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defined by targeted p-values, and, to achieve a particular target p-value, you
need to obtain a particular value of t. The rows in the t-table indicate the
number of degrees of freedom. As the number of degrees of freedom goes
up, the t-statistic we need to obtain a particular p-value goes down. We
calculate the degrees of freedom for a difference of means t-statistic based
on the sum of total sample size minus two. Thus our degrees of freedom is

n1 +n2 −2= 124+53−2= 175.

From the p-value, we can look across the row for which df = 100 and see
the minimum t-value needed to achieve each targeted value of p.10 In the
second column of the t-table, we can see that, to have a p-value of .10
(meaning that there is a 10%, or 1 in 10, chance that we would see this
relationship randomly in our sample if there were no relationship between
X and Y in the underlying population), we must have a t-statistic greater
than or equal to 1.29. Because 3.44 > 1.29, we can proceed to the next
column for p = .05 and see that 3.44 is also greater than 1.66. In fact, if
we go all the way to the end of the row for df = 100, we can see that our
t-statistic is greater than 3.174, which is the t-value needed to achieve p
= .001 (meaning that there is a 0.1%, or 1 in 1000, chance that we would
see this relationship randomly in our sample if there were no relationship
betweenX and Y in the underlying population). This indicates that we have
very confidently cleared the third hurdle in our assessment of whether or
not there is a causal relationship between majority status and government
duration.

7.4.3 Example 3: Correlation Coefficient

In our final example of bivariate hypothesis testing we look at a situa-
tion in which both the independent variable and the dependent variable
are continuous. We test the hypothesis that there is a positive relation-
ship between economic growth and incumbent-party fortunes in U.S.
presidential elections.

In Chapter 5 we discussed the variation (or variance) of a single vari-
able, and in Chapter 1 we introduced the concept of covariation. In the
three examples that we have looked at so far, we have found there to be
covariation between being from a union household and presidential vote,
gender and presidential vote, and government type and government dura-
tion. All of these examples used at least one categorical variable. When we

10 Although our degrees of freedom equal 175, we are using the row for df = 100 to get a
rough idea of the p-value. With a computer program, we can calculate an exact p-value.
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Figure 7.3. Scatter plot of change in GDP and incumbent-party vote share.

have an independent variable and a dependent variable that are both con-
tinuous, we can visually detect covariation pretty easily in graphs. Consider
the graph in Figure 7.3, which shows a scatter plot of incumbent vote and
economic growth. Scatter plots are useful for getting an initial look at the
relationship between two continuous variables. Any time that you examine
a scatter plot, you should figure out what are the axes and then what each
point in the scatter plot represents. In these plots, the dependent variable (in
this case incumbent vote) should be displayed on the vertical axis while the
independent variable (in this case economic growth) should be displayed
on the horizontal axis. Each point in the scatter plot should represent the
values for the two variables for an individual case. So, in Figure 7.3, we are
looking at the values of incumbent vote and economic growth for each U.S.
presidential election year on which we have data for both variables.

When we look at this graph, we want to assess whether or not we see
a pattern. Since our theory implies that the independent variable causes the
dependent variable, we shouldmove from left to right on the horizontal axis
(representing increasing values of the independent variable) and see whether
there is a corresponding increase or decrease in the values of the dependent
variable. In the case of Figure 7.3, as wemove from left to right, we generally
see a pattern of increasing values on the vertical axis. This indicates that,
as expected by our hypothesis, when the economy is doing better (more
rightward values on the horizontal axis), we also tend to see higher vote
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percentages for the incumbent party in U.S. presidential elections (higher
values on the vertical axis).

Covariance is a statistical way of summarizing the general pattern of
association (or the lack thereof) between two continuous variables. The
formula for covariance between two variables X and Y is

covXY =
∑n

i=1(Xi − X̄)(Yi − Ȳ)

n
.

To better understand the intuition behind the covariance formula, it is
helpful to think of individual cases in terms of their values relative to the
mean ofX (X̄) and themean ofY (Ȳ). If an individual case has a value for the
independent variable that is greater than the mean ofX (Xi−X̄> 0) and its
value for the dependent variable is greater than the mean of Y (Yi− Ȳ > 0),
that case’s contribution to the numerator in the covariance equation will
be positive. If an individual case has a value for the independent variable
that is less than the mean of X (Xi − X̄ < 0) and a value of the dependent
variable that is less than the mean of Y (Yi− Ȳ < 0), that case’s contribution
to the numerator in the covariance equation will also be positive, because
multiplying two negative numbers yields a positive product. If a case has
a combination of one value greater than the mean and one value less than
the mean, its contribution to the numerator in the covariance equation will
be negative because multiplying a positive number by a negative number
yields a negative product. Figure 7.4 illustrates this; we see the same plot of

(− −) = + (+ −) = −

(− +) = − (+ +) = +
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Figure 7.4. Scatter plot of change in GDP and incumbent-party vote share with mean-
delimited quadrants.
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growth versus incumbent vote, but with the addition of lines showing the
mean value of each variable. In each of these mean-delimited quadrants we
can see the contribution of the cases to the numerator. If a plot contains
cases in mostly the upper-right and lower-left quadrants, the covariance
will tend to be positive. On the other hand, if a plot contains cases in
mostly the lower-right and upper-left quadrants, the covariance will tend
to be negative. If a plot contains a balance of cases in all four quadrants,
the covariance calculation will be close to zero because the positive and
negative values will cancel out each other. When the covariance between
two variables is positive, we describe this situation as a positive relationship
between the variables, and when the covariation between two variables is
negative, we describe this situation as a negative relationship.

