 2345.63 16-Oct-87 2396.21 2,207.73
19-Oct-87 2164.16 1677.55 20-Oct-87 2067.47 1,616.21
21-Oct-87 2081.07 1951.76

Use a list to tell scan that it should expect a repeating, three-token sequence:

> triples <- scan("triples.txt", what=list(character(0),numeric(0),numeric(0)))

Give names to the list elements, and scan will assign those names to the data:

> triples <- scan("triples.txt",
+ what=list(date=character(0), high=numeric(0), low=numeric(0)))
Read 5 records
> triples
$date
[1] "15-Oct-87" "16-Oct-87" "19-Oct-87" "20-Oct-87" "21-Oct-87"

$high
[1] 2439.78 2396.21 2164.16 2067.47 2081.07

4.12 Reading Files with a Complex Structure | 87

Study Material. Do not distribute.

$low
[1] 2345.63 2207.73 1677.55 1616.21 1951.76

The scan function has many bells and whistles, but the following are especially useful:

n=number
Stop after reading this many tokens. (Default: stop at end of file.)

nlines=number
Stop after reading this many input lines. (Default: stop at end of file.)

skip=number
Number of input lines to skip before reading data.

na.strings=list
A list of strings to be interpreted as NA.

An Example
Let’s use this recipe to read a dataset from StatLib, the repository of statistical data
and software maintained by Carnegie Mellon University. Jeff Witmer contributed a
dataset called wseries that shows the pattern of wins and losses for every World Series
since 1903. The dataset is stored in an ASCII file with 35 lines of comments followed
by 23 lines of data. The data itself looks like this:

1903 LWLlwwwW 1927 wwWW 1950 wwWW 1973 WLwllWW
1905 wLwWW 1928 WWww 1951 LWlwwW 1974 wlWWW
1906 wLwLwW 1929 wwLWW 1952 lwLWLww 1975 lwWLWlw
1907 WWww 1930 WWllwW 1953 WWllwW 1976 WWww
1908 wWLww 1931 LWwlwLW 1954 WWww 1977 WLwwlW

.

. (etc.)

.

The data is encoded as follows: L = loss at home, l = loss on the road, W = win at home,
w = win on the road. The data appears in column order, not row order, which com-
plicates our lives a bit.

Here is the R code for reading the raw data:

Read the wseries dataset:
- Skip the first 35 lines
- Then read 23 lines of data
- The data occurs in pairs: a year and a pattern (char string)
#
world.series <- scan("http://lib.stat.cmu.edu/datasets/wseries",
 skip = 35,
 nlines = 23,
 what = list(year = integer(0),
 pattern = character(0)),
)

88 | Chapter 4: Input and Output

Study Material. Do not distribute.

The scan function returns a list, so we get a list with two elements: year and pattern.
The function reads from left to right, but the dataset is organized by columns and so
the years appear in a strange order:

> world.series$year
 [1] 1903 1927 1950 1973 1905 1928 1951 1974 1906 1929 1952
[12] 1975 1907 1930 1953 1976 1908 1931 1954 1977 1909 1932

.

. (etc.)

.

We can fix that by sorting the list elements according to year:

> perm <- order(world.series$year)
> world.series <- list(year = world.series$year[perm],
+ pattern = world.series$pattern[perm])

Now the data appears in chronological order:

> world.series$year
 [1] 1903 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
[12] 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925

.

. (etc.)

.

> world.series$pattern
 [1] "LWLlwwwW" "wLwWW" "wLwLwW" "WWww" "wWLww"
 [6] "WLwlWlw" "WWwlw" "lWwWlW" "wLwWlLW" "wLwWw"
[11] "wwWW" "lwWWw" "WWlwW" "WWllWw" "wlwWLW"
[16] "WWlwwLLw" "wllWWWW" "LlWwLwWw" "WWwW" "LwLwWw"

.

. (etc.)

.

4.13 Reading from MySQL Databases
Problem
You want access to data stored in a MySQL database.

Solution
1. Install the RMySQL package on your computer.

2. Open a database connection using the dbConnect function.

3. Use dbGetQuery to initiate a SELECT and return the result sets.

4. Use dbDisconnect to terminate the database connection when you are done.

4.13 Reading from MySQL Databases | 89

Study Material. Do not distribute.

Discussion
This recipe requires that the RMySQL package be installed on your computer. That pack-
age requires, in turn, the MySQL client software. If the MySQL client software is not
already installed and configured, consult the MySQL documentation or your system
administrator.

Use the dbConnect function to establish a connection to the MySQL database. It returns
a connection object which is used in subsequent calls to RMySQL functions:

library(RMySQL)
con <- dbConnect(MySQL(), user="userid", password="pswd",
 host="hostname", client.flag=CLIENT_MULTI_RESULTS)

Setting client.flag=CLIENT_MULTI_RESULTS is necessary to correctly handle multiple re-
sult sets. Even if your queries return a single result set, you must set client.flag this
way because MySQL might include additional status result sets after your data.

