
CHAPTER 5

Data Structures

Introduction
You can get pretty far in R just using vectors. That’s what Chapter 2 is all about. This
chapter moves beyond vectors to recipes for matrices, lists, factors, and data frames. If
you have preconceptions about data structures, I suggest you put them aside. R does
data structures differently.

If you want to study the technical aspects of R’s data structures, I suggest reading R in
a Nutshell (O’Reilly) and the R Language Definition. My notes here are more informal.
These are things I wish I’d known when I started using R.

Vectors
Here are some key properties of vectors:

Vectors are homogeneous
All elements of a vector must have the same type or, in R terminology, the same
mode.

Vectors can be indexed by position
So v[2] refers to the second element of v.

Vectors can be indexed by multiple positions, returning a subvector
So v[c(2,3)] is a subvector of v that consists of the second and third elements.

Vector elements can have names
Vectors have a names property, the same length as the vector itself, that gives names
to the elements:

> v <- c(10, 20, 30)
> names(v) <- c("Moe", "Larry", "Curly")
> print(v)
 Moe Larry Curly
 10 20 30

95

Study Material. Do not distribute.

If vector elements have names then you can select them by name
Continuing the previous example:

> v["Larry"]
Larry
 20

Lists
Lists are heterogeneous

Lists can contain elements of different types; in R terminology, list elements may
have different modes. Lists can even contain other structured objects, such as lists
and data frames; this allows you to create recursive data structures.

Lists can be indexed by position
So lst[[2]] refers to the second element of lst. Note the double square brackets.

Lists let you extract sublists
So lst[c(2,3)] is a sublist of lst that consists of the second and third elements.
Note the single square brackets.

List elements can have names
Both lst[["Moe"]] and lst$Moe refer to the element named “Moe”.

Since lists are heterogeneous and since their elements can be retrieved by name, a
list is like a dictionary or hash or lookup table in other programming languages
(Recipe 5.9). What’s surprising (and cool) is that in R, unlike most of those other
programming languages, lists can also be indexed by position.

Mode: Physical Type
In R, every object has a mode, which indicates how it is stored in memory: as a number,
as a character string, as a list of pointers to other objects, as a function, and so forth:

Object Example Mode

Number 3.1415 numeric

Vector of numbers c(2.7.182, 3.1415) numeric

Character string "Moe" character

Vector of character strings c("Moe", "Larry", "Curly") character

Factor factor(c("NY", "CA", "IL")) numeric

List list("Moe", "Larry", "Curly") list

Data frame data.frame(x=1:3, y=c("NY", "CA", "IL")) list

Function print function

The mode function gives us this information:

96 | Chapter 5: Data Structures

Study Material. Do not distribute.

> mode(3.1415) # Mode of a number
[1] "numeric"
> mode(c(2.7182, 3.1415)) # Mode of a vector of numbers
[1] "numeric"
> mode("Moe") # Mode of a character string
[1] "character"
> mode(list("Moe","Larry","Curly")) # Mode of a list
[1] "list"

A critical difference between a vector and a list can be summed up this way:

• In a vector, all elements must have the same mode.

• In a list, the elements can have different modes.

Class: Abstract Type
In R, every object also has a class, which defines its abstract type. The terminology is
borrowed from object-oriented programming. A single number could represent many
different things: a distance, a point in time, a weight. All those objects have a mode of
“numeric” because they are stored as a number; but they could have different classes
to indicate their interpretation.

For example, a Date object consists of a single number:

> d <- as.Date("2010-03-15")
> mode(d)
[1] "numeric"
> length(d)
[1] 1

But it has a class of Date, telling us how to interpret that number; namely, as the number
of days since January 1, 1970:

> class(d)
[1] "Date"

R uses an object’s class to decide how to process the object. For example, the generic
function print has specialized versions (called methods) for printing objects according
to their class: data.frame, Date, lm, and so forth. When you print an object, R calls the
appropriate print function according to the object’s class.

Scalars
The quirky thing about scalars is their relationship to vectors. In some software, scalars
and vectors are two different things. In R, they are the same thing: a scalar is simply a
vector that contains exactly one element. In this book I often use the term “scalar”, but
that’s just shorthand for “vector with one element.”

Consider the built-in constant pi. It is a scalar:

> pi
[1] 3.141593

Introduction | 97

Study Material. Do not distribute.

