
Chapter 6

Loops and Functions

When reading this book for the first time, youmay skip this chapter, as building

functions1 and programming loops2 are probably not among the first R proce-

dures you want to learn, unless these subjects are your prime interests. In

general, people perceive these techniques as difficult, hence the asterisk in the

chapter title. Once mastered, however, these tools can save enormous amounts

of time, especially when executing a large number of similar commands.

6.1 Introduction to Loops

One of R’s more convenient features is the provision for easily making your

own functions. Functions are useful in a variety of scenarios. For example,

suppose you are working with a large number of multivariate datasets, and for

each of them you want to calculate a diversity index. There are many diversity

indices, and new ones appear regularly in the literature. If you are lucky, the

formula for your chosen diversity index has already been programmed by

someone else, and, if you are very lucky, it is available in one of the popular

packages, the software code is well documented, fully tested, and bug free. But if

you cannot find software code for the chosen diversity index, it is time to

program it yourself!
If you are likely to use a set of calculationsmore than once, youwould be well

advised to present the code in such a way that it can be reused with minimal

typing. Quite often, this brings you into the world of functions and loops (and

conditional statements such as the if command).
The example presented below uses a dataset on owls to produce a large

number of graphs. The method involved is repetitive and time consuming,

and a procedure that will do the hard work will be invaluable.

1 A function is a collection of codes that performs a specific task.
2 A loop allows the program to repeatedly execute commands. It does this by iteration
(iteration is synonymous with repetition).

A.F. Zuur et al., A Beginner’s Guide to R, Use R,
DOI 10.1007/978-0-387-93837-0_6, � Springer ScienceþBusiness Media, LLC 2009

99

Study Material. Do not distribute.

Developing this procedure requires programming and some logical thinking.

You will need to work like an architect who draws up a detailed plan for

building a house. You should definitely not begin entering code for a function

or loop until you have an overall design.
You also must consider how foolproof your function needs to be. Do you

intend to use it only once? Should it work next year on a similar dataset (when

you have forgotten most settings and choices in your function)? Will you share

it with colleagues?
Functions often go hand in hand with loops, as they both help to automate

commands.
Suppose you have 1000 datasets, and for each dataset you need to make a

graph and save it as a jpeg. It would take a great deal of time to do this

manually, and a mechanism that can repeat the same (or similar) commands

any number of times without human intervention would be invaluable. This is

where a loop comes in. A plan for the 1000 datasets could be

For i is from 1 to 1000:
Extract dataset i
Choose appropriate labels for the graph for dataset i
Make a graph for dataset i
Save the graph for dataset i

End of loop

Note that this is not R code. It is merely a schematic overview, which is the

reason that we put the text in a box and did not use the ‘‘>’’ symbol and the

Courier New font that we have been using for R code. The sketch involves a

loop, meaning that, once the code is syntax correct, R executes 1000 iterations,

with the first iteration having i= 1, the second iteration i= 2, and in the final

iteration i = 1000. In each iteration, the commands inside the loop are

executed.
This plan has only four steps, but, if we want to domore with the data, it may

make sense to group certain commands and put them in a function. Suppose we

not only want a graph for each dataset, but also to calculate summary statistics

and apply a multivariate analysis. We will very quickly end up with 10–15

commands inside the loop, and the code becomes difficult to manage. In such

a scenario, using functions can keep the code simple:

For i is from 1 to 1000:
Extract dataset i
Execute a function to calculate summary statistics for dataset i.
Execute a function to make and save a graph for dataset i.
Execute a function that applies multivariate analysis on dataset i.

End of loop

100 6 Loops and Functions

Study Material. Do not distribute.

Each function is a small collection of commands acting on individual datasets.
Each function works independently, unaffected by what happens elsewhere, and
does only what it has been told to do. There is a mechanism in place to allow only
the dataset into the function and to return information for this dataset. Once
programmed, the function should work for any dataset. Program it once, and, if
all goes according to plan, you never have to think about it again.

Just as a house can be designed to be built in different ways, your plan can
take more than one approach. In the sketch above, we created a loop for i from
1 to 1000, which, in each iteration, extracts data and passes the data to a
function. You can also do it the other way around:

Execute a function to calculate summary statistics for each dataset.
Execute a function to make and save a graph for each dataset.
Execute a function to apply multivariate analysis on each dataset.

Each function will contain a loop in which the data are extracted and
subjected to a series of relevant commands. The building of the code depends
entirely on personal programming style, length of the code, type of problem,
computing time required, and so on.

Before addressing the creation of functions, we focus on loops.

6.2 Loops

If you are familiar with programming languages like FORTRAN, C, C++, or
MATLAB,3 you are likely to be familiar with loops. AlthoughR hasmany tools
for avoiding loops, there are situations where it is not possible. To illustrate a
situation in which a loop saves considerable time, we use a dataset on begging
behaviour of nestling barn owls. Roulin and Bersier (2007) looked at nestlings’
response to the presence of the mother and the father. Using microphones
inside, and a video camera outside, the nests, they sampled 27 nests, studying
vocal begging behaviour when the parents bring prey. A full statistical analysis
using mixed effects modelling is presented in Roulin and Bersier (2007) and also
in Zuur et al. (2009).

For this example, we use ‘‘sibling negotiation,’’ defined as the number of calls
by the nestlings in the 30-second interval immediately prior to the arrival of a
parent, divided by the number of nestlings. Data were collected between 21.30
hours and 05.30 hours on two consecutive nights. The variable ArrivalTime
indicates the time at which a parent arrived at the perch with prey.

Suppose that you have been commissioned to write a report on these data
and to produce a scatterplot of sibling negotiation versus arrival time for each
nest, preferably in jpeg format. There are 27 nests, so you will need to produce,

3 These are just different types of programming languages, similar to R.

6.2 Loops 101

Study Material. Do not distribute.

and save, 27 graphs. This is not an uncommon type of task. We have been
involved in similar undertakings (e.g., producing multiple contour plots
for >75 bird species in the North Sea). Keep in mind that they may ask you
to do it all again with a different plotting character or a different title! Note that
R has tools to plot 27 scatterplots in a single graph (we show this in Chapter 8),
but assume that the customer has explicitly asked for 27 separate jpeg files. This
is not something you will not want to do manually.

