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three different variable types. We then explain that, despite the imperfect
nature of the distinctions among these three variable types, we are forced
to choose between two broad classifications of variables – categorical or
continuous – when we describe them. The rest of this chapter discusses
strategies for describing categorical and continuous variables.

5.8 WHAT IS THE VARIABLE’S MEASUREMENT METRIC?

There are no hard and fast rules for describing variables, but a major initial
juncture that we encounter involves the metric in which we measure each
variable. Remember from Chapter 1 that we can think of each variable in
terms of its label and its values. The label is the description of the variable –
such as “Gender of survey respondent” – and its values are the denomi-
nations in which the variable occurs – such as “Male” or “Female.” For
treatment in most statistical analyses, we are forced to divide our variables
into two types according to the metric in which the values of the variable
occur: categorical or continuous. In reality, variables come in at least three
different metric types, and there are a lot of variables that do not neatly
fit into just one of these classifications. To help you to better understand
each of these variable types, we will go through each with an example. All
of the examples that we are using in these initial descriptions come from
survey research, but the same basic principles of measurement metric hold
regardless of the type of data being analyzed.

5.8.1 Categorical Variables

Categorical variables are variables for which cases have values that are
either different or the same as the values for other cases, but about which
we cannot make any universally holding ranking distinctions. If we con-
sider a variable that we might label “Religious Identification,” some values
for this variable are “Catholic,” “Muslim,” “nonreligious,” and so on.
Although these values are clearly different from each other, we cannot make
universally holding ranking distinctions across them. More casually, with
categorical variables like this one, it is not possible to rank order the cate-
gories from least to greatest: The value “Muslim” is neither greater nor less
than “nonreligious” (and so on), for example. Instead, we are left knowing
that cases with the same value for this variable are the same, whereas those
cases with different values are different. The term “categorical” expresses
the essence of this variable type; we can put individual cases into categories
based on their values, but we cannot go any further in terms of ranking or
otherwise ordering these values.
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5.8.2 Ordinal Variables

Like categorical variables, ordinal variables are also variables for which
cases have values that are either different or the same as the values for
other cases. The distinction between ordinal and categorical variables is
that we can make universally holding ranking distinctions across the vari-
able values for ordinal variables. For instance, consider the variable labeled
“Retrospective Family Financial Situation” that has commonly been used as
an independent variable in individual-level economic voting studies. In the
2004 National Election Study (NES), researchers created this variable by
first asking respondents to answer the following question: “We are inter-
ested in how people are getting along financially these days. Would you
say that you (and your family living here) are better off or worse off than
you were a year ago?” Researchers then asked respondents who answered
“Better” or “Worse”: “Much [better/worse] or somewhat [better/worse]?”
The resulting variable was then coded as follows:

1. much better
2. somewhat better
3. same
4. somewhat worse
5. much worse

This variable is pretty clearly an ordinal variable because as we go from the
top to the bottom of the list we are moving from better to worse evaluations
of how individuals (and their families with whom they live) have been faring
financially in the past year.

As another example, consider the variable labeled “Party Identifica-
tion.” In the 2004 NES researchers created this variable by using each
respondent’s answer to the question, “Generally speaking, do you usually
think of yourself as a Republican, a Democrat, an independent, or what?”20

which we can code as taking on the following values:

1. Republican
2. Independent
3. Democrat

20 Almost all U.S. respondents put themselves into one of the first three categories. For
instance, in 2004, 1,128 of the 1,212 respondents (93.1%) to the postelection NES
responded that they were a Republican, Democrat, or an independent. For our purposes,
we will ignore the “or what” cases. Note that researchers usually present partisan iden-
tification across seven values ranging from “Strong Republican” to “Strong Democrat”
based on follow-up questions that ask respondents to further characterize their positions.
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If all cases that take on the value “Independent” represent individuals whose
views lie somewhere between “Republican” and “Democrat,” we can call
“Party Identification” an ordinal variable. If this is not the case, then this
variable is a categorial variable.

5.8.3 Continuous Variables

An important characteristic that ordinal variables do not have is equal-unit
differences. A variable has equal unit differences if a one-unit increase in
the value of that variable always means the same thing. If we return to the
examples from the previous section, we can rank order the five categories
of Retrospective Family Financial Situation from 1 for the best situation
to 5 for the worst situation. But we may not feel very confident working
with these assigned values the way that we typically work with numbers.
In other words, can we say that the difference between “somewhat worse”
and “same” (4–3) is the same as the difference between “much worse” and
“somewhat worse” (5–4)? What about saying that the difference between
“much worse” and “same” (5–3) is twice the difference between “some-
what better” and “much better” (2–1)? If the answer to both questions
is “yes,” then Retrospective Family Financial Situation is a continuous
variable.

If we ask the same questions about Party Identification, we should be
somewhat skeptical. We can rank order the three categories of Party Identi-
fication, but we cannot with great confidence assign “Republican” a value
of 1, “Independent” a value of 2, and “Democrat” a value of 3 and work
with these values in the way that we typically work with numbers. We can-
not say that the difference between an “Independent” and a “Republican”
(2–1) is the same as the difference between a “Democrat” and an “Inde-
pendent” (3–2) – despite the fact that both 3–2 and 2–1 = 1. Certainly, we
cannot say that the difference between a “Democrat” and a “Republican”
(3–1) is twice the difference between an “Independent” and a “Republican”
(2–1) – despite the fact that 2 is twice as big as 1.

