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Multiple Regression Model Specification

In this chapter we provide introductory discussions of and advice for
commonly encountered research scenarios involving multiple regression
models. Issues covered include dummy independent variables, interactive
specifications, influential cases, and multicollinearity.

EXTENSIONS OF OLS

In the previous two chapters we discussed in detail various aspects of the
estimation and interpretation of OLS regression models. In this chapter we
go through a series of research scenarios commonly encountered by political
science researchers as they attempt to test their hypotheses within the OLS
framework. The purpose of this chapter is twofold — first, to help you to
identify when you encounter these issues and, second, to help you to figure
out what to do to continue on your way.

We begin with a discussion of “dummy” independent variables and
how to properly use them to make inferences. We then discuss how to test
interactive hypotheses with dummy variables. We next turn our attention to
two frequently encountered problems in OLS — outliers and multicollinear-
ity. With both of these topics, at least half of the battle is identifying that
you have the problem.

BEING SMART WITH DUMMY INDEPENDENT VARIABLES IN OLS

In Chapter 5 we discussed how an important part of knowing your data
involves knowing the metric in which each of your variables is measured.
Throughout the examples that we have examined thus far, almost all of
the variables, both the independent and dependent variables, have been
continuous. This is not by accident. We chose examples with continuous
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variables because they are, in many cases, easier to interpret than models in
which the variables are noncontinuous. In this section, though, we con-
sider a series of scenarios involving independent variables that are not
continuous. We begin with a relatively simple case in which we have a
categorical independent variable that takes on one of two possible val-
ues for all cases. Categorical variables like this are commonly referred to
as dummy variables. Although any two values will do, the most common
form of dummy variable is one that takes on values of one or zero. These
variables are also sometimes referred to as “indicator variables” when a
value of one indicates the presence of a particular characteristic and a
value of zero indicates the absence of that characteristic. After consider-
ing dummy variables that reflect two possible values, we then consider
more complicated examples in which we have an independent variable
that is categorical with more than two values. We conclude this section
with an examination of how to handle models in which we have multi-
ple dummy variables representing multiple and overlapping classifications
of cases.

Using Dummy Variables to Test Hypotheses about a Categorical
Independent Variable with Only Two Values

During the 1996 U.S. presidential election between incumbent Democrat
Bill Clinton and Republican challenger Robert Dole, Clinton’s wife Hillary
was a prominent and polarizing figure. Throughout the next couple of
examples, we will use her “thermometer ratings” by individual respon-
dents to the NES survey as our dependent variable. A thermometer rating is
a survey respondent’s answer to a question about how they feel (as opposed
to how they think) toward particular individuals or groups on a scale that
typically runs from 0 to 100. Scores of 50 indicate that the individual feels
neither warm nor cold about the individual or group in question. Scores
from 50 to 100 represent increasingly warm (or favorable) feelings feel-
ings, and scores from 50 to 0 represent increasingly cold (or unfavorable)
feelings.

During the 1996 campaign, Ms. Clinton was identified as being a left-
wing feminist. Given this, we theorize that there may have been a causal
relationship between a respondent’s family income and their thermometer
rating of Ms. Clinton — with wealthier individuals, holding all else constant,
liking her less — as well as a relationship between a respondent’s gender
and their thermometer rating of Ms. Clinton — with women, holding all
else constant, liking her more. For the sake of this example, we are going
to assume that both our dependent variable and our income independent
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.reg hillary_thermo income male female

Number of obs = 1542
Source SS o MS F( 2, 1539) = 49.17
Model 80916.663 2 40458.3315 Prob > F = 0.0000
Residual 1266234.71 1539 822.764595 R-Squared = 0.0601
Total 1347151.37 1541 874.205954 Adj R-Squared = 0.0588
Root MSE = 28.684

hillary_th~o Coef.  Std. Err. t P>t | [95% Conf. Interval]

income —-.8407732 .117856 -7.13 0.000 —1.071948 —.6095978
male (dropped)

female 8.081448  1.495216 540  0.000 5.148572 11.01432
_cons 61.1804  2.220402 27.55  0.000 56.82507 65.53573

Figure 10.1. Stata output when we include both gender dummy variables in our model.

variable are continuous.' Each respondent’s gender was coded as equaling
either 1 for “male” or 2 for “female.” Although we could leave this gender
variable as it is and run our analyses, we chose to use this variable to create
two new dummy variables, “male” equaling 1 for “yes” and 0 for “no,”
and “female” equaling 1 for “yes” and 0 for “no.”

Our first inclination is to estimate an OLS model in which the
specification is the following:

Hillary Thermometer; = « + B1Income; + B2 Male; + 3Female; + u;.

But if we try to estimate this model, our statistical computer program
will revolt and give us an error message.~ Figure shows a screen shot
of what this output looks like in Stata. We can see that Stata has reported
the results from the following model instead of what we asked for:

Hillary Thermometer; = « + B1Income; + B3 Female; + u;.

Instead of the estimates for B, on the second row of parameter esti-
mates, we get a note that this variable was “dropped.” This is the case
because we have failed to meet the additional minimal mathematical crite-
ria that we introduced when we moved from two-variable OLS to multiple
OLS in Chapter 9 — “no perfect multicollinearity.” The reason that we have
failed to meet this is that, for two of the independent variables in our model,
Male; and Female;, it is the case that

Male; +Female; =1V i.

! In this survey, a respondent’s family income was measured on a scale ranging from 1 to 24
according to which category of income ranges they chose as best describing their family’s
income during 1995.

2 Most programs will throw one of the two variables out of the model and report the results
from the resulting model along with an error message.