6.2.1 Be the Architect of Your Code

Before writing the code, you will need to plan and produce an architectural
design outlining the steps in your task:

1. Import the data and familiarise yourself with the variable names, using the
read.table, names, and str commands.

2. Extract the data of one nest and make a scatterplot of begging negotiation
versus arrival time for this subset.

3. Add a figure title and proper labels along the x- and y-axes. The name of the
nest should be in the main header.

4. Extract data from a second nest, and determine what modifications to the
original graph are needed.

5. Determine how to save the graph to a jpeg file.
6. Write a loop to extract data for nest i, plot the data from nest i, and save the

graph to a jpeg file with an easily recognized name.

If you can implement this algorithm, you are a good architect!

6.2.2 Step 1: Importing the Data

The following code imports the data and shows the variable names and their
status. There is nothing new here in terms of R code; the read.table, names,
and str commands were discussed in Chapters 2 and 3.

> setwd("C:/RBook/")
> Owls <- read.table(file = "Owls.txt", header = TRUE)
> names(Owls)
[1] "Nest" "FoodTreatment"
[3] "SexParent" "ArrivalTime"
[5] "SiblingNegotiation" "BroodSize"
[7] "NegPerChick"
> str(Owls)
’data.frame’: 599 obs. of 7 variables:
$ Nest : Factor w/ 27 levels ...

102 6 Loops and Functions

Study Material. Do not distribute.

$ FoodTreatment : Factor w/ 2 levels ...
$ SexParent : Factor w/ 2 levels ...
$ ArrivalTime : num 22.2 22.4 22.5 22.6 ...
$ SiblingNegotiation: int 4 0 2 2 2 2 18 4 18 0 ...
$ BroodSize : int 5 5 5 5 5 5 5 5 5 5 ...
$ NegPerChick : num 0.8 0 0.4 0.4 0.4 0.4 ...

The variables Nest, FoodTreatment, and SexParent are defined using
alphanumerical values in the ascii file, and therefore R considers them (cor-
rectly) as factors (see the output of the str command for these variables).

6.2.3 Steps 2 and 3: Making the Scatterplot and Adding Labels

To extract the data from one nest, you first need to know the names of the nests.
This can be done with the unique command

> unique(Owls$Nest)
[1] AutavauxTV Bochet Champmartin
[4] ChEsard Chevroux CorcellesFavres
[7] Etrabloz Forel Franex
[10] GDLV Gletterens Henniez
[13] Jeuss LesPlanches Lucens
[16] Lully Marnand Moutet
[19] Murist Oleyes Payerne
[22] Rueyes Seiry SEvaz
[25] StAubin Trey Yvonnand
27 Levels: AutavauxTV Bochet Champmartin ... Yvonnand

There are 27 nests, and their names are given above. Extracting the data of
one nest follows the code presented in Chapter 3:

> Owls.ATV <- Owls[Owls$Nest=="AutavauxTV",]

Note the comma after Owls$Nest=="AutavauxTV" to select rows of the
data frame. We called the extracted data for this nest Owls.ATV, where ATV
refers to the nest name. The procedure for making a scatterplot such as that
needed to show arrival time versus negotiation behaviour for the data in
Owls.ATV was discussed in Chapter 5. The code is as follows.

> Owls.ATV <- Owls[Owls$Nest == "AutavauxTV",]
> plot(x = Owls.ATV$ArrivalTime,

y = Owls.ATV$NegPerChick,
xlab = "Arrival Time", main = "AutavauxTV"
ylab = "Negotiation behaviour)

6.2 Loops 103

Study Material. Do not distribute.

Youwill be plotting the variable ArrivalTime versus NegPerChick from

the data frame Owls.ATV, hence the use of the $ sign. The resulting graph is

presented in Fig. 6.1. So far, the procedure requires no new R code.

6.2.4 Step 4: Designing General Code

To investigate the universality of the code, go through the same procedure for

data from another nest. The code for the second nest requires only a small

modification; where you entered AutavauxTV, you now need Bochet.

> Owls.Bot <- Owls[Owls$Nest == "Bochet",]
> plot(x = Owls.Bot$ArrivalTime,

y = Owls.Bot$NegPerChick,
xlab = "Arrival Time",
ylab = "Negotiation behaviour", main = "Bochet")

The graph is not shown here. Note that we stored the data from this

particular nest in the data frame Owls.Bot, where ‘‘Bot’’ indicates ‘‘Bochet.’’
If you were to make the same graph for another nest, you need only replace the

main title and the name of the data frame and the actual data (the loop will do

this for us).
The question is, in as much as you must do this another 25 times, how can

you minimise the typing required? First, change the name of the data frame to

something more abstract. Instead of Owls.ATV or Owls.Bot, we used

Owls.i. The following construction does this.

22 23 24 25 26 27 28 29

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

AutavauxTV

Arrival Time

N
eg

ot
ia

tio
n

be
ha

vi
ou

r

Fig. 6.1 Scatterplot of
arrival time (horizontal axis)
versus average negotiation
behaviour per visit (vertical
axis) for a single nest
(AutavauxTV). Time is
coded from 22 (22.00) to 29
(4.00). Measurements were
conducted on two
consecutive nights

104 6 Loops and Functions

Study Material. Do not distribute.

> Owls.i <- Owls[Owls$Nest == "Bochet",]
> plot(x = Owls.i$ArrivalTime,

y = Owls.i$NegPerChick, xlab = "Arrival Time",
ylab = "Negotiation behaviour", main = "Bochet")

Instead of a specific name for the extracted data, we used a name that can

apply to any dataset and pass it on to the plot function. The resulting graph is

not presented here. The name ‘‘Bochet’’ still appears at two places in the code,

and they need to be changed each time you work with another dataset. To

minimise typing effort (and the chance of mistakes), you can define a variable,

Nest.i, containing the name of the nest, and use this for the selection of the

data and the main header:

> Nest.i <- "Bochet"
> Owls.i <- Owls[Owls$Nest == Nest.i,]
> plot(x = Owls.i$ArrivalTime, y = Owls.i$NegPerChick,

xlab = "Arrival Time", main = Nest.i,
ylab = "Negotiation behaviour")

In order to make a plot for another nest, you only need to change the nest

name in the first line of code, and everything else will change accordingly.