Since a scalar is a one-element vector, you can use vector functions on pi:

> length(pi)
[1] 1

You can index it. The first (and only) element is π, of course:

> pi[1]
[1] 3.141593

If you ask for the second element, there is none:

> pi[2]
[1] NA

Matrices
In R, a matrix is just a vector that has dimensions. It may seem strange at first, but you
can transform a vector into a matrix simply by giving it dimensions.

A vector has an attribute called dim, which is initially NULL, as shown here:

> A <- 1:6
> dim(A)
NULL
> print(A)
[1] 1 2 3 4 5 6

We give dimensions to the vector when we set its dim attribute. Watch what happens
when we set our vector dimensions to 2 × 3 and print it:

> dim(A) <- c(2,3)
> print(A)
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Voilà! The vector was reshaped into a 2 × 3 matrix.

A matrix can be created from a list, too. Like a vector, a list has a dim attribute, which
is initially NULL:

> B <- list(1,2,3,4,5,6)
> dim(B)
NULL

If we set the dim attribute, it gives the list a shape:

> dim(B) <- c(2,3)
> print(B)
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Voilà! We have turned this list into a 2 × 3 matrix.

98 | Chapter 5: Data Structures

Study Material. Do not distribute.

Arrays
The discussion of matrices can be generalized to 3-dimensional or even n-dimensional
structures: just assign more dimensions to the underlying vector (or list). The following
example creates a 3-dimensional array with dimensions 2 × 3 × 2:

> D <- 1:12
> dim(D) <- c(2,3,2)
> print(D)
, , 1

 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

, , 2

 [,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

Note that R prints one “slice” of the structure at a time, since it’s not possible to print
a 3-dimensional structure on a 2-dimensional medium.

Matrices Made from Lists
It strikes me as very odd that we can turn a list into a matrix just by giving the list a
dim attribute. But wait; it gets stranger.

Recall that a list can be heterogeneous (mixed modes). We can start with a heteroge-
neous list, give it dimensions, and thus create a heterogeneous matrix. This code snippet
creates a matrix that is a mix of numeric and character data:

> C <- list(1, 2, 3, "X", "Y", "Z")
> dim(C) <- c(2,3)
> print(C)
 [,1] [,2] [,3]
[1,] 1 3 "Y"
[2,] 2 "X" "Z"

To me this is strange because I ordinarily assume a matrix is purely numeric, not mixed.
R is not that restrictive.

The possibility of a heterogeneous matrix may seem powerful and strangely fascinating.
However, it creates problems when you are doing normal, day-to-day stuff with ma-
trices. For example, what happens when the matrix C (above) is used in matrix multi-
plication? What happens if it is converted to a data frame? The answer is that odd things
happen.

In this book, I generally ignore the pathological case of a heterogeneous matrix. I as-
sume you’ve got simple, vanilla matrices. Some recipes involving matrices may work
oddly (or not at all) if your matrix contains mixed data. Converting such a matrix to a
vector or data frame, for instance, can be problematic (Recipe 5.33).

Introduction | 99

Study Material. Do not distribute.

Factors
A factor looks like a vector, but it has special properties. R keeps track of the unique
values in a vector, and each unique value is called a level of the associated factor. R uses
a compact representation for factors, which makes them efficient for storage in data
frames. In other programming languages, a factor would be represented by a vector of
enumerated values.

There are two key uses for factors:

Categorical variables
A factor can represent a categorical variable. Categorical variables are used in con-
tingency tables, linear regression, analysis of variance (ANOVA), logistic regres-
sion, and many other areas.

Grouping
This is a technique for labeling or tagging your data items according to their group.
See the “Introduction” to Chapter 6.

Data Frames
A data frame is powerful and flexible structure. Most serious R applications involve
data frames. A data frame is intended to mimic a dataset, such as one you might en-
counter in SAS or SPSS.

A data frame is a tabular (rectangular) data structure, which means that it has rows and
columns. It is not implemented by a matrix, however. Rather, a data frame is a list:

• The elements of the list are vectors and/or factors.*

• Those vectors and factors are the columns of the data frame.

• The vectors and factors must all have the same length; in other words, all columns
must have the same height.

• The equal-height columns give a rectangular shape to the data frame.

• The columns must have names.

Because a data frame is both a list and a rectangular structure, R provides two different
paradigms for accessing its contents:

• You can use list operators to extract columns from a data frame, such as dfrm[i],
dfrm[[i]], or dfrm$name.