223

10.2 Dummy Independent Variables

Table 10.1. Two models of the effects of gender

and income on Hillary Clinton Thermometer

scores
Independent variable Model 1 Model 2
Male — —8.08***
(1.50)
Female 8.08™** —
(1.50)
Income —0.84*** —0.84***
(0.12) (0.12)
Intercept 61.18%** 69.26™**
(2.22) (1.92)
R? .06 .06
n 1542 1542
Notes: The dependent variable in both models is the
respondent’s thermometer score for Hillary Clinton.
Standard errors in parentheses.
Two-sided #-tests: **indicates p < .01; **indicates p < .05;
*indicates p < .10.

In other words, our variables “Male” and “Female” are perfectly cor-
related: If we know a respondent’s value on the “Male” variable, then we
know their value on the “Female” variable with perfect certainty.

When this happens with dummy variables, we call this situation the
dummy-variable trap. To avoid the dummy-variable trap, we have to omit
one of our dummy variables. But we want to be able to compare the effects of
being male with the effects of being female to test our hypothesis. How can
we do this if we have to omit one of our two variables that measures gender?
Before we answer this question, let’s look at the results in Table 10.1 from
the two different models in which we omit one of these two variables. We
can learn a lot by looking at what is and what is not the same across these
two models. In both models, the parameter estimate and standard error
for income are identical. The R? statistic is also identical. The parameter
estimate and the standard error for the intercept are different across the two
models. The parameter estimate for male is —8.08, whereas that for female
is 8.08, although the standard error for each of these parameter estimates
is 0.12. If you’re starting to think that all of these similarities cannot have
happened by coincidence, you are correct. In fact, these two models are,
mathematically speaking, the same model. All of the Y values and residuals
for the individual cases are exactly the same. With income held constant, the
estimated difference between being male and being female is 8.08. The sign
on this parameter estimate switches from positive to negative when we go
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from Model 1 to Model 2 because we are phrasing the question differently
across the two models:

* For Model 1: “What is the estimated difference for a female compared
with a male?”

* For Model 2: “What is the estimated difference for a male compared
with a female?”

So why are the intercepts different? Think back to our discussions in
Chapters 8 and 9 about the interpretation of the intercept —it is the estimated
value of the dependent variable when the independent variables are all equal
to zero. In Model 1 this means the estimated value of the dependent variable
for a low-income man. In Model 2 this means the estimated value of the
dependent variable for a low-income woman. And the difference between
these two values — you guessed it —is 61.18 —69.26 = —8.08!

What does the regression line from Model 1 or Model 2 look like? The
answer is that it depends on the gender of the individual for which we are
plotting the line, but that it does not depend on which of these two models
we use. For men, where Female; = 0 and Male; = 1, the predicted values
are calculated as follows:

Model 1 for Men: Y; =61.18 4+ (8.08 x Female;) — (0.84 x Income;),

=61.18+(8.08 x 0) — (0.84 x Income;),

=61.18 — (0.84 x Income;);

Model 2 for Men: Y; = 69.26 — (8.08 x Male;) — (0.84 x Income;),
1? = 69.26 — (8.08 x 1) — (0.84 x Income;),
Y;=61.18 — (0.84 x Income;).

’"<>
| |

So we can see that, for men, regardless of whether we use the results
from Model 1 or Model 2, the formula for predicted values is the same.
For women, where Female; = 1 and Male; = 0, the predicted values are
calculated as follows:

Model 1 for Women: Y; =61.18 4+ (8.08 x Female;) — (0.84 x Income;),
1? 61.18 +(8.08 x 1) — (0.84 x Income;),

69.26 — (0.84 x Income;);

Model 2 for Women: lA/ 69.26 — (8.08 x Male;) — (0.84 x Income;),
Y/ =69.26 — (8.08 x 0) — (0.84 x Income;),

=69.26 — (0.84 x Income;).

’~<>
| || Il ||
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Women: Y= 69.26 - (0.84 x Income))
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Figure 10.2. Regression lines from the model with a dummy variable for gender.

Again, the formula from Model 1 is the same as the formula from Model 2
for women. To illustrate these two sets of predictions, we have plotted them
in Figure . Given that the two predictive formulae have the same slope,
it is not surprising to see that the two lines in this figure are parallel to each
other with the intercept difference determining the space between them.

Using Dummy Variables to Test Hypotheses about a Categorical
Independent Variable with More Than Two Values

As you might imagine, when we have a categorical variable with more than
two categories and we want to include it in an OLS model, things get more
complicated. We’ll keep with our running example of modeling Hillary
Clinton Thermometer scores as a function of individuals’ characteristics and
opinions. In this section we work with a respondent’s religious affiliation as
an independent variable. The frequency of different responses to this item
in the 1996 NES is displayed in Table

Could we use the Religious Identification variable as it is in our regres-
sion models? That would be a bad idea. Remember, this is a categorical
variable, in which the values of the variable are not ordered from lowest
to highest. Indeed, there is no such thing as “lowest” or “highest” on this
variable. So running a regression model with these data as they are would
be meaningless. But beware: Your statistics package does not know that this
is a categorical variable. It will be more than happy to run the regression
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Table 10.2. Religious identification in
the 1996 NES

Value Category Frequency Percent

0 Protestant 683 39.85

1 Catholic 346 20.19

2 Jewish 22 1.28

3 Other 153 8.93

4 None 510 29.75
Totals 1714 100

and report parameter estimates to you, even though these estimates will be
nonsensical.

In the previous subsection, in which we had a categorical variable (Gen-
der) with only two possible values, we saw that, when we switched which
value was represented by “1” and “0,” the estimated parameter switched
signs. This was the case because we were asking a different question. With
a categorical independent variable that has more than two values, we have
more than two possible questions that we can ask. Because using the vari-
able as is is not an option, the best strategy for modeling the effects of such
an independent variable is to include a dummy variable for all values of that
independent variable except one.” The value of the independent variable for
which we do not include a dummy variable is known as the reference cate-
gory. This is the case because the parameter estimates for all of the dummy
variables representing the other values of the independent variable are esti-
mated in reference to that value of the independent variable. So let’s say
that we choose to estimate the following model:

Hillary Thermometer; = & + B1Income; + B> Protestant; + B3 Catholic;

+ B4 Jewish; + BsOther; + u;.