6.2.5 Step 5: Saving the Graph

You now need to save the graph to a jpeg file (see also the help file of the jpeg
function):

1. Choose a file name. This can be anything, for example, ’’AnyName.jpg’’.
2. Open a jpeg file by typing jpeg(file = ’’AnyName.jpg’’).
3. Use the plot command to make graphs. Because you typed the jpeg

command, R will send all graphs to the jpeg file, and the graphic output
will not appear on the screen.

4. Close the jpeg file by typing: dev.off().

You can execute multiple graphing commands in Step 3 (e.g., plot, lines,
points, text) and the results of each will go into the jpeg file, until R executes

the dev.off (device off) command which closes the file. Any graphing com-

mand entered after the dev.off command will not go into the jpeg file, but to

the screen again. This process is illustrated in Fig. 6.2.
At this point, you should consider where you want to save the file(s), as it is

best to keep them separate from your R working directory. In Chapter 3 we

discussed how to set the working directory with the setwd command. We set it

to ‘‘C:/AllGraphs/’’ in this example, but you can easily modify this to your own

choice.

6.2 Loops 105

Study Material. Do not distribute.

The final challenge is to create a file name that automatically changes when

we change the name of the nest (the variable Nest.i). You will need a file name

that consists of the nest name (e.g., Bochet) and the file extension jpg. To

connect ‘‘Bochet’’ and ‘‘.jpg’’ with no separation between these two strings

(i.e., ‘‘Bochet.jpg’’) use the paste command:

> paste(Nest.i, ".jpg", sep = "")
[1] "Bochet.jpg"

The output of the paste command is a character string that can be used as

the file name. You can store it in a variable and use it in the jpeg command.We

called the variable YourFileName in the code below, and R sends all graphic

output created between the jpeg and dev.off commands to this file.

> setwd("C:/AllGraphs/")
> Nest.i <- "Bochet"
> Owls.i <- Owls[Owls$Nest == Nest.i,]
> YourFileName <- paste(Nest.i, ".jpg", sep="")
> jpeg(file = YourFileName)
> plot(x = Owls.i$ArrivalTime, y = Owls.i$NegPerChick,

xlab = "Arrival Time", main = Nest.i,
ylab = "Negotiation behaviour")

> dev.off()

}

}

}

All output goes to a graph on the screen

All output goes to a jpg file

All output goes to a graph on the screen

Fig. 6.2 Summary of the jpeg and dev.off commands. The results of all graphing com-
mands between the jpeg and dev.off commands are sent to a jpg file. The x- and y-
coordinates were arbitrarily chosen

106 6 Loops and Functions

Study Material. Do not distribute.

Once this code has been executed, you can open the file Bochet.jpg in your

working directorywith any graphic or photo editing package. The help file for the
jpeg function contains further information on increasing the size and quality of

the jpeg file. Alternative file formats are obtained with the functions bmp, png,
tiff, postscript, pdf, and windows. See their help files for details.

6.2.6 Step 6: Constructing the Loop

You still have to modify the variable Nest.i 27 times, and, each time, copy

and paste the code into R.Here is where Step 6 comes in, the loop. The syntax of
the loop command in R is as follows.

for (i in 1 : 27) {
do something
do something
do something

}

‘‘Do something’’ is not valid R syntax, hence the use of a box. Note that the
commands must be between the two curly brackets { and }. We used 27 because

there are 27 nests. In each iteration of the loop, the index i will take one of the
values from 1 to 27. The ‘‘do something’’ represent orders to execute a specific
command using the current value of i. Thus, you will need to enter into the loop

the code for opening the jpeg file, making the plot, and closing the jpeg file for a
particular nest. It is only a small extension of the code from Step 5.

On the first line of the code below, we determined the unique names of the
nests. On the first line in the loop, we set Nest.i equal to the name of the ith

nest. So, if i is 1, Nest.i is equal to ’’AutavauxTV’’; i = 2 means that
Nest.i= ’’Bochet’’; and, if i is 27, Nest.i equals ’’Yvonnand’’ The
rest of the code was discussed in earlier steps. If you run this code, your working

directory will contain 27 jpeg files, exactly as planned.

> AllNests <- unique(Owls$Nest)
> for (i in 1:27){
Nest.i <- AllNests[i]
Owls.i <- Owls[Owls$Nest == Nest.i,]
YourFileName <- paste(Nest.i, ".jpg", sep = "")
jpeg(file = YourFileName)
plot(x = Owls.i$ArrivalTime, y = Owls.i$NegPerChick,

xlab = "Arrival Time",
ylab = "Negotiation behaviour", main = Nest.i)

dev.off()
}

6.2 Loops 107

Study Material. Do not distribute.

Do Exercise 1 in Section 6.6. This is an exercise in creating loops,
using a temperature dataset.

6.3 Functions

The principle of a functionmay be new tomany readers. If you are not familiar with
it, envision a function as a box with multiple holes on one side (for the input) and a
single hole on the other side (for the output). The multiple holes can be used to
introduce information into thebox; theboxwill act asdirectedupon the information
and feed the results out the single hole.When a function is running properly, we are
not really interested in knowing how it obtains the results.We have already used the
loess function in Chapter 5. The input consisted of two variables and the output
was a list that contained, among other things, the fitted values. Other examples of
existing functions are the mean, sd, sapply, and tapply, among others.

The underlying concept of a function is sketched in Fig. 6.3. The input of the
function is a set of variables, A, B, and C, which can be vectors, matrices, data
frames, or lists. It then carries out the programmed calculations and passes the
information to the user.

The best way to learn how to use a function is by seeing some examples.

6.3.1 Zeros and NAs

Before executing a statistical analysis, it is important to locate and deal with any
missing values, as they may present some difficulties. Certain techniques, such as
linear regression, will remove any case (observation) containing a missing value.
Variables with many zeros cause trouble as well, particularly in multivariate
analysis. For example, do we say that dolphins and elephants are similar because
they are both absent on the moon? For a discussion on double zeros in multi-
variate analysis, see Legendre and Legendre (1998). In univariate analysis, a
response variablewithmany zeros can also be problematical (See theZero Inflated
Data chapter in Zuur et al., 2009).