• You can use matrix-like notation, such as dfrm[i,j], dfrm[i,], or dfrm[,j].

Your perception of a data frame likely depends on your background:

* A data frame can be built from a mixture of vectors, factors, and matrices. The columns of the matrices
become columns in the data frame. The number of rows in each matrix must match the length of the vectors
and factors. In other words, all elements of a data frame must have the same height.

100 | Chapter 5: Data Structures

Study Material. Do not distribute.

To a statistician
A data frame is a table of observations. Each row contains one observation. Each
observation must contain the same variables. These variables are called columns,
and you can refer to them by name. You can also refer to the contents by row
number and column number, just as with a matrix.

To a SQL programmer
A data frame is a table. The table resides entirely in memory, but you can save it
to a flat file and restore it later. You needn’t declare the column types because R
figures that out for you.

To an Excel user
A data frame is like a worksheet, or perhaps a range within a worksheet. It is more
restrictive, however, in that each column has a type.

To an SAS user
A data frame is like a SAS dataset for which all the data resides in memory. R can
read and write the data frame to disk, but the data frame must be in memory while
R is processing it.

To an R programmer
A data frame is a hybrid data structure, part matrix and part list. A column can
contain numbers, character strings, or factors but not a mix of them. You can index
the data frame just like you index a matrix. The data frame is also a list, where the
list elements are the columns, so you can access columns by using list operators.

To a computer scientist
A data frame is a rectangular data structure. The columns are strongly typed, and
each column must be numeric values, character strings, or a factor. Columns must
have labels; rows may have labels. The table can be indexed by position, column
name, and/or row name. It can also be accessed by list operators, in which case R
treats the data frame as a list whose elements are the columns of the data frame.

To an executive
You can put names and numbers into a data frame. It's easy! A data frame is
like a little database. Your staff will enjoy using data frames.

5.1 Appending Data to a Vector
Problem
You want to append additional data items to a vector.

Solution
Use the vector constructor (c) to construct a vector with the additional data items:

> v <- c(v,newItems)

5.1 Appending Data to a Vector | 101

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Study Material. Do not distribute.

For a single item, you can also assign the new item to the next vector element. R will
automatically extend the vector:

> v[length(v)+1] <- newItem

Discussion
If you ask me about appending a data item to a vector, I will suggest that maybe you
shouldn’t.

R works best when you think about entire vectors, not single data items.
Are you repeatedly appending items to a vector? If so, then you are
probably working inside a loop. That’s OK for small vectors, but for
large vectors your program will run slowly. The memory management
in R works poorly when you repeatedly extend a vector by one element.
Try to replace that loop with vector-level operations. You’ll write less
code, and R will run much faster.

Nonetheless, one does occasionally need to append data to vectors. My experiments
show that the most efficient way is to create a new vector using the vector constructor
(c) to join the old and new data. This works for appending single elements or multiple
elements:

> v <- c(1,2,3)
> v <- c(v,4) # Append a single value to v
> v
[1] 1 2 3 4
> w <- c(5,6,7,8)
> v <- c(v,w) # Append an entire vector to v
> v
[1] 1 2 3 4 5 6 7 8

You can also append an item by assigning it to the position past the end of the vector,
as shown in the Solution. In fact, R is very liberal about extending vectors. You can
assign to any element and R will expand the vector to accommodate your request:

> v <- c(1,2,3) # Create a vector of three elements
> v[10] <- 10 # Assign to the 10th element
> v # R extends the vector automatically
 [1] 1 2 3 NA NA NA NA NA NA 10

Note that R did not complain about the out-of-bounds subscript. It just extended the
vector to the needed length, filling with NA.

R includes an append function that creates a new vector by appending items to an ex-
isting vector. However, my experiments show that this function runs more slowly than
both the vector constructor and the element assignment.

102 | Chapter 5: Data Structures

Study Material. Do not distribute.

5.2 Inserting Data into a Vector
Problem
You want to insert one or more data items into a vector.

Solution
Despite its name, the append function inserts data into a vector by using the after
parameter, which gives the insertion point for the new item or items:

> append(vec, newvalues, after=n)

Discussion
The new items will be inserted at the position given by after. This example inserts 99
into the middle of a sequence:

> append(1:10, 99, after=5)
 [1] 1 2 3 4 5 99 6 7 8 9 10

The special value of after=0 means insert the new items at the head of the vector:

> append(1:10, 99, after=0)
 [1] 99 1 2 3 4 5 6 7 8 9 10

The comments in Recipe 5.1 apply here, too. If you are inserting single items into a
vector, you might be working at the element level when working at the vector level
would be easier to code and faster to run.