For this model we would be using “None” as our reference category
for religious identification. This would mean that 8> would be the esti-
mated effect of being Protestant relative to being nonreligious, and we could
use this value along with its standard error to test the hypothesis that this
effect was statistically significant, controlling for the effects of income. The
remaining parameter estimates (£33, B4, and Bs) would all also be inter-
preted as the estimated effect of being in each of the remaining categories

3 If our theory was that only one category, such as Catholics, was different from all of the
others, then we would collapse the remaining categories of the variable in question together
and we would have a two-category independent variable. We should do this only if we have
a theoretical justification for doing so.
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Table 10.3. The same model of religion and income on Hillary Clinton

Thermometer scores with different reference categories

Independent

variable Model 1 Model 2 Model 3 Model 4 Model 5

Income —0.97*** —0.97*** —0.97*** —0.97*** —-0.97***
(0.12) (0.12) (0.12) (0.12) (0.12)

Protestant —-4.24* —6.66* —24.82%*  —6.30** —
(1.77) (2.68) (6.70) (2.02) =

Catholic 2.07 -0.35 -18.51** — 6.30**
(2.12) (2.93) (6.80) — (2.02)

Jewish 20.58** 18.16** — 18.51** 24.82%**
(6.73) (7.02) — (6.80) (6.70)

Other 2.42 — -18.16** 0.35 6.66*
(2.75) — (7.02) (2.93) (2.68)

None — -2.42 —20.58** -2.07 4.24*
— (2.75) (6.73) (2.12) (1.77)

Intercept 68.40™** 70.83*** 88.98™** 70.47*%* 64.17***
(2.19) (2.88) (6.83) (2.53) (2.10)

R? .06 .06 .06 .06 .06

n 1542 1542 1542 1542 1542

Notes: The dependent variable in both models is the respondent’s thermometer score for

Hillary Clinton.

Standard errors in parentheses.

Two-sided #-tests: **indicates p < .01; *indicates p < .05; *indicates p < .10.

relative to “None.” The value that we choose to use as our reference cat-
egory does not matter, as long as we interpret our results appropriately.
But we can use the choice of the reference category to focus on the rela-
tionships in which we are particularly interested. For each possible pair of
categories of the independent variable, we can conduct a separate hypothe-
sis test. The easiest way to get all of the p-values in which we are interested
is to estimate the model multiple times with different reference categories.
Table 10.3 displays a model of Hillary Clinton Thermometer scores with
the five different choices of reference categories. It is worth emphasizing
that this is #ot a table with five different models, but that this is a table with
the same model displayed five different ways. From this table we can see
that, when we control for the effects of income, some of the categories of
religious affiliation are statistically different from each other in their evalu-
ations of Hillary Clinton whereas others are not. This raises an interesting
question: Can we say that the effect of religion affiliation, controlling for
income, is statistically significant? The answer is that it depends on which
categories of religious affiliation we want to compare.



228

10.2.3

Multiple Regression Model Specification

Table 10.4. Model of bargaining duration

Independent variable Parameter estimate
Ideological Range of the Government 2.57*
(1.95)
Number of Parties in the Government -165.44***
(2.30)
Post-Election 5.87**
(2.99)
Continuation Rule -6.34**
(3.34)
Intercept 19.63***
(3.82)
R? .62
n 203
Notes: The dependent variable is the number of days before each
government was formed.
Standard errors in parentheses.
One-sided #-tests: ***indicates p < .01; **indicates p < .05; *indicates p < .10.

Using Dummy Variables to Test Hypotheses about Multiple
Independent Variables

It is often the case that we will want to use multiple dummy independent
variables in the same model. Consider the model presented in Table 10.4
which was estimated from data from a paper by Lanny Martin and Georg
Vanberg (2003) on the length of time that it takes for coalition govern-
ments to form in Western Europe.” The dependent variable is the number
of days that a government took to form. The model has two continu-
ous independent variables (“Ideological Range of the Government” and
“Number of Parties in the Government”) measuring characteristics of the
government that eventually formed and two dummy independent vari-
ables reflecting the circumstances under which bargaining took place. The
variable “Post-Election” identifies governments that were formed in the
immediate aftermath of an election while “Continuation Rule” identifies
bargaining that took place in settings where the political parties from the

4 The model that we present in Table 10.4 has been changed from what Martin and Vanberg
present in their paper. This model contains fewer variables than the main model of interest
in that paper. This model was also estimated using OLS regression whereas the models
presented by the original authors were estimated as proportional hazard models. And, we
have not reported the results for a technical variable (labeled “Number of Government
Parties * In(T)” by the authors) from the original specification. All of these modifications
were made to make this example more tractable.
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Table 10.5. Two overlapping dummy

variables in models by Martin and Vanberg

Continuation rule?

No (0) Yes (1)
Post- No (0) 61 25
Election? Yes (1) 76 41

Note: Numbers in cells represent the number of cases.

outgoing government had the first opportunity to form a new government.
As Table 10.5 indicates, all four possible combinations of these two dummy
variables occurred in the sample of cases on which the model presented in
Table 10.4 was estimated.

So, how do we interpret these results? It’s actually not as hard as it
might first appear. Remember from Chapter 9 that when we moved from a
bivariate regression model to a multiple regression model, we had to inter-
pret each parameter estimate as the estimated effect of a one-point increase
in that particular independent variable on the dependent variable, while
controlling for the effects of all other independent variables in the model.
This has not changed. Instead, what is a little different from the examples
that we have considered before is that we have two dummy independent
variables that can vary independently of each other. So, when we interpret
the estimated effect of each continuous independent variable, we interpret
the parameter estimate as the estimated effect of a one-point increase in that
particular independent variable on the dependent variable, while control-
ling for the effects of all other independent variables in the model, including
the two dummy variables. And, when we interpret the estimated effect of
each dummy independent variable, we interpret the parameter estimate as
the estimated effect of that variable having a value of one versus zero on
the dependent variable, while controlling for the effects of all other inde-
pendent variables in the model, including the other dummy variable. For
instance, the estimated effect of a one-unit increase in the ideological range
of the government, holding everything else constant, is a 2.57 day increase
in the amount of bargaining time. And, the estimated effect of bargaining in
the aftermath of an election (versus at a different time), holding everything
else constant, is a 5.87 day increase in the amount of bargaining time.