Table 7.10 presents the calculations for each year in the covariance
formula for the data that we presented in Figure 7.4. For each year, we
have started out by calculating the difference between each X and X̄ and
the difference between each Y and Ȳ. If we begin with the year 1876, we can
see that the value for growth (X1876) was 5.11 and the value for vote (Y1876)
was 48.516. The value for growth is greater than the mean and the value
for vote is less than the mean, X1876 − X̄ = 5.11−0.7025294 = 4.407471
and Y1876 − Ȳ = 48.516− 51.94718 = −3.431181. In Figure 7.4, the dot
for 1876 is in the lower-right quadrant. When we multiply these two mean
deviations together, we get (X1876 − X̄)(Y1876 − Ȳ) = −15.12283.

We repeat this same calculation for every case (presidential election
year). Each negative calculation like this contributes evidence that the
overall relationship between X and Y is negative, whereas each positive
calculation contributes evidence that the overall relationship between X
and Y is positive. The sum across all 34 years of data in Table 7.10 is
616.59088, indicating that the positive values have outweighed the neg-
ative values. When we divide this by 34, we have the sample covariance,
which equals 18.6846. This tells us that we have a positive relationship, but
it does not tell us how confident we can be that this relationship is different
from what we would see if our independent and dependent variables were
not related in our underlying population of interest. To see this, we turn
to a third test developed by Karl Pearson, Pearson’s correlation coefficient.
This is also known as Pearson’s r , the formula for which is

r= covXY√
varXvarY

.

Table 7.11 is a covariance table. In a covariance table, the cells across
the main diagonal (from upper-left to lower-right) are cells for which the
column and the row reference the same variable. In this case the cell entry
is the variance for the referenced variable. Each of the cells off of the main
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Table 7.10. Contributions of individual election years to the covariance calculation

Year Growth (Xi) Vote (Yi) Xi − X̄ Yi − Ȳ (Xi − X̄)(Yi − Ȳ )

1876 5.11 48.516 4.407471 –3.431181 –15.12283
1880 3.879 50.22 3.176471 –1.727179 –5.486332
1884 1.589 49.846 .8864706 –2.101179 –1.862634
1888 –5.553 50.414 –6.255529 –1.533179 9.590843
1892 2.763 48.268 2.060471 –3.679178 –7.580839
1896 –10.024 47.76 –10.72653 –4.187181 44.91393
1900 –1.425 53.171 –2.127529 1.223821 –2.603716
1904 –2.421 60.006 –3.123529 8.058821 –25.17196
1908 –6.281 54.483 –6.98353 2.535822 –17.70899
1912 4.164 54.708 3.461471 2.76082 9.556498
1916 2.229 51.682 1.526471 –.2651808 –.4047907
1920 –11.463 36.148 –12.16553 –15.79918 192.2054
1924 –3.872 58.263 –4.574529 6.315821 –28.89191
1928 4.623 58.756 3.920471 6.808821 26.69378
1932 –14.586 40.851 –15.28853 –11.09618 169.6442
1936 11.836 62.226 11.13347 10.27882 114.439
1940 3.901 54.983 3.198471 3.035822 9.709987
1944 4.233 53.778 3.53047 1.83082 6.463655
1948 3.638 52.319 2.935471 .3718202 1.091467
1952 .726 44.71 .0234706 –7.237181 –.169861
1956 –1.451 57.094 –2.153529 5.146822 –11.08383
1960 .455 49.913 –.2475294 –2.034182 .5035198
1964 5.087 61.203 4.38447 9.255819 40.58187
1968 5.049 49.425 4.34647 –2.522181 –10.96258
1972 5.949 61.791 5.24647 9.843821 51.64531
1976 3.806 48.951 3.103471 –2.99618 –9.298556
1980 –3.659 44.842 –4.361529 –7.105181 30.98945
1984 5.424 59.123 4.72147 7.175821 33.88043
1988 2.21 53.832 1.507471 1.884821 2.841312
1992 2.949 46.379 2.24647 –5.568178 –12.50875
1996 3.258 54.737 2.55547 2.789819 7.129301
2000 2.014 50.262 1.311471 –1.685179 –2.210063
2004 1.989 51.233 1.286471 –.7141783 –.9187693
2008 –2.26 46.311 –2.962529 –5.636179 16.69735

X̄ = 0.7025294 Ȳ = 51.94718
∑

(Xi − X̄)(Yi − Ȳ)

= 616.59088

diagonal displays the covariance for a pair of variables. In covariance tables,
the cells above the main diagonal are often left blank, because the values
in these cells are a mirror image of the values in the corresponding cells
below themain diagonal. For instance, in Table 7.11 the covariance between



166 Bivariate Hypothesis Testing

Vote Growth

Vote 35.4804

Growth 18.6846 29.8997

Table 7.11 Covariance table for

economic growth and

incumbent-party presidential vote,

1880–2004

growth and vote is the same as
the covariance between vote and
growth, so the upper-right cell in
this table is left blank.