We recommend creating a table that gives the number of missing values, and
the number of zeros, per variable. A table showing the number of missing values
(or zeros) per case is also advisable. The following demonstrates using R code to

 Function carries out
tasks

A x
B y
C z

Results

Fig. 6.3 Illustration of the principle of a function. A function allows for the input of multiple
variables, carries out calculations, and passes the results to the user. According to the order in
which the variables are entered, A, B, and C are called x, y, and z within the function. This is
called positional matching

108 6 Loops and Functions

Study Material. Do not distribute.

create the tables, but before continuing, we suggest that you do Exercise 2 in
Section 6.6, as it guides you through the R code in this section.

Our example uses the vegetation data from Chapter 4. We imported the data
with the read.table command, and used the names command to see the list
of variables:

> setwd("C:/RBook/")
> Veg <- read.table(file = "Vegetation2.txt",

header = TRUE)
> names(Veg)
[1] "TransectName" "Samples" "Transect"
[4] "Time" "R" "ROCK"
[7] "LITTER" "ML" "BARESOIL"
[10] "FallPrec" "SprPrec" "SumPrec"
[13] "WinPrec" "FallTmax" "SprTmax"
[16] "SumTmax" "WinTmax" "FallTmin"
[19] "SprTmin" "SumTmin" "WinTmin"
[22] "PCTSAND" "PCTSILT" "PCTOrgC"

The first four variables contain transect name, transect number, and time of
survey. The column labelled R contains species richness (the number of species)
per observation. The remaining variables are covariates.

Suppose you want a function that takes as input a data frame that contains
the data, and calculates the number of missing values in each variable. The
syntax of such a function is

NAPerVariable <- function(X1) {
D1 <- is.na(X1)
colSums(D1)

}

If you type this code into a text editor and paste it into R, you will see that
nothing happens. The code defines a function with the name NAPerVariable,
but it does not execute the function. This is done with the command

> NAPerVariable(Veg[,5:24])
R ROCK LITTER ML BARESOIL FallPrec
0 0 0 0 0 0

SprPrec SumPrec WinPrec FallTmax SprTmax SumTmax
0 0 0 0 0 0

WinTmax FallTmin SprTmin SumTmin WinTmin PCTSAND
0 0 0 0 0 0

PCTSILT PCTOrgC
0 0

6.3 Functions 109

Study Material. Do not distribute.

We omitted the first four columns of the data frame Veg, as these contain the

transect and time information. There appear to be no missing values in the listed

variables. Take a closer look atwhat is going on inside the function. The first, and

only, argument of the function isX1.We assume that the variables are in columns

and the observations in rows. The command is.na(X1) creates a Boolean

matrix of the same dimension as X1, with the value TRUE if the corresponding

element of X1 is a missing value and FALSE if not. The colSums function is an

existing R function that takes the sum of the elements in each column (variable).

Normally, colSums is applied to a data matrix with numbers, but if it is applied

to a Boolean matrix, it converts a TRUE to 1, and a FALSE to 0. As a result, the

output of colSums(D1) is the number of missing values per variable.
If you replace the colSums command with the rowSums command, the

function gives the number of missing values per observation.

6.3.2 Technical Information

There are a few aspects of the function that we need to address: first, the names

of the variables used inside the function.Note that we used X1 and D1. Youmay

wonder why the code inside the function runs at all, as X1 seems to come out of

the blue. The application here is called positional matching. The first and, in this

case, only, argument in NAPerVariable, is a subset of the data frame Veg.
Inside the function, these data are allocated to X1, because X1 is the first

variable in the argument of the function. Hence, X1 contains columns 5 – 24

of the data frame Veg.
The principle of positional matching was illustrated in Fig. 6.1. The external

variables A, B, and C are called x, y, and zwithin the function. R knows that x is

A, because both are the first argument in the call to the function.We have already

seen this type of action with the arguments in the plot, lines,and loess
functions. The reason for changing the variable designations is that you should

not use nameswithin a function that also exist outside the function. If youmake a

programming mistake, for example, if you use D1 <- is.na(X) instead of D1
<- is.na(X1), R will look first inside the function for the values of X. If it does
not find this variable inside the function, it will look outside the function. If such a

variable exists outside the function, R will happily use it without telling you.

Instead of calculating the number of missing values in the variable Veg, it will
show you the number of missing values in X, whatever Xmay be. The convention

of using different, or new, names for the variables inside a function applies to all

variables, matrices, and data frames used in the function.
A second important aspect of functions is the form in which the resulting

information is returned to the user. FORTRAN and C++ users may assume

that this is done via the arguments of the function, but this is not the case. It is

the information coded for on the final line of the function that is returned. The

110 6 Loops and Functions

Study Material. Do not distribute.

function NAPerVariable has colSums(D1) on the last line, so this is the

information provided. If you use

> H <- NAPerVariable(Veg[, 4 : 24])

H will contain the number of missing values in vector format. If the final line
of the function is a list, then Hwill be a list as well. In an example presented later

in this chapter, we see that this is useful for taking back multiple variables (see
also Chapter 3).

As always, you should document your code well. Add comments (with the
symbol) to the function, saying that the data must be in an ‘‘observation by
variable’’ format, and that it calculate the number of missing values per column.

You should also ensure that the function will run for every possible dataset
that you may enter into it in the future. Our function, for example, will give an
error message if the input is a vector (one variable) instead of a matrix; colSums
only works if the data contain multiple columns (or at least are a matrix). You
need to document this, provide an understandable error message, or extend the
function so that it will run properly if the input consists of a vector.