TESTING INTERACTIVE HYPOTHESES WITH DUMMY VARIABLES

All of the OLS models that we have examined so far have been what we
could call “additive models.” To calculate the Y value for a particular
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case from an additive model, we simply multiply each independent vari-
able value for that case by the appropriate parameter estimate and add
these values together. In this section we explore some interactive models.
Interactive models contain at least one independent variable that we cre-
ate by multiplying together two or more independent variables. When we
specify interactive models, we are testing theories about how the effects
of one independent variable on our dependent variable may be contin-
gent on the value of another independent variable. We will continue with
our running example of modeling a respondent’s thermometer score for
Hillary Clinton. We begin with an additive model with the following
specification:

Hillary Thermometer; = & + f1 Women’s Movement Thermometer;

+ BFemale; + u;.

In this model we are testing theories that a respondent’s feelings toward
Hillary Clinton are a function of their feelings toward the women’s move-
ment and their own gender. This specification seems pretty reasonable, but
we also want to test an additional theory that the effect of feelings toward
the women’s movement have a stronger effect on feelings toward Hillary
Clinton among women than they do among men. Notice the difference in
phrasing there. In essence, we want to test the hypothesis that the slope of
the line representing the relationship between Women’s Movement Ther-
mometer and Hillary Clinton Thermometer is steeper for women than it is
for men. To test this hypothesis, we need to create a new variable that is
the product of the two independent variables in our model and include this
new variable in our model:

Hillary Thermometer; = « + 81 Women’s Movement Thermometer;

+pB>Female; + B3(Women’s Movement Thermometer; x Female;) + ;.

By specifying our model as such, we have essentially created two
different models for women and men. So we can rewrite our model as

for Men (Female = 0) : Hillary Thermometer; = «
+ B1Women’s Movement Thermometer; + u;;

for Women (Female = 1) : Hillary Thermometer; = «
+ B1Women’s Movement Thermometer;

+ (B2 + B3)(Women’s Movement Thermometer;) + u;.
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Table 10.6. The effects of gender and feelings toward the women’s movement on

Hillary Clinton Thermometer scores
Independent variable Additive model Interactive model
Women's Movement Thermometer 0.68™** 0.75%**
(0.03) (0.05)
Female 7.13%** 15.21%*
(1.37) (4.19)
Women's Movement Thermometer x Female — —0.13**
(0.06)
Intercept 5.98** 1.56
(2.13) (3.04)
R? 27 27
n 1466 1466
Notes: The dependent variable in both models is the respondent’s thermometer score for Hillary Clinton.
Standard errors in parentheses.
Two-sided #-tests: **indicates p < .01; *indicates p < .05; *indicates p < .10.

And we can rewrite the formula for women as

for Women (Female = 1) : Hillary Thermometer; = (« + B2)
+ (B1 + B3)(Women’s Movement Thermometer;) + u;.

What this all boils down to is that we are allowing our regression line
to be different for men and women. For men, the intercept is « and the slope
is B1. For women, the intercept is « + 8> and the slope is 81 + 83. However,
if B2 =0 and B3 =0, then the regression lines for men and women will be the
same. Table 10.6 shows the results for our additive and interactive models of
the effects of gender and feelings toward the women’s movement on Hillary
Clinton Thermometer scores. We can see from the interactive model that we
can reject the null hypothesis that 8 = 0 and the null hypothesis that 83 =0,
so our regression lines for men and women are different. We can also see
that the intercept for the line for women (o + ;) is higher than the intercept
for men («). But, perhaps contrary to our expectations, the estimated effect
of the Women’s Movement Thermometer for men is greater than the effect
of the Women’s Movement Thermometer for women.

The best way to see the combined effect of all of the results from the
interactive model in Table 10.6 is to look at them graphically in a figure
such as Figure 10.3. From this figure we can see the regression lines for
men and for women across the range of the independent variable. It is clear
from this figure that, although women are generally more favorably inclined
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Figure 10.3. Regression lines from the interactive model.

toward Hillary Clinton, this gender gap narrows when we compare those
individuals who feel more positively toward the feminist movement.

OUTLIERS AND INFLUENTIAL CASES IN OLS

In Section we advocated using descriptive statistics to identify outlier
values for each continuous variable. In the context of a single variable, an
outlier is an extreme value relative to the other values for that variable. But
in the context of an OLS model, when we say that a single case is an outlier,
we could mean several different things.

We should always strive to know our data well. This means looking
at individual variables and identifying univariate outliers. But just because
a case is an outlier in the univariate sense does not necessarily imply that
it will be an outlier in all senses of this concept in the multivariate world.
Nonetheless, we should look for outliers in the single-variable sense before
we run our models and make sure that when we identify such cases that they
are actual values and not values created by some type of data management
mistake.

In the regression setting, individual cases can be outliers in several
different ways:

1. They can have unusual independent variable values. This is known as a
case having large leverage. This can be the result of a single case having
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an unusual value for a single variable. A single case can also have large
leverage because it has an unusual combination of values across two or
more variables. There are a variety of different measures of leverage, but
they all make calculations across the values of independent variables in
order to identify individual cases that are particularly different.

2. They can have large residual values (usually we look at squared residuals
to identify outliers of this variety).

3. They can have both large leverage and large residual values.

The relationship among these different concepts of outliers for a single
case in OLS is often summarized as separate contributions to “influence”
in the following formula:

influence; = leverage; x residual;.