5.3 Understanding the Recycling Rule
Problem
You want to understand the mysterious Recycling Rule that governs how R handles
vectors of unequal length.

Discussion
When you do vector arithmetic, R performs element-by-element operations. That
works well when both vectors have the same length: R pairs the elements of the vectors
and applies the operation to those pairs.

But what happens when the vectors have unequal lengths?

In that case, R invokes the Recycling Rule. It processes the vector element in pairs,
starting at the first elements of both vectors. At a certain point, the shorter vector is
exhausted while the longer vector still has unprocessed elements. R returns to the be-
ginning of the shorter vector, “recycling” its elements; continues taking elements from

5.3 Understanding the Recycling Rule | 103

Study Material. Do not distribute.

the longer vector; and completes the operation. It will recycle the shorter-vector ele-
ments as often as necessary until the operation is complete.

It’s useful to visualize the Recycling Rule. Here is a diagram of two vectors, 1:6 and 1:3:

1:6 1:3

1 1

2 2

3 3

4

5

6

Obviously, the 1:6 vector is longer than the 1:3 vector. If we try to add the vectors using
(1:6) + (1:3), it appears that 1:3 has too few elements. However, R recycles the elements
of 1:3, pairing the two vectors like this and producing a six-element vector:

1:6 1:3 (1:6) + (1:3)

1 1 2

2 2 4

3 3 6

4 1 5

5 2 7

6 3 9

Here is what you see at the command line:

> (1:6) + (1:3)
[1] 2 4 6 5 7 9

It’s not only vector operations that invoke the Recycling Rule; functions can, too. The
cbind function can create column vectors, such as the following column vectors of 1:6
and 1:3. The two column have different heights, of course:

> cbind(1:6)
 [,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5
[6,] 6

104 | Chapter 5: Data Structures

Study Material. Do not distribute.

> cbind(1:3)
 [,1]
[1,] 1
[2,] 2
[3,] 3

If we try binding these column vectors together into a two-column matrix, the lengths
are mismatched. The 1:3 vector is too short, so cbind invokes the Recycling Rule and
recycles the elements of 1:3:

> cbind(1:6, 1:3)
 [,1] [,2]
[1,] 1 1
[2,] 2 2
[3,] 3 3
[4,] 4 1
[5,] 5 2
[6,] 6 3

If the longer vector’s length is not a multiple of the shorter vector’s length, R gives a
warning. That’s good, since the operation is highly suspect and there is likely a bug in
your logic:

> (1:6) + (1:5) # Oops! 1:5 is one element too short
[1] 2 4 6 8 10 7
Warning message:
In (1:6) + (1:5) :
 longer object length is not a multiple of shorter object length

Once you understand the Recycling Rule, you will realize that operations between a
vector and a scalar are simply applications of that rule. In this example, the 10 is recycled
repeatedly until the vector addition is complete:

> (1:6) + 10
[1] 11 12 13 14 15 16

5.4 Creating a Factor (Categorical Variable)
Problem
You have a vector of character strings or integers. You want R to treat them as a factor,
which is R’s term for a categorical variable.

Solution
The factor function encodes your vector of discrete values into a factor:

> f <- factor(v) # v is a vector of strings or integers

If your vector contains only a subset of possible values and not the entire universe, then
include a second argument that gives the possible levels of the factor:

> f <- factor(v, levels)

5.4 Creating a Factor (Categorical Variable) | 105

Study Material. Do not distribute.

Discussion
In R, each possible value of a categorical variable is called a level. A vector of levels is
called a factor. Factors fit very cleanly into the vector orientation of R, and they are
used in powerful ways for processing data and building statistical models.

Most of the time, converting your categorical data into a factor is a simple matter of
calling the factor function, which identifies the distinct levels of the categorical data
and packs them into a factor:

> f <- factor(c("Win","Win","Lose","Tie","Win","Lose"))
> f
[1] Win Win Lose Tie Win Lose
Levels: Lose Tie Win

Notice that when we printed the factor, f, R did not put quotes around the values. They
are levels, not strings. Also notice that when we printed the factor, R also displayed the
distinct levels below the factor.