6.3.3 A Second Example: Zeros and NAs

The red king crab Paralithodes camstchaticuswas introduced to the Barents Sea
in the 1960 s and 1970 s from its native area in the North Pacific. The leech
Johanssonia arctica deposits its eggs into the carapace of this crab. The leech is

a vector for a trypanosome blood parasite of marine fish, including cod.
Hemmingsen et al. (2005) examined a large number of cod for trypanosome
infections during annual cruises along the coast of Finnmark in North Norway.
We use their data here. The data included the presence or absence of the parasite
in fish as well as the number of parasites per fish. Information on the length,

weight, age, stage, sex, and location of the host fish was recorded. The familiar
read.table and names functions are used to import the data and show the
variable names:

> setwd("c:/RBook/")
> Parasite <- read.table(file = "CodParasite.txt",

header = TRUE)
> names(Parasite)
[1] "Sample" "Intensity" "Prevalence" "Year"
[5] "Depth" "Weight" "Length" "Sex"
[9] "Stage" "Age" "Area"

Because we already copied and pasted the function NAPerVariable into R
in Section 6.3.1, there is no need to do this again. To obtain the number of
missing values per variable, type

6.3 Functions 111

Study Material. Do not distribute.

> NAPerVariable(Parasite)
Sample Intensity Prevalence Year Depth

0 57 0 0 0
Weight Length Sex Stage Age

6 6 0 0 0
Area

0

There are 57 missing values in the variable Intensity, and 6 in each of the

variables Length and Weight.
In a statistical analysis, we would model the number of parasites as a

function of year and length or weight, sex, and location of host fish. This is

typically done with generalised linear modelling for count data. Problems may

occur if the response variable is zero inflated (too many zeros). Therefore,

we need to determine how many zeros are in each variable, especially in

Intensity. Our first attempt is the function

ZerosPerVariable <- function(X1) {
D1 = (X1 == 0)
colSums(D1)

}

It is similar to the earlier function NAPerVariable, except that D1 is now

amatrix with values TRUE if an element of X1 equals 1, and FALSE otherwise.

To execute the function, use

> ZerosPerVariable(Parasite)
Sample Intensity Prevalence Year Depth

0 NA 654 0 0
Weight Length Sex Stage Age

NA NA 82 82 84
Area

0

There are 654 fish with no parasites, and 82 observations with a value of 0 for

Sex. The fact that Sex and Stage have a certain number of observations equal to

0 is amatter of coding; these are nominal variables. So it is not a problem. There

are NAs for the variables Intensity, Weight, and Length. This is because
the colSums function gives NA as output if there is an NA anywhere in the

variable. The help file of colSums (obtained by typing ?colSums) shows that
the option na.rm = TRUE can be added. This leads to:

ZerosPerVariable <- function(X1) {
D1 = (X1 == 0)

112 6 Loops and Functions

Study Material. Do not distribute.

colSums(D1, na.rm = TRUE)
}

Missing values are now ignored because of the na.rm = TRUE option. To
execute the new function, we use

> ZerosPerVariable(Parasite)
Sample Intensity Prevalence Year Depth

0 654 654 0 0
Weight Length Sex Stage Age

0 0 82 82 84
Area

0

The output now shows no observations with weight or length equal to
0, and this makes sense. The fact that both Intensity and Prevalence
have 654 zeros also makes sense; absence is coded as 0 in the variable
Prevalence.

6.3.4 A Function with Multiple Arguments

In the previous section, we created two functions, one to determine the number
of missing values per variable and another to find the number of zeros per
variable. In this section, we combine them and tell the function to calculate the
sum of the number of observations equal to zero or the number of observations
equal to NA. The code for the new function is given below.

VariableInfo <- function(X1, Choice1) {
if (Choice1 == "Zeros"){ D1 = (X1 == 0) }
if (Choice1 == "NAs") { D1 <- is.na(X1)}
colSums(D1, na.rm = TRUE)

}

The function has two arguments: X1 and Choice1. As before, X1 should
contain the data frame, and Choice1 is a variable that should contain either
the value ‘‘Zeros’’ or ‘‘NAs.’’ To execute the function, use

> VariableInfo(Parasite, "Zeros")
Sample Intensity Prevalence Year Depth

0 654 654 0 0
Weight Length Sex Stage Age

0 0 82 82 84
Area

0

6.3 Functions 113

Study Material. Do not distribute.

For the missing values, we can use

> VariableInfo(Parasite, "NAs")
Sample Intensity Prevalence Year Depth

0 57 0 0 0
Weight Length Sex Stage Age

6 6 0 0 0
Area

0

As you can see, the output is the same as in the previous section. So, the

function performs as we intended. We can also allocate the output of the

function to a variable in order to store it.

> Results <- VariableInfo(Parasite, "Zeros")

If you now type Results into the console, you will get the same numbers as

above. Figure 6.4 gives a schematic overview of the function up to this point.

The function takes as input the data frame Parasite and the character string

"Zeros", and internally calls them X1 and Choice1, respectively. The func-

tion then performs its calculations and the final result is stored in D1. Outside

the function, the results are available as Results. Once everything is perfectly

coded and bug free, you can forget about X1, Choice1, and D1, and what is

going on inside the function; all that matters is the input and the results.

The only problem is that our current function is not robust against user

error. Suppose you make a typing mistake, spelling ‘‘Zeros’’ as ‘‘zeroos’’:

> VariableInfo(Parasite, "zeroos")
Error in inherits(x, "data.frame"): object "D1" not
found

The variable Choice1 is equal to the nonexistent ‘‘zeroos’’, and there-

fore none of the commands is executed. Hence, D1 has no value, and an

Parasite
X1

”Zeros”
Choice1 D1

Based on Choice1,
calculate D1

Results

Fig. 6.4 Illustration of the function to calculate the number of zeros or the number of missing
values of a dataset. Due to positional matching, the data frame Parasite and the argument

’’ are called X1 and Choice1 within the function

114 6 Loops and Functions

’’

Zeros

Study Material. Do not distribute.

error message is given on the last line. Another possible mistake is to

forget to include a value for the second argument:

> VariableInfo(Parasite)
Error in VariableInfo(Parasite): argument "Choice1" is
missing, with no default

The variable Choice1 has no value; the code crashes at the first line. The

challenge in making a function is anticipating likely errors. Here, we have seen

two silly (but common) mistakes, but the function can be written to provide a

safety net for these types of errors.

6.3.5 Foolproof Functions

Tomake a foolproof function, you have to give it to hundreds of people and ask

them all to try it and report any errors, or apply it on hundreds of datasets. Even

then, youmay be able to crash it. But there are a few common things you can do

to make it as stable as possible.

6.3.5.1 Default Values for Variables in Function Arguments

The variable Choice1 can be given a default value so that if you forget to enter

a value for Choice1, the function will do the calculations for the default value.