The username, password, and host parameters are the same parameters used for ac-
cessing MySQL through the mysql client program. The example given here shows them
hard-coded into the dbConnect call. Actually, that is an ill-advised practice. It puts your
password out in the open, creating a security problem. It also creates a major headache
whenever your password or host change, requiring you to hunt down the hard-coded
values. I strongly recommend using the security mechanism of MySQL instead. Put
those three parameters into your MySQL configuration file, which is $HOME/.my.cnf
on Unix and C:\my.cnf on Windows. Make sure the file is unreadable by anyone except
you. The file is delimited into sections with markers such as [client]. Put the parameters
into the [client] section, so that your config file will contain something like this:

[client]
user = userid
password = password
host = hostname

Once the parameters are defined in the config file, you no longer need to supply them
in the dbConnect call, which then becomes much simpler:

con <- dbConnect(MySQL(), client.flag=CLIENT_MULTI_RESULTS)

Use the dbGetQuery function to submit your SQL to the database and read the result
sets. Doing so requires an open database connection:

sql <- "SELECT * from SurveyResults WHERE City = 'Chicago'"
rows <- dbGetQuery(con, sql)

You will need to construct your own SQL query, of course; this is just an example. You
are not restricted to SELECT statements. Any SQL that generates a result set is OK. I
generally use CALL statements, for example, because all my SQL is encapsulated in
stored procedures and those stored procedures contain embedded SELECT statements.

90 | Chapter 4: Input and Output

Study Material. Do not distribute.

Using dbGetQuery is convenient because it packages the result set into a data frame and
returns the data frame. This is the perfect representation of an SQL result set. The result
set is a tabular data structure of rows and columns, and so is a data frame. The result
set’s columns have names given by the SQL SELECT statement, and R uses them for
naming the columns of the data frame.

After the first result set of data, MySQL can return a second result set containing status
information. You can choose to inspect the status or ignore it, but you must read it.
Otherwise, MySQL will complain that there are unprocessed result sets and then halt.
So call dbNextResult if necessary:

if (dbMoreResults(con)) dbNextResult(con)

Call dbGetQuery repeatedly to perform multiple queries, checking for the result status
after each call (and reading it, if necessary). When you are done, close the database
connection using dbDisconnect:

dbDisconnect(con)

Here is a complete session that reads and prints three rows from my database of stock
prices. The query selects the price of IBM stock for the last three days of 2008. It assumes
that the username, password, and host are defined in the my.cnf file:

> con <- dbConnect(MySQL(), client.flag=CLIENT_MULTI_RESULTS)
> sql <- paste("select * from DailyBar where Symbol = 'IBM'",
+ "and Day between '2008-12-29' and '2008-12-31'")
> rows <- dbGetQuery(con, sql)
> if (dbMoreResults(con)) dbNextResults(con)
> print(rows)
 Symbol Day Next OpenPx HighPx LowPx ClosePx AdjClosePx
1 IBM 2008-12-29 2008-12-30 81.72 81.72 79.68 81.25 81.25
2 IBM 2008-12-30 2008-12-31 81.83 83.64 81.52 83.55 83.55
3 IBM 2008-12-31 2009-01-02 83.50 85.00 83.50 84.16 84.16
 HistClosePx Volume OpenInt
1 81.25 6062600 NA
2 83.55 5774400 NA
3 84.16 6667700 NA
> dbDisconnect(con)
[1] TRUE

See Also
See Recipe 3.9 and the documentation for RMySQL, which contains more details about
configuring and using the package.

R can read from several other RDBMS systems, including Oracle, Sybase, PostgreSQL,
and SQLite. For more information, see the R Data Import/Export guide, which is sup-
plied with the base distribution (Recipe 1.6) and is also available on CRAN at http://
cran.r-project.org/doc/manuals/R-data.pdf.

4.13 Reading from MySQL Databases | 91

Study Material. Do not distribute.

4.14 Saving and Transporting Objects
Problem
You want to store one or more R objects in a file for later use, or you want to copy an
R object from one machine to another.

Solution
Write the objects to a file using the save function:

> save(myData, file="myData.RData")

Read them back using the load function, either on your computer or on any platform
that supports R:

> load("myData.RData")

The save function writes binary data. To save in an ASCII format, use dput or dump
instead:

> dput(myData, file="myData.txt")
> dump("myData", file="myData.txt") # Note quotes around variable name

Discussion
I normally save my data in my workspace, but sometimes I need to save data outside
my workspace. I may have a large, complicated data object that I want to load into
other workspaces, or I may want to move R objects between my Linux box and my
Windows box. The load and save functions let me do all this: save will store the object
in a file that is portable across machines, and load can read those files.

When you run load, it does not return your data per se; rather, it creates variables in
your workspace, loads your data into those variables, and then returns the names of
the variables (in a list). The first time I used load, I did this:

> myData <- load("myFile.RData") # Achtung! Might not do what you think

I was extremely puzzled because myData did not contain my data at all and because my
variables had mysteriously appeared in my workspace. Eventually, I broke down and
read the documentation for load, which explained everything.

The save function writes in a binary format to keep the file small. Sometimes you want
an ASCII format instead. When you submit a question to a mailing list, for example,
including an ASCII dump of the data lets others re-create your problem. In such cases
use dput or dump, which write an ASCII representation.

Be careful when you save and load objects created by a particular R package. When
you load the objects, R does not automatically load the required packages, too, so it
will not “understand” the object unless you previously loaded the package yourself.
For instance, suppose you have an object called z created by the zoo package, and

92 | Chapter 4: Input and Output

Study Material. Do not distribute.

suppose we save the object in a file called z.RData. The following sequence of functions
will create some confusion:

> load("z.RData") # Create and populate the z variable
> plot(z) # Does not plot what we expected: zoo pkg not loaded

We should have loaded the zoo package before printing or plotting any zoo objects, like
this:

> library(zoo) # Load the zoo package into memory
> load("z.RData") # Create and populate the z variable
> plot(z) # Ahhh. Now plotting works correctly

4.14 Saving and Transporting Objects | 93

Study Material. Do not distribute.

Study Material. Do not distribute.