As this formula indicates, the influence of a particular case is determined
by the combination of its leverage and residual values. There are a variety
of different ways to measure these different factors. We explore a couple of
them in the following subsections with a controversial real-world example.

Identifying Influential Cases

One of the most famous cases of outliers/influential cases in political data
comes from the 2000 U.S. presidential election in Florida. In an attempt
to measure the extent to which ballot irregularities may have influenced
election results, a variety of models were estimated in which the raw
vote numbers for candidates across different counties were the dependent
variables of interest. These models were fairly unusual because the param-
eter estimates and other quantities that are most often the focus of our
model interpretations were of little interest. Instead, these were models for
which the most interesting quantities were the diagnostics of outliers. As an
example of such a model, we will work with the following:

Buchanan; = a + BGore; + u;.

In this model the cases are individual counties in Florida, the dependent
variable (Buchanan;) is the number of votes in each Florida county for
the independent candidate Patrick Buchanan, and the independent variable
is the number of votes in each Florida county for the Democratic Party’s
nominee Al Gore (Gore;). Such models are unusual in the sense that there
is no claim of an underlying causal relationship between the independent
and dependent variables. Instead, the theory behind this type of model is
that there should be a strong systematic relationship between the number of
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Table 10.7. Votes for Gore and Buchanan in

Florida counties in the 2000 U.S. presidential

election
Independent variable Parameter estimate
Votes for Gore 0.004***
(0.0005)
Intercept 80.63*
(46.4)
R? 48
n 67

Notes: The dependent variable is the number of votes for
Patrick Buchanan.

Standard errors in parentheses.

Two-sided #-tests: **indicates p < .01; **indicates p < .05;
*indicates p < .10.

votes cast for Gore and those cast for Buchanan across the Florida counties.’
There was a suspicion that the ballot structure used in some counties —
especially the infamous “butterfly ballot” — was such that it confused some
voters who intended to vote for Gore into voting for Buchanan. If this was
the case, we should see these counties appearing as highly influential after
we estimate our model.

We can see from Table 10.7 that there was indeed a statistically signif-
icant positive relationship between Gore and Buchanan votes, and that this
simple model accounts for 48% of the variation in Buchanan votes across
the Florida counties. But, as we said before, the more interesting inferences
from this particular OLS model are about the influence of particular cases.
Figure 10.4 presents a Stata Ivr2plot (short for “leverage-versus-residual-
squared plot”) that displays Stata’s measure of leverage on the vertical
dimension and a normalized measure of the squared residuals on the hor-
izontal dimension. The logic of this figure is that, as we move to the right
of the vertical line through this figure, we are seeing cases with unusually
large residual values, and that, as we move above the horizontal line through
this figure, we are seeing cases with unusually large leverage values. Cases
with both unusually large residual and leverage values are highly influen-
tial. From this figure it is apparent that Pinellas, Hillsborough, and Orange

5 Most of the models of this sort make adjustments to the variables (for example, logging
the values of both the independent and dependent variables) to account for possibilities
of nonlinear relationships. In the present example we avoided doing this for the sake of
simplicity.
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Figure 10.5. OLS line with scatter plot for Florida 2000.

counties had large leverage values but not particularly large squared resid-

ual values, whereas Dade, Broward, and Palm Beach counties were highly

influential with both large leverage values and large squared residual values.
We can get a better idea of the correspondence between Figure

and Table from Figure , in which we plot the OLS regression line



236

10.4.2

Multiple Regression Model Specification

Table 10.8 The five largest through a scatter plot of the data.
Vg s g om e e 4| From this figure it is clear that Palm
B from the model presented in Beach was well above the regression
Table line whereas Broward and Dade
County DFBETA | counties were well below the regres-
sion line. By any measure, these
Palm Beach 6.993 L cq.
S 5514 three cases were quite influential in
Dade —1.772 | our model.
Orange —0.109 A more specific method for
Pinellas 0.085 detecting the influence of an indi-

vidual case involves estimating our
model with and without particular
cases to see how much this changes specific parameter estimates. The
resulting calculation is known as the DFBETA score (Belsley, Kuh, and
Welsch 1980). DFBETA scores are calculated as the difference in the
parameter estimate without each case divided by the standard error of the
original parameter estimate. Table 10.8 displays the five largest absolute
values of DFBETA for the slope parameter (8) from the model pre-
sented in Table 10.7. Not surprisingly, we see that omitting Palm Beach,
Broward, or Dade has the largest impact on our estimate of the slope
parameter.

Dealing with Influential Cases

Now that we have discussed the identification of particularly influential
cases on our models, we turn to the subject of what to do once we have
identified such cases. The first thing to do when we identify a case with
substantial influence is to double-check the values of all variables for such
a case. We want to be certain that we have not “created” an influential
case through some error in our data management procedures. Once we
have corrected for any errors of data management and determined that
we still have some particularly influential case(s), it is important that we
report our findings about such cases along with our other findings. There
are a variety of strategies for doing so. Table 10.9 shows five different
models that reflect various approaches to reporting results with highly
influential cases. In Model 1 we have the original results as reported in
Table 10.7. In Model 2 we have added a dummy variable that identifies
and isolates the effect of Palm Beach County. This approach is sometimes
referred to as dummying out influential cases. We can see why this is called
dummying out from the results in Model 3, which is the original model
with the observation for Palm Beach County dropped from the analysis.
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Table 10.9. Votes for Gore and Buchanan in Florida counties in the 2000

U.S. presidential election

Independent

variable Model 1  Model 2 Model 3  Model 4 Model 5

Gore 0.004*** 0.003*** 0.003*** 0.005*** 0.005***
(0.0005) (0.0002) (0.0002) (0.0003) (0.0003)

Palm Beach — 2606.3**  — 2095.5%** —

dummy (150.4) (110.6)

Broward — — — —1066.0"**  —

dummy (131.5)

Dade dummy — — — —1025.6*  —

(120.6)

Intercept 80.6* 110.8*** 110.8*** 59.0%** 59.0%**
(46.4) (19.7) (19.7) (13.8) (13.8)

R? 48 91 .63 .96 .82

n 67 67 66 67 64

Notes: The dependent variable is the number of votes for Patrick Buchanan.