This is done with

VariableInfo <- function(X1, Choice1 = "Zeros") {
if (Choice1 == "Zeros"){ D1 = (X1 == 0) }
if (Choice1 == "NAs") { D1 <- is.na(X1)}
colSums(D1, na.rm = TRUE)

}

The default value is now ‘‘Zeros.’’ Executing this function without specifying

a value for Choice1 produces valid output. To test it, type

> VariableInfo(Parasite)

Sample Intensity Prevalence Year Depth
0 654 654 0 0

Weight Length Sex Stage Age
0 0 82 82 84

Area
0

6.3 Functions 115

Study Material. Do not distribute.

To calculate the number of missing values, use as before:

> VariableInfo(Parasite, "NAs")

In this case, the second if command in the function is executed. The output

of this command is not shown here. Don’t forget to write a help file to document

the default value!

6.3.5.2 Misspelling

We also want a function that executes the appropriate code, depending on the

value of Choice1, and gives a warning message if Choice1 is not equal to

‘‘Zeros’’ or ‘‘NAs’’. The following code does just that.

VariableInfo <- function(X1, Choice1 = "Zeros") {
if (Choice1 == "Zeros"){ D1 = (X1 == 0) }
if (Choice1 == "NAs") { D1 <- is.na(X1)}
if (Choice1 != "Zeros" & Choice1 != "NAs") {

print("You made a typo")} else {
colSums(D1, na.rm = TRUE)}

}

The third if statement will print a message if Choice1 is not equal to either

‘‘Zeros’’ or ‘‘NAs’’. If one of these conditions is TRUE, then the colSums
command is executed. To see it in action, type:

> VariableInfo(Parasite, "abracadabra")

[1] "You made a typo"

Note that internally the function is doing the following steps.

If A then blah blah
If B then blah blah
If C then blah blah, ELSE blah blah

A professional programmer will criticise this structure, as each if statement is

inspected by R, even if the argument is ‘‘Zero’’ and only the first if statement is

relevant. In this case, this does not matter, as there are only three if statements

which won’t take much time, but suppose there are 1000 if statements, only one

of which needs to be executed. Inspecting the entire list is a waste of time. The

help file for the if command, obtained by ?if, provides some tools to address

this situation. In the ‘‘See also’’ section, there is a link to the ifelse command.

This can be used to replace the first two commands in the function:

116 6 Loops and Functions

Study Material. Do not distribute.

> ifelse(Choice1 == "Zeros", D1 <- (X1 == 0),
D1 <- is.na(X1))

If the value of Choice1 is equal to ‘‘Zeros’’, then the D1 <-(X1 == 0)
command is executed, and, in all other situations, it is D1 <- is.na(X1). Not
exactly what we had in mind, but it illustrates the range of options available in
R. In Section 6.4, we demonstrate the use of the if else construction to avoid
inspecting a large number of if statements.

Do Exercise 2 in Section 6.6 on creating a new categorical variable
with the ifelse command, using the owl data.

6.4 More on Functions and the if Statement

In the following we discuss passing multiple arguments out of a function and the
ifelse command, with the help of a multivariate dataset. The Dutch govern-
ment institute RIKZ carried out a marine benthic sampling program in the
summer of 2002. Data on approximately 75 marine benthic species were col-
lected at 45 sites on nine beaches along the Dutch coastline. Further information
on these data and results of statistical analyses such as linear regression, general-
ised additive modelling, and linear mixed effects modelling, can be found in Zuur
et al. (2007, 2009).

The data matrix consists of 45 rows (sites) and 88 columns (75 species and 13
explanatory variables). You could apply multivariate analysis techniques to see
which species co-occur, which sites are similar in species composition, and which
environmental variables are driving the species abundances. However, before
doing any of this, you may want to start simply, by calculating a diversity index
and relating this index to the explanatory variables.

A diversity index means that, for each site, you will characterise the 75 species
with a single value. There are different ways of doing this, and Magurran (2004)
describes various diversity indices. We do not want to engage in a discussion of
which is better. You only need to develop an R function that takes as input an
observation-by-species matrix, potentially with missing values, and a variable
that tells the function which diversity index to calculate. To keep it simple, we
limit the code to three indices. Interested readers can extend this R function and
add their own favourite diversity indices. The three indices we use are:

1. Total abundance per site.
2. Species richness, defined as the number of different species per site.
3. The Shannon index. This takes into account both the presence/absence

nature of the data and the actual abundance. It is defined by

Hi ¼ �
Xm

i
pij � log10 pij

6.4 More on Functions and the if Statement 117

Study Material. Do not distribute.

pij is calculated by

pij ¼
Yij

Pn

j¼1
Yij

where pij is the proportion of a particular species j at site i, and m (in the
first equation) is the total number of species. The total number of species is n.

6.4.1 Playing the Architect Again

Just as with the previous example presented in this chapter, begin by making a
sketch of the tasks to be carried out.

1. Import the data and investigate what you have in terms of types of
variables, variable names, dimension of the data, and so on.

2. Calculate total abundance for site 1. Repeat this for site 2. Automate this
process, making the code as general as possible. Use elegant and efficient
coding.

3. Calculate the different number of species for site 1. Repeat this process for
site 2. Automate this process, and make the code as general as possible.

4. Do the same for the Shannon index.
5. Combine the code, and use an if statement to choose between the indices.

Use elegant coding.
6. Put all the code in a function and allow the user to specify the data and the

diversity index. The function should return the actual index and also
indicate which diversity index was chosen (as a string).

In the following, we transform this sketch into fully working R code.

6.4.2 Step 1: Importing and Assessing the Data

Import the RIKZ data, separate the species data from the environmental data,
and determine the size of the data with the following R code.

> Benthic <- read.table("C:/RBook/RIKZ.txt",
header = TRUE)

> Species <- Benthic[, 2:76]
> n <- dim(Species)
> n
[1] 45 75

The first column in the data frame Benthic contains labels, columns 2–76
contain species data, and columns 77–86 are the explanatory variables. The

118 6 Loops and Functions

Study Material. Do not distribute.

species data are extracted and stored in the data frame Species. Its dimension
is 45 rows and 75 columns, and these values are obtained and stored in n using
the dim command. To save space, results of the names and str command are
not shown here; all variables are coded numerically.