Using the entries in Table 7.11,
we can calculate the correlation
coefficient:

r= covXY√
varX varY

,

r= 18.6846√
35.4804×29.8997

,

r= 18.6846√
1060.853316

,

r= 18.6846
32.57074325

,

r= 0.57366207.

There are a couple of points worth noting about the correlation coeffi-
cient. If all of the points in the plot line up perfectly on a straight, positively
sloping line, the correlation coefficient will equal 1. If all of the points in the
plot line up perfectly on a straight, negatively sloping line, the correlation
coefficient will equal −1. Otherwise, the values will lie between positive
one and negative one. This standardization of correlation coefficient val-
ues is a particularly useful improvement over the covariance calculation.
Additionally, we can calculate a t-statistic for a correlation coefficient as

tr = r
√
n−2√
1− r2

,

with n−2 degrees of freedom, where n is the number of cases. In this case,
our degrees of freedom equal 34−2= 32.

For the current example,

tr = r
√
n−2√
1− r2

,

tr = 0.57366207
√
34−2√

1− (0.57366207)2
,

tr = 0.57366207×5.656854249√
1− (0.329088171)

,
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tr = 3.245122719√
0.670911829

,

tr = 3.245122719
0.819092076

,

tr = 3.961853391.

With the degrees of freedom equal to 34 (n= 34) minus two, or 32, we can
now turn to the t-table in Appendix B. Looking across the row for df = 30,
we can see that our calculated t of 3.96 is greater even than the critical t
at the p-value of .001 (which is 3.385). This tells us that the probability of
seeing this relationship due to random chance is less than .001 or 1 in 1000.
When we estimate our correlation coefficient with a computer program, we
get a more precise p-value of .0004. Thus we can be quite confident that
there is covariation between economic growth and incumbent-party vote
share and that our theory has successfully cleared our third causal hurdle.11

7.5 WRAPPING UP

We have introduced three methods to conduct bivariate hypothesis tests –
tabular analysis, difference of means tests, and correlation coefficients.
Which test is most appropriate in any given situation depends on the mea-
surement metric of your independent and dependent variables. Table 7.1
should serve as a helpful reference for you on this front.

We have yet to introduce the final method for conducting bivariate
hypothesis tests covered in this book, namely bivariate regression analysis.
That is the topic of our next chapter, and it serves as the initial building
block for multiple regression (which we will cover in Chapter 9).

CONCEPTS INTRODUCED IN THIS CHAPTER

• chi-squared (χ2) test for tabular association – a statistical test for a
relationship between two categorical variables.

• correlation coefficient – a measure of linear association between two
continuous variables.

• covariance – an unstandardized statistical measure summarizing the
general pattern of association (or the lack thereof) between two
continuous variables.

11 The first causal hurdle is pretty well cleared if we refer back to the discussion of the theory
of economic voting in earlier chapters. The second causal hurdle also can be pretty well
cleared logically by the timing of the measurement of each variable. Because economic
growth is measured prior to incumbent vote, it is difficult to imagine that Y caused X.
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• critical value – a predetermined standard for a statistical test such that
if the calculated value is greater than the critical value, then we con-
clude that there is a relationship between the two variables; and if the
calculated value is less than the critical value, we cannot make such a
conclusion.

• degrees of freedom – the number of pieces of information we have
beyond the minimum that we would need to make a particular
inference.

• difference of means test – a method of bivariate hypothesis testing that
is appropriate for a categorical independent variable and a continuous
dependent variable.

• Pearson’s r – the most commonly employed correlation coefficient.
• p-value – the probability that we would see the relationship that we

are finding because of random chance.
• statistically significant relationship – a conclusion, based on the

observed data, that the relationship between two variables is not due
to random chance, and therefore exists in the broader population.

• tabular analysis – a type of bivariate analysis that is appropriate for
two categorical variables.

EXERCISES

1. What form of bivariate hypothesis test would be appropriate for the following
research questions:

(a) You want to test the theory that being female causes lower salaries.
(b) You want to test the theory that a state’s percentage of college graduates

is positively related to its turnout percentage.
(c) You want to test the theory that individuals with higher incomes are more

likely to vote.

2. Explain why each of the following statements is either true or false:

(a) The computer program gave me a p-value of .000, so I know that my
theory has been verified.

(b) The computer program gave me a p-value of .02, so I know that I have
found a very strong relationship.

(c) The computer program gave me a p-value of .07, so I know that this
relationship is due to random chance.

(d) The computer program gave me a p-value of .50, so I know that there is
only a 50% chance of this relationship being systematic.

3. Take a look at Figure 7.5. What is the dependent variable? What are the
independent variables? What does this table tell us about politics?

4. What makes the table in Figure 7.5 so confusing?