Standard errors in parentheses.

Two-sided #-tests: **indicates p < .01; **indicates p < .05; *indicates p < .10.

The parameter estimates and standard errors for the intercept and slope
parameters are identical from Models 2 and 3. The only differences are
the model R? statistic, the number of cases, and the additional parameter
estimate reported in Model 2 for the Palm Beach County dummy vari-
able.” In Model 4 and Model 5, we see the results from dummying out
the three most influential cases and then from dropping them out of the
analysis.

Across all five of the models shown in Table 10.9, the slope parameter
estimate remains positive and statistically significant. In most models, this
would be the quantity in which we are most interested (testing hypotheses
about the relationship between X and Y). Thus the relative robustness of
this parameter across model specifications would be comforting. Regardless
of the effects of highly influential cases, it is important first to know that
they exist and, second, to report accurately what their influence is and what
we have done about them.

6 This parameter estimate was viewed by some as an estimate of how many votes the ballot
irregularities cost Al Gore in Palm Beach County. But if we look at Model 4, where we
include dummy variables for Broward and Dade counties, we can see the basis for an
argument that in these two counties there is evidence of bias in the opposite direction.
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MULTICOLLINEARITY

When we specify and estimate a multiple OLS model, what is the inter-
pretation of each individual parameter estimate? It is our best guess of the
causal impact of a one-unit increase in the relevant independent variable
on the dependent variable, controlling for all of the other variables in the
model. Another way of saying this is that we are looking at the impact of
a one-unit increase in one independent variable on the dependent variable
when we “hold all other variables constant.” We know from Chapter 9 that
a minimal mathematical property for estimating a multiple OLS model is
that there is no perfect multicollinearity. Perfect multicollinearity, you will
recall, occurs when one independent variable is an exact linear function of
one or more other independent variables in a model.

In practice, perfect multicollinearity is usually the result of a small
number of cases relative to the number of parameters we are estimating,
limited independent variable values, or model misspecification. As we have
noted, if there exists perfect multicollinearity, OLS parameters cannot be
estimated. A much more common and vexing issue is high multicollinear-
ity. As a result, when people refer to multicollinearity, they almost always
mean “high multicollinearity.” From here on, when we refer to “multi-
collinearity,” we will mean “high, but less-than-perfect, multicollinearity.”
This means that two or more of the independent variables in the model are
extremely highly correlated with one another.

How Does Multicollinearity Happen?

Multicollinearity is induced by a small number of degrees of freedom and/or
high correlation between independent variables. Figure provides a
Venn diagram illustration that is useful for thinking about the effects of
multicollinearity in the context of an OLS
Y regression model. As you can see from this
figure, X and Z are fairly highly correlated.

Our regression model is

(\ Yi=a+piXi+prZi+u;.

Looking at the figure, we can see that the

z X R? from our regression model will be fairly
high (R? = %). But we can see from

this figure that the areas for the estimation

Figure 10.6. Venn diagram with of our two slope parameters — area [ for 1

multicollinearity. and area b for B, — are pretty small. Because



10.5.2

10.5 Multicollinearity

of this, our standard errors for our slope parameters will tend to be fairly
large, which makes discovering statistically significant relationships more
difficult, and we will have difficulty making precise inferences about the
impacts of both X and Z on Y. It is possible that because of this problem
we would conclude neither X nor Z has much of an impact on Y. But
clearly this is not the case. As we can see from the diagram, both X and Z
are related to Y. The problem is that much of the covariation between X
and Y and X and Z is also covariation between X and Z. In other words,
it is the size of area d that is causing us problems. We have precious little
area in which to examine the effect of X on Y while holding Z constant,
and likewise, there is little leverage to understand the effect of Z on Y while
controlling for X.

It is worth emphasizing at this point that multicollinearity is not a sta-
tistical problem (examples of statistical problems include autocorrelation,
bias, and heteroscedasticity). Rather, multicollinearity is a data problem.
It is possible to have multicollinearity even when all of the assumptions
of OLS from Chapter 8 are valid and all of the the minimal mathemati-
cal requirements for OLS from Chapters 8 and 9 have been met. So, you
might ask, what’s the big deal about multicollinearity? To underscore the
notion of multicollinearity as a data problem instead of a statistical problem,
Christopher Achen (1982) has suggested that the word “multicollinearity”
should be used interchangeably with micronumerosity. Imagine what would
happen if we could double or triple the size of the diagram in Figure
without changing the relative sizes of any of the areas. As we expanded all
of the areas, areas f/ and b would eventually become large enough for us to
precisely estimate the relationships of interest.

Detecting Multicollinearity

It is very important to know when you have multicollinearity. In particular,
it is important to distinguish situations in which estimates are statistically
insignificant because the relationships just aren’t there from situations in
which estimates are statistically insignificant because of multicollinearity.
The diagram in Figure shows us one way in which we might be able
to detect multicollinearity: If we have a high R? statistic, but none (or very
few) of our parameter estimates is statistically significant, we should be sus-
picious of multicollinerity. We should also be suspicious of multicollinearity
if we see that, when we add and remove independent variables from our
model, the parameter estimates for other independent variables (and espe-
cially their standard errors) change substantially. If we estimated the model
represented in Figure with just one of the two independent variables,
we would get a statistically significant relationship. But, as we know from



240

10.5.3

Multiple Regression Model Specification

the discussions in Chapter 9, this would be problematic. Presumably we
have a theory about the relationship between each of these independent
variables (X and Z) and our dependent variable (Y). So, although the esti-
mates from a model with just X or just Z as the independent variable would
help us to detect multicollinearity, they would suffer from bias. And, as we
argued in Chapter 9, omitted-variables bias is a severe problem.