If your vector contains only a subset of all the possible levels, then R will have an
incomplete picture of the possible levels. Suppose you have a string-valued variable
wday that gives the day of the week on which your data was observed:

> f <- factor(wday)
> f
 [1] Wed Thu Mon Wed Thu Thu Thu Tue Thu Tue
Levels: Mon Thu Tue Wed

R thinks that Monday, Thursday, Tuesday, and Wednesday are the only possible levels.
Friday is not listed. Apparently, the lab staff never made observations on Friday, so R
does not know that Friday is a possible value. Hence you need to list the possible levels
of wday explicitly:

> f <- factor(wday, c("Mon","Tue","Wed","Thu","Fri"))
> f
 [1] Wed Thu Mon Wed Thu Thu Thu Tue Thu Tue
Levels: Mon Tue Wed Thu Fri

Now R understands that f is a factor with five possible levels. It knows their correct
order, too. It originally put Thursday before Tuesday because it assumes alphabetical
order by default.† The explicit second argument defines the correct order.

In many situations it is not necessary to call factor explicitly. When an R function
requires a factor, it usually converts your data to a factor automatically. The table
function, for instance, works only on factors, so it routinely converts its inputs to factors
without asking. You must explicitly create a factor variable when you want to specify
the full set of levels or when you want to control the ordering of levels.

† More precisely, it orders the names according to your Locale.

106 | Chapter 5: Data Structures

Study Material. Do not distribute.

See Also
See Recipe 12.6 to create a factor from continuous data.

5.5 Combining Multiple Vectors into One Vector and a Factor
Problem
You have several groups of data, with one vector for each group. You want to combine
the vectors into one large vector and simultaneously create a parallel factor that iden-
tifies each value’s original group.

Solution
Create a list that contains the vectors. Use the stack function to combine the list into
a two-column data frame:

> comb <- stack(list(v1=v1, v2=v2, v3=v3)) # Combine 3 vectors

The data frame’s columns are called values and ind. The first column contains the data,
and the second column contains the parallel factor.

Discussion
Why in the world would you want to mash all your data into one big vector and a
parallel factor? The reason is that many important statistical functions require the data
in that format.

Suppose you survey freshmen, sophomores, and juniors regarding their confidence
level (“What percentage of the time do you feel confident in school?”). Now you have
three vectors, called freshmen, sophomores, and juniors. You want to perform an
ANOVA analysis of the differences between the groups. The ANOVA function, aov,
requires one vector with the survey results as well as a parallel factor that identifies the
group. You can combine the groups using the stack function:

> comb <- stack(list(fresh=freshmen, soph=sophomores, jrs=juniors))
> print(comb)
 values ind
1 0.60 fresh
2 0.35 fresh
3 0.44 fresh
4 0.62 fresh
5 0.60 fresh
6 0.70 soph
7 0.61 soph
8 0.63 soph
9 0.87 soph
10 0.85 soph
11 0.70 soph
12 0.64 soph

5.5 Combining Multiple Vectors into One Vector and a Factor | 107

Study Material. Do not distribute.

13 0.76 jrs
14 0.71 jrs
15 0.92 jrs
16 0.87 jrs

Now you can perform the ANOVA analysis on the two columns:

> aov(values ~ ind, data=comb)

When building the list we must provide tags for the list elements (the tags are fresh,
soph, and jrs in this example). Those tags are required because stack uses them as the
levels of the parallel factor.

5.6 Creating a List
Problem
You want to create and populate a list.

Solution
To create a list from individual data items, use the list function:

> lst <- list(x, y, z)

Discussion
Lists can be quite simple, such as this list of three numbers:

> lst <- list(0.5, 0.841, 0.977)
> lst
[[1]]
[1] 0.5

[[2]]
[1] 0.841

[[3]]
[1] 0.977

When R prints the list, it identifies each list element by its position ([[1]], [[2]],
[[3]]) and prints the element’s value (e.g., [1] 0.5) under its position.

More usefully, lists can—unlike vectors—contain elements of different modes (types).
Here is an extreme example of a mongrel created from a scalar, a character string, a
vector, and a function:

> lst <- list(3.14, "Moe", c(1,1,2,3), mean)
> lst
[[1]]
[1] 3.14

[[2]]

108 | Chapter 5: Data Structures

Study Material. Do not distribute.