6.4.3 Step 2: Total Abundance per Site

Calculate the sum of all species at site 1 by using

> sum(Species[1,], na.rm = TRUE)

[1] 143

The total number of species at site 1 is 143. The same can be done for site 2:

> sum(Species[2,], na.rm = TRUE)

[1] 52

To avoid typing this command 45 times, construct a loop that calculates the
sum of all species per site. Obviously, we need to store these values. The
following code does this.

> TA <- vector(length = n[1])
> for (i in 1:n[1]){

TA[i] <- sum(Species[i,], na.rm = TRUE)
}

The vector TA is of length 45 and contains the sum of all species per
site:

> TA

[1] 143 52 70 199 67 944 241 192 211 48 35
[12] 1 47 38 10 1 47 73 8 48 6 42
[23] 29 0 43 33 34 67 46 5 7 1 1
[34] 102 352 6 99 27 85 0 19 34 23 0
[45] 11

Three sites have no species at all, whereas at one site the total abun-
dance is 944. Note that you must define TA as a vector of length 45 before
constructing the loop or TA[i] will give an error message (see the code
above). You also need to ensure that the index i in the loop is indeed
between 1 and 45; T[46] is not defined. Instead of using length = 45 in

6.4 More on Functions and the if Statement 119

Study Material. Do not distribute.

the vector command, we used length = n[1]; remember that the task was

to make the code as general as possible. The loop is what we call the brute

force approach, as more elegant programming, producing identical results,

is given by:

> TA <- rowSums(Species, na.rm = TRUE)
> TA

[1] 143 52 70 199 67 944 241 192 211 48 35
[12] 1 47 38 10 1 47 73 8 48 6 42
[23] 29 0 43 33 34 67 46 5 7 1 1
[34] 102 352 6 99 27 85 0 19 34 23 0
[45] 11

The rowSums command takes the sum for each row. Note that this

requires only one line of coding and also involves less computing time

(albeit for such a small dataset the difference is very small), and is prefer-

able to the loop.

6.4.4 Step 3: Richness per Site

The number of species at site 1 is given by

> sum(Species[1,] > 0, na.rm = TRUE)

[1] 11

There are 11 different species at site 1. Species[1,] > 0 creates a

Boolean vector of length 75 with elements TRUE and FALSE. The function

sum converts the value TRUE to 1, and FALSE to 0, and adding these

values does the rest.
For site 2, use

> sum(Species[2,] > 0, na.rm = TRUE)

[1] 10

To calculate the richness at each site, create a loop as for total abun-

dance. First define a vector Richness of length 45, then execute a loop

from 1 to 45. For each site, richness is determined and stored.

> Richness <- vector(length = n[1])
> for (i in 1:n[1]){

120 6 Loops and Functions

Study Material. Do not distribute.

Richness[i] <- sum(Species[i,] > 0, na.rm = TRUE)
}

> Richness

[1] 11 10 13 11 10 8 9 8 19 17 6 1 4 3 3
[16] 1 3 3 1 4 3 22 6 0 6 5 4 1 6 4
[31] 2 1 1 3 4 3 5 7 5 0 7 11 3 0 2

The elegant approach uses the rowSums command and gives the same result:

> Richness <- rowSums(Species > 0, na.rm = TRUE)
> Richness

[1] 11 10 13 11 10 8 9 8 19 17 6 1 4 3 3
[16] 1 3 3 1 4 3 22 6 0 6 5 4 1 6 4
[31] 2 1 1 3 4 3 5 7 5 0 7 11 3 0 2

6.4.5 Step 4: Shannon Index per Site

To calculate the Shannon index, we need only three lines of elegant R code that

include the equations of the index:

> RS <- rowSums(Species, na.rm = TRUE)
> prop <- Species / RS
> H <- -rowSums(prop * log10(prop), na.rm = TRUE)
> H

[1] 0.76190639 0.72097224 0.84673524
[4] 0.53083926 0.74413939 0.12513164
[7] 0.40192006 0.29160667 1.01888185
[10] 0.99664096 0.59084434 0.00000000

< Cut to reduce space>

We could have used code with a loop instead. The calculation can be done

even faster with the function ‘‘diversity’’, which can be found in the vegan
package in R. This package is not part of the base installation; to install it, see

Chapter 1. Once installed, the following code can be used.

> library(vegan)
> H <- diversity(Species)
> H

6.4 More on Functions and the if Statement 121

Study Material. Do not distribute.

1 2 3 4 5
1.7543543 1.6600999 1.9496799 1.2223026 1.7134443

6 7 8 9 10
0.2881262 0.9254551 0.6714492 2.3460622 2.2948506

11 12 13 14 15
1.3604694 0.0000000 0.4511112 0.5939732 0.9433484

16 17 18 19 20
0.0000000 0.7730166 0.1975696 0.0000000 0.8627246

< Cut to reduce space>

Note that the values are different. The diversity help file shows that this
function uses the natural logarithmic transformation, whereas we used the
logarithm with base 10. The diversity help file gives instructions for chan-
ging this when appropriate.

A limitation of using the vegan package is that this package must be
installed on the computer of the user of your code.

6.4.6 Step 5: Combining Code

Enter the code for all three indices and use an if statement to select a
particular index.

> Choice <- "Richness"
> if (Choice == "Richness") {

Index <- rowSums(Species >0, na.rm = TRUE)}
> if (Choice == "Total Abundance") {

Index <- rowSums(Species, na.rm = TRUE) }
> if (Choice =="Shannon") {

RS <- rowSums(Species, na.rm = TRUE)
prop <- Species / RS
Index <- -rowSums(prop*log10(prop), na.rm = TRUE)}

Just change the value ofChoice to’’Total Abundance’’ or’’Shannon’’
to calculate the other indices.

6.4.7 Step 6: Putting the Code into a Function

You can now combine all the code into one function and ensure that the
appropriate index is calculated and returned to the user. The following code
does this.

Index.function <- function(Spec, Choice1){
if (Choice1 == "Richness") {

122 6 Loops and Functions

Study Material. Do not distribute.