A more formal way to diagnose multicollinearity is to calculate the
variance inflation factor (VIF) for each of our independent variables. This
calculation is based on an auxiliary regression model in which one inde-
pendent variable, which we will call Xj, is the dependent variable and all of
the other independent variables are independent variables.” The R? statistic
from this auxiliary model, RIZ, is then used to calculate the VIF for variable
j as follows:

1

VIF; = ——-.
TTa-RY

Many statistical programs report the VIF and its inverse (%) by default.
The inverse of the VIF is sometimes referred to as the tolerance index
measure. The higher the VIF; value, or the lower the tolerance index,
the higher will be the estimated variance of X; in our theoretically spec-
ified model. Another useful statistic to examine is the square root of the
VIF. Why? Because the VIF is measured in terms of variance, but most
of our hypothesis-testing inferences are made with standard errors. Thus
the square root of the VIF provides a useful indicator of the impact the
multicollinearity is going to have on hypothesis-testing inferences.

Multicollinearity: A Simulated Example

Thus far we have made a few scattered references to simulation. In this sub-
section we make use of simulation to better understand multicollinearity.
Almost every statistical computer program has a set of tools for simulat-
ing data. When we use these tools, we have an advantage that we do not
ever have with real-world data: we can know the underlying “population”
characteristics (because we create them). When we know the population

7 Students facing OLS diagnostic procedures are often surprised that the first thing that we
do after we estimate our theoretically specified model of interest is to estimate a large set
of atheoretical auxiliary models to test the properties of our main model. We will see that,
although these auxiliary models lead to the same types of output that we get from our main
model, we are often interested in only one particular part of the results from the auxiliary
model. With our “main” model of interest, we have learned that we should include every
variable that our theories tell us should be included and exclude all other variables. In
auxiliary models, we do not follow this rule. Instead, we are running these models to test
whether certain properties have or have not been met in our original model.



241

10.5 Multicollinearity

parameters for a regression model and draw sample data from this
population, we gain insights into the ways in which statistical models work.

So, to simulate multicollinearity, we are going to create a population
with the following characteristics:

1. Two variables X1; and X»; such that the correlation rx,; x,, = 0.9.

2. A variable #; randomly drawn from a normal distribution, centered
around O with variance equal to 1 [#; ~ N(0,1)].

3. A variable Y; such that Y; = 0.5+ 1X4;, + 1X3; +u;.

We can see from the description of our simulated population that we
have met all of the OLS assumptions, but that we have a high correlation
between our two independent variables. Now we will conduct a series of
random draws (samples) from this population and look at the results from
the following regression models:

Model 1: Y; = o + 81 X1; + B2 X2i +u;,
Model 2: Y; = o + g1 X1; + u;,
Model 3: Y; =a + B X5, +u;.

In each of these random draws, we increase the size of our sample start-
ing with 5, then 10, and finally 25 cases. Results from models estimated
with each sample of data are displayed in Table . In the first column
of results (m = 5), we can see that both slope parameters are positive, as
would be expected, but that the parameter estimate for X is statistically
insignificant and the parameter estimate for X is on the borderline of sta-
tistical significance. The VIF statistics for both variables are equal to 5.26,
indicating that the variance for each parameter estimate is substantially
inflated by multicollinearity. The model’s intercept is statistically significant
and positive, but pretty far from what we know to be the true population
value for this parameter. In Models 2 and 3 we get statistically significant
positive parameter estimates for each variable, but both of these estimated
slopes are almost twice as high as what we know to be the true population
parameters. The 95% confidence interval for 8, does not include the true
population parameter. This is a clear case of omitted-variables bias. When
we draw a sample of 10 cases, we get closer to the true population param-
eters with 1 and & in Model 1. The VIF statistics remain the same because
we have not changed the underlying relationship between X1 and X». This
increase in sample size does not help us with the omitted-variables bias in
Models 2 and 3. In fact, we can now reject the true population slope param-
eter for both models with substantial confidence. In our third sample with
25 cases, Model 1 is now very close to our true population model, in the
sense of both the parameter values and that all of these parameter estimates
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Table 10.10. Random draws of increasing size from a

population with substantial multicollinearity

Sample: Sample: Sample:

Estimate n=>5 n=10 n=25

Model 1:

b1 0.546 0.882 1.012**
(0.375) (0.557) (0.394)

B 1.422* 1.450** 1.324%**
(0.375) (0.557) (0.394)

a 1.160** 0.912%** 0.579%**
(0.146) (0.230) (0.168)

R? .99 .93 .89

VIF; 5.26 5.26 5.26

VIF, 5.26 5.26 5.26

Model 2:

Bi 1.827** 2.187%+* 2.204%%*
(0.382) (0.319) (0.207))

a 1.160** 0.912** 0.579***
(0.342) (0.302) (0.202)

R? .88 .85 .83

Model 3:

B 1.914%%* 2.244%%* 2.235%%*
(0.192) (0.264) (0.192)

a 1.160*** 0.912%** 0.579***
(0.171) (0.251) (0.188)

R? .97 .90 .86

Notes: The dependent variable is Y; =.5 + 1X1; + 1X5; + u;.

Standard errors in parentheses.

Two-sided ¢-tests: **indicates p < .01; **indicates p < .05; *indicates p < .10.

are statistically significant. In Models 2 and 3, the omitted-variables bias is
even more pronounced.

The findings in this simulation exercise mirror more general findings
in the theoretical literature on OLS models. Adding more data will allevi-
ate multicollinearity, but not omitted-variables bias. We now turn to an
example of multicollinearity with real-world data.