[1] "Moe"

[[3]]
[1] 1 1 2 3

[[4]]
function (x, ...)
UseMethod("mean")
<environment: namespace:base>

You can also build a list by creating an empty list and populating it. Here is our “mon-
grel” example built in that way:

> lst <- list()
> lst[[1]] <- 3.14
> lst[[2]] <- "Moe"
> lst[[3]] <- c(1,1,2,3)
> lst[[4]] <- mean

List elements can be named. The list function lets you supply a name for every element:

> lst <- list(mid=0.5, right=0.841, far.right=0.977)
> lst
$mid
[1] 0.5

$right
[1] 0.841

$far.right
[1] 0.977

See Also
See the “Introduction” to this chapter for more about lists; see Recipe 5.9 for more
about building and using lists with named elements.

5.7 Selecting List Elements by Position
Problem
You want to access list elements by position.

Solution
Use one of these ways. Here, lst is a list variable:

lst[[n]]
Select the nth element from the list.

lst[c(n1, n2, ..., nk)]
Returns a list of elements, selected by their positions.

5.7 Selecting List Elements by Position | 109

Study Material. Do not distribute.

Note that the first form returns a single element and the second returns a list.

Discussion
Suppose we have a list of four integers, called years:

> years <- list(1960, 1964, 1976, 1994)
> years
[[1]]
[1] 1960

[[2]]
[1] 1964

[[3]]
[1] 1976

[[4]]
[1] 1994

We can access single elements using the double-square-bracket syntax:

> years[[1]]
[1] 1960

We can extract sublists using the single-square-bracket syntax:

> years[c(1,2)]
[[1]]
[1] 1960

[[2]]
[1] 1964

This syntax can be confusing because of a subtlety: there is an important difference
between lst[[n]] and lst[n]. They are not the same thing:

lst[[n]]
This is an element, not a list. It is the nth element of lst.

lst[n]
This is a list, not an element. The list contains one element, taken from the nth
element of lst. This is a special case of lst[c(n1, n2, ..., nk)] in which we elim-
inated the c(...) construct because there is only one n.

The difference becomes apparent when we inspect the structure of the result—one is
a number; the other is a list:

> class(years[[1]])
[1] "numeric"

> class(years[1])
[1] "list"

110 | Chapter 5: Data Structures

Study Material. Do not distribute.

The difference becomes annoyingly apparent when we cat the value. Recall that cat
can print atomic values or vectors but complains about printing structured objects:

> cat(years[[1]], "\n")
1960
> cat(years[1], "\n")
Error in cat(list(...), file, sep, fill, labels, append) :
 argument 1 (type 'list') cannot be handled by 'cat'

We got lucky here because R alerted us to the problem. In other contexts, you might
work long and hard to figure out that you accessed a sublist when you wanted an
element, or vice versa.

5.8 Selecting List Elements by Name
Problem
You want to access list elements by their names.

Solution
Use one of these forms. Here, lst is a list variable:

lst[["name"]]
Selects the element called name. Returns NULL if no element has that name.

lst$name
Same as previous, just different syntax.

lst[c(name1, name2, ..., namek)]
Returns a list built from the indicated elements of lst.

Note that the first two forms return an element whereas the third form returns a list.

Discussion
Each element of a list can have a name. If named, the element can be selected by its
name. This assignment creates a list of four named integers:

> years <- list(Kennedy=1960, Johnson=1964, Carter=1976, Clinton=1994)

These next two expressions return the same value—namely, the element that is named
“Kennedy”:

> years[["Kennedy"]]
[1] 1960
> years$Kennedy
[1] 1960

The following two expressions return sublists extracted from years:

> years[c("Kennedy","Johnson")]
$Kennedy

5.8 Selecting List Elements by Name | 111

Study Material. Do not distribute.

[1] 1960

$Johnson
[1] 1964

> years["Carter"]
$Carter
[1] 1976

Just as with selecting list elements by position (Recipe 5.7), there is an important dif-
ference between lst[["name"]] and lst["name"]. They are not the same:

lst[["name"]]
This is an element, not a list.

lst["name"]
This is a list, not an element. This is a special case of lst[c(name1, name2, ...,
namek)] in which we don’t need the c(...) construct because there is only one
name.