Index <- rowSums(Spec > 0, na.rm = TRUE)}
if (Choice1 == "Total Abundance") {

Index <- rowSums(Spec, na.rm = TRUE) }
if (Choice1 == "Shannon") {

RS <- rowSums(Spec, na.rm = TRUE)
prop <- Spec / RS
Index <- -rowSums(prop * log10(prop),

na.rm = TRUE)}
list(Index = Index, MyChoice = Choice1)
}

The if statement ensures that only one index is calculated. For small
datasets, you could calculate them all, but for larger datasets this is not good
practice. Before executing the code, it may be wise to ensure that none of the
variables within the function also exists outside the function. If they do, remove
them with the rm command (see Chapter 1), or quit and restart R. We renamed
all input variables so that no duplication of variable names is possible. In order
to execute the function, copy the code for the function, paste it into the console,
and type the command:

> Index.function(Species, "Shannon")

$Index

[1] 0.76190639 0.72097224 0.84673524 0.53083926
[5] 0.74413939 0.12513164 0.40192006 0.29160667
[9] 1.01888185 0.99664096 0.59084434 0.00000000
[13] 0.19591509 0.25795928 0.40969100 0.00000000
[17] 0.33571686 0.08580337 0.00000000 0.37467654
[21] 0.37677792 1.23972435 0.62665477 0.00000000
[25] 0.35252466 0.39057516 0.38359186 0.00000000
[29] 0.58227815 0.57855801 0.17811125 0.00000000
[33] 0.00000000 0.12082909 0.08488495 0.43924729
[37] 0.56065567 0.73993117 0.20525195 0.00000000
[41] 0.65737571 0.75199627 0.45767851 0.00000000
[45] 0.25447599

$MyChoice

[1] "Shannon"

Note that the function returns information from of the final command,
which in this case is a list command. Recall from Chapter 2 that a list
allows us to combine data of different dimensions, in this case a variable with 45
values and also the selected index.

6.4 More on Functions and the if Statement 123

Study Material. Do not distribute.

Is this function perfect? The answer is no, as can be verified by typing

> Index.function(Species, "total abundance")

The error message produced by R is

Error in Index.function(Species, "total abundance"):
object "Index" not found

Note that we made a typing error in not capitalizing ‘‘total abundance’’.

In the previous section, we discussed how to avoid such errors. We extend

the function so that it inspects all if statements and, if none of them

is executed, gives a warning message. We can use the if else command

for this.

Index.function <- function(Spec,Choice1){
if (Choice1 == "Richness") {

Index <- rowSums(Spec > 0, na.rm = TRUE) } else
if (Choice1 == "Total Abundance") {

Index <- rowSums(Spec, na.rm = TRUE) } else
if (Choice1 == "Shannon") {

RS <- rowSums(Spec, na.rm = TRUE)
prop <- Spec / RS
Index <- -rowSums(prop*log(prop),na.rm=TRUE)} else {

print("Check your choice")
Index <- NA }

list(Index = Index, MyChoice = Choice1)}

Rwill look at the first if command, and, if the argument is FALSE, it will go
to the second if statement, and so on. If the variable Choice1 is not equal to

‘‘Richness’’, ‘‘Total Abundance’’, or ‘‘Shannon’’, the function will execute the

command,

print("Check your choice")
Index <- NA

You can replace the text inside the print command with anything appro-

priate. It is also possible to use the stop command to halt R. This is useful if the

function is part of a larger calculation process, for example, a bootstrap

procedure. See the help files on stop, break, geterrmessage, or warning.
These will help you to create specific actions to deal with unexpected errors in

your code.

124 6 Loops and Functions

Study Material. Do not distribute.

6.5 Which R Functions Did We Learn?

Table 6.1 shows the R functions that were introduced in this chapter.

6.6 Exercises

Exercise 1. Using a loop to plot temperature per location.

In Section 6.2, sibling negotiation behaviour was plotted versus arrival
time for each nest in the owl data. A graph for each nest was created and
saved as a jpg file. Do the same for the temperature data; see Exercise 4.1 for
details. The file temperature.xls contains temperature observations made at
31 locations (denoted as stations in the spreadsheet) along the Dutch coast-
line. Plot the temperature data versus time for each station, and save the
graph as a jpg file.

Exercise 2. Using the ifelse command for the owl data.

The owl data were sampled on two consecutive nights. If you select the data
from one nest, the observations will cover both nights. The two nights differed
as to the feeding regime (satiated or deprived). To see observations from a single
night, select all observations from a particular nest and food treatment. Use the
ifelse and paste functions to make a new categorical variable that defines
the observations from a single night at a particular nest. Try rerunning the code
from Exercise 1 to make a graph of sibling negotiation versus arrival time for
observations of the same nest and night.

Exercise 3. Using the function and if commands with the benthic dataset.

In this exercise we provide the steps for the function that was presented in
Section 6.4: the calculation of diversity indices. Read the introductory text in
Section 6.4 on diversity indices. Import the benthic data and extract columns
2–76; these are the species.

Table 6.1 R functions introduced in this chapter

Function Purpose Example

jpeg Opens a jpg file jpeg(file = ’’AnyName.jpg’’)
dev.off Closes the jpg file dev.off()
function Makes a function z <- function(x, y){ }

paste Concatenates variables as characters paste(’’a’’, ’’b’’, sep = ’’ ’’)

if Conditional statement if (a) { x<-1 }

ifelse Conditional statement ifelse (a, x<-1, x<-2)
if elseif Conditional statement if (a) { x<-1 } elseif (b)

{ x<-2 }

6.6 Exercises 125

Study Material. Do not distribute.

Calculate total abundance at site 1. Calculate total abundance at site 2.
Calculate total abundance at site 3. Calculate the total abundance at site 45.
Find a function that can do this in one step (sum per row). Brute forcemaywork
as well (loop), but is less elegant.

Calculate the total number of different species in site 1 (species richness).
Calculate species richness for site 2. Do the same for sites 3 and 45. Find a
function that can do this in one step.

Create a function using the code for all the diversity indices. Make sure that
the user can choose which index is calculated. Ensure that the code can deal with
missing values.

If you are brave, add the Shannon index. Apply the same function to the
vegetation data.

126 6 Loops and Functions

Study Material. Do not distribute.