Multicollinearity: A Real-World Example

In this subsection, we estimate a model of the thermometer scores for U.S.
voters for George W. Bush in 2004. Our model specification is the following:

Bush Thermometer; = o + B1Income; + f21deology; + B3Education;
+ B4Party ID; 4+ u;.
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Table 10.11. Pairwise correlations between independent variables

Bush Therm. Income Ideology Education Party ID

Bush Therm. 1.00 — — — —
Income 0.09*** 1.00 — — —
Ideology 0.56™** 0.13%** 1.00 — —
Education —0.07*** 0.44%** —-0.06* 1.00 —
Party ID 0.69*** 0.15*** 0.60*** 0.06* 1.00

Notes: Cell entries are correlation coefficients.
Two-sided #-tests: **indicates p < .01; **indicates p < .05; *indicates p < .10.

Table 10.12. Model results from random draws of increasing
size from the 2004 NES

Independent variable Model 1 Model 2 Model 3

Income 0.77 0.72 0.11
(0.90) (0.51) (0.15)
{1.63} {1.16} {1.24}

Ideology 7.02 4.57* 4.26™**
(5.53) (2.22) (0.67)
{3.50} {1.78} {1.58}

Education —6.29 —-2.50 —1.88%**
(3.32) (1.83) (0.55)
{1.42} {1.23} {1.22}

Party ID 6.83 8.44%** 10.00™**
(3.98) (1.58) (0.46)
{3.05} {1.70} {1.56}

Intercept 21.92 12.03 13.73***
(23.45) (13.03) (3.56)

R? 71 .56 57

n 20 74 821

Notes: The dependent variable is the respondent’s thermometer score for

George W. Bush.

Standard errors in parentheses; VIF statistics in braces.

Two-sided t-tests: *** indicates p < .01; ** indicates p < .05; * indicates p < .10.

Although we have distinct theories about the causal impact of each
independent variable on people’s feelings toward Bush, Table 10.11 indi-
cates that some of these independent variables are substantially correlated
with each other.

In Table 10.12, we present estimates of our model using three dif-
ferent samples from the NES 2004 data. In Model 1, estimated with data
from 20 randomly chosen respondents, we see that none of our independent



244

10.5.5

Multiple Regression Model Specification

variables are statistically significant despite the rather high R? statistic. The
VIF statistics for Ideology and Party ID indicate that multicollinearity might
be a problem. In Model 2, estimated with data from 74 randomly chosen
respondents, Party ID is highly significant in the expected (positive) direc-
tion whereas Ideology is near the threshold of statistical significance. None
of the VIF statistics for this model are stunningly high, though they are
greater than 1.5 for Ideology, Education, and Party ID.° Finally, in Model
3, estimated with all 820 respondents for whom data on all of the variables
were available, we see that Ideology, Party ID, and Education are all signif-
icant predictors of people’s feelings toward Bush. The sample size is more
than sufficient to overcome the VIF statistics for Party ID and Ideology. Of
our independent variables, only Income remains statistically insignificant.
Is this due to multicollinearity? After all, when we look at Table 10.11,
we see that income has a highly significant positive correlation with Bush
Thermometer scores. For the answer to this question, we need to go back to
the lessons that we learned in Chapter 9: Once we control for the effects of
Ideology, Party ID, and Education, the effect of income on people’s feelings
toward George W. Bush goes away.

Multicollinearity: What Should I Do?

In the introduction to this section on multicollinearity, we described it as a
“common and vexing issue.” The reason why multicollinearity is “vexing”
is that there is no magical statistical cure for it. What is the best thing to do
when you have multicollinearity? Easy (in theory): collect more data. But
data are expensive to collect. If we had more data, we would use them and
we wouldn’t have hit this problem in the first place. So, if you do not have an
easy way to increase your sample size, then multicollinearity ends up being
something that you just have to live with. It is important to know that you
have multicollinearity and to present your multicollinearity by reporting
the results of VIF statistics or what happens to your model when you add
and drop the “guilty” variables.

WRAPPING UP

The key to developing good models is having a good theory and then
doing a lot of diagnostics to figure out what we have after estimating the
model. What we’ve seen in this chapter is that there are additional (but not
insurmountable!) obstacles to overcome when we consider that some of our

8 When we work with real-world data, there tend to be many more changes as we move from
sample to sample.



Exercises

theories involve noncontinuous independent variables. In the next chapter,
we examine the research situations in which we encounter dummy depen-
dent variables and a set of special circumstances that can arise when our
data have been collected across time.

CONCEPTS INTRODUCED IN THIS CHAPTER

* auxiliary regression model — a regression model separate from the orig-
inal theoretical model that is used to detect one or more statistical
properties of the original model.

* DFBETA score —a statistical measure for the calculation of the influence
of an individual case on the value of a single parameter estimate.

* dummying out — adding a dummy variable to a regression model to
measure and isolate the effect of an influential observation.

* dummy variable — a variable that takes on one of two values (usually
one or zero).

* dummy-variable trap — perfect multicollinearity that results from the
inclusion of dummy variables representing each possible value of a
categorical variable.

* high multicollinearity — in a multiple regression model, when two or
more of the independent variables in the model are extremely highly
correlated with one another, making it difficult to isolate the distinct
effects of each variable.

* interactive models — multiple regression models that contain at least
one independent variable that we create by multiplying together two
or more independent variables.

* leverage — in a multiple regression model, the degree to which an
individual case is unusual in terms of its value for a single indepen-
dent variable, or its particular combination of values for two or more
independent variables.

* micronumerosity — a suggested synonym for multicollinearity.

* reference category — in a multiple regression model, the value of a
categorical independent variable for which we do not include a dummy
variable.

* variance inflation factor — a statistical measure to detect the contri-
bution of each independent variable in a multiple regression model to
overall multicollinearity.

EXERCISES

Using the model presented in Table , how many days would you predict
that it would take for a government to form if the government was made up