See Also
See Recipe 5.7 to access elements by position rather than by name.

5.9 Building a Name/Value Association List
Problem
You want to create a list that associates names and values—as would a dictionary, hash,
or lookup table in another programming language.

Solution
The list function lets you give names to elements, creating an association between
each name and its value:

> lst <- list(mid=0.5, right=0.841, far.right=0.977)

If you have parallel vectors of names and values, you can create an empty list and then
populate the list by using a vectorized assignment statement:

> lst <- list()
> lst[names] <- values

Discussion
Each element of a list can be named, and you can retrieve list elements by name. This
gives you a basic programming tool: the ability to associate names with values.

You can assign element names when you build the list. The list function allows ar-
guments of the form name=value:

112 | Chapter 5: Data Structures

Study Material. Do not distribute.

> lst <- list(
+ far.left=0.023,
+ left=0.159,
+ mid=0.500,
+ right=0.841,
+ far.right=0.977)
> lst
$far.left
[1] 0.023

$left
[1] 0.159

$mid
[1] 0.5

$right
[1] 0.841

$far.right
[1] 0.977

One way to name the elements is to create an empty list and then populate it via
assignment statements:

> lst <- list()
> lst$far.left <- 0.023
> lst$left <- 0.159
> lst$mid <- 0.500
> lst$right <- 0.841
> lst$far.right <- 0.977

Sometimes you have a vector of names and a vector of corresponding values:

> values <- pnorm(-2:2)
> names <- c("far.left", "left", "mid", "right", "far.right")

You can associate the names and the values by creating an empty list and then popu-
lating it with a vectorized assignment statement:

> lst <- list()
> lst[names] <- values
> lst
$far.left
[1] 0.02275013

$left
[1] 0.1586553

$mid
[1] 0.5

$right
[1] 0.8413447

$far.right
[1] 0.9772499

5.9 Building a Name/Value Association List | 113

Study Material. Do not distribute.

Once the association is made, the list can “translate” names into values through a simple
list lookup:

> cat("The left limit is", lst[["left"]], "\n")
The left limit is 0.1586553
> cat("The right limit is", lst[["right"]], "\n")
The right limit is 0.8413447

> for (nm in names(lst)) cat("The", nm, "limit is", lst[[nm]], "\n")
The far.left limit is 0.02275013
The left limit is 0.1586553
The mid limit is 0.5
The right limit is 0.8413447
The far.right limit is 0.9772499

5.10 Removing an Element from a List
Problem
You want to remove an element from a list.

Solution
Assign NULL to the element. R will remove it from the list.

Discussion
To remove a list element, select it by position or by name, and then assign NULL to the
selected element:

> years
$Kennedy
[1] 1960

$Johnson
[1] 1964

$Carter
[1] 1976

$Clinton
[1] 1994

> years[["Johnson"]] <- NULL # Remove the element labeled "Johnson"
> years
$Kennedy
[1] 1960

$Carter
[1] 1976

$Clinton
[1] 1994

114 | Chapter 5: Data Structures

Study Material. Do not distribute.

You can remove multiple elements this way, too:

> years[c("Carter","Clinton")] <- NULL # Remove two elements
> years
$Kennedy
[1] 1960

5.11 Flatten a List into a Vector
Problem
You want to flatten all the elements of a list into a vector.

Solution
Use the unlist function.

Discussion
There are many contexts that require a vector. Basic statistical functions work on vec-
tors but not on lists, for example. If iq.scores is a list of numbers, then we cannot
directly compute their mean:

> mean(iq.scores)
[1] NA
Warning message:
In mean.default(iq.scores) :
 argument is not numeric or logical: returning NA

Instead, we must flatten the list into a vector using unlist and then compute the mean
of the result:

> mean(unlist(iq.scores))
[1] 106.4452

Here is another example. We can cat scalars and vectors, but we cannot cat a list:

> cat(iq.scores, "\n")
Error in cat(list(...), file, sep, fill, labels, append) :
 argument 1 (type 'list') cannot be handled by 'cat'

One solution is to flatten the list into a vector before printing:

> cat("IQ Scores:", unlist(iq.scores), "\n")
IQ Scores: 89.73383 116.5565 113.0454

See Also
Conversions such as this are discussed more fully in Recipe 5.33.

5.11 Flatten a List into a Vector | 115

Study Material. Do not distribute.