The metric in which we measure a variable has equal unit differences if
a one-unit increase in the value of that variable indicates the same amount
of change across all values of that variable. Continuous variables are vari-
ables that do have equal unit differences.21 Imagine, for instance, a variable
labeled “Age in Years.” A one-unit increase in this variable always indicates
an individual who is 1 year older; this is true when we are talking about a

21 We sometimes call these variables “interval variables.” A further distinction you will
encounter with continuous variables is whether they have a substantively meaningful zero
point. We usually describe variables that have this characteristic as “ratio” variables.
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case with a value of 21 just as it is when we are talking about a case with
a value of 55.

5.8.4 Variable Types and Statistical Analyses

As we saw in the preceding subsections, variables do not always neatly fit
into the three categories. When we move to the vast majority of statistical
analyses, we must decide between treating each of our variables as though
it is categorical or as though it is continuous. For some variables, this is
a very straightforward choice. However, for others, this is a very difficult
choice. If we treat an ordinal variable as though it is categorical, we are
acting as though we know less about the values of this variable than we
really know. On the other hand, treating an ordinal variable as though it
is a continuous variable means that we are assuming that it has equal unit
differences. Either way, it is critical that we be aware of our decisions. We
can always repeat our analyses under a different assumption and see how
robust our conclusions are to our choices.

With all of this in mind, we present separate discussions of the process
of describing a variable’s variation for categorical and continuous variables.
A variable’s variation is the distribution of values that it takes across the
cases for which it is measured. It is important that we have a strong knowl-
edge of the variation in each of our variables before we can translate our
theory into hypotheses, assess whether there is covariation between two
variables (causal hurdle 3 from Chapter 3), and think about whether or
not there might exist a third variable that makes any observed covariation
between our independent and dependent variables spurious (hurdle 4). As
we just outlined, descriptive statistics and graphs are useful summaries of
the variation for individual variables. Another way in which we describe
distributions of variables is through measures of central tendency. Measures
of central tendency tell us about typical values for a particular variable at
the center of its distribution.

5.9 DESCRIBING CATEGORICAL VARIABLES

With categorical variables, we want to understand the frequency with
which each value of the variable occurs in our data. The simplest way of
seeing this is to produce a frequency table in which the values of the cat-
egorical variable are displayed down one column and the frequency with
which it occurs (in absolute number of cases and/or in percentage terms) is
displayed in another column(s). Table 5.1 shows such a table for the variable
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Number
Category of cases Percent

Protestant 672 56.14
Catholic 292 24.39
Jewish 35 2.92
Other 17 1.42
None 181 15.12

Total 1197 99.9

Table 5.1 Frequency table for
religious identification in the 2004
NES

“Religious Identification” from the
NES survey measured during the
2004 national elections in the United
States.

The only measure of central ten-
dency that is appropriate for a cate-
gorical variable is the mode, which is
defined as the most frequently occur-
ring value. In Table 5.1, the mode
of the distribution is “Protestant,”
because there are more Protestants
than there are members of any other
single category.

A typical way in which non-statisticians present frequency data is in
a pie graph such as Figure 5.4. Pie graphs are one way for visualizing
the percentage of cases that fall into particular categories. Many statisti-
cians argue strongly against their use and, instead, advocate the use of bar
graphs. Bar graphs, such as Figure 5.5, are another graphical way to illus-
trate frequencies of categorical variables. It is worth noting, however, that
most of the information that we are able to gather from these two figures
is very clearly and precisely presented in the columns of frequencies and
percentages displayed in Table 5.1.

Protestant Catholic
Jewish Other
None

Figure 5.4. Pie graph of religious identification, NES 2004.
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Figure 5.5. Bar graph of religious identification, NES 2004.

5.10 DESCRIBING CONTINUOUS VARIABLES

The statistics and graphs for describing continuous variables are consider-
ably more complicated than those for categorical variables. This is because
continuous variables are more mathematically complex than categorical
variables. With continuous variables, we want to know about the central
tendency and the spread or variation of the values around the central ten-
dency. With continuous variables we also want to be on the lookout for
outliers. Outliers are cases for which the value of the variable is extremely
high or low relative to the rest of the values for that variable. When we
encounter an outlier, we want to make sure that such a case is real and not
created by some kind of error.

Most statistical software programs have a command for getting a bat-
tery of descriptive statistics on continuous variables. Figure 5.6 shows the
output from Stata’s “summarize” command with the “detail” option for the
percentage of the major party vote won by the incumbent party in every U.S.
presidential election between 1876 and 2008. The statistics on the left-hand
side (the first three columns on the left) of the computer printout are what we
call rank statistics, and the statistics on the right-hand side (the two columns
on the right-hand side) are known as the statistical moments. Although both
rank statistics and statistical moments are intended to describe the variation
of continuous variables, they do so in slightly different ways and are thus
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. summarize inc_vote, det

inc_vote

Percentiles
1%
5%

10%
25%

50% 51.4575
Largest

Mean
Std. Dev.

51.94718
5.956539

75%
90%
95%
99%

54.983
60.006
61.791
62.226

60.006
61.203
61.791
62.226

Variance
Skewness
Kurtosis

35.48036
–.3065283
3.100499

36.148
40.851
44.842
48.516

36.148
40.851
44.71

44.842
Obs
Sum of Wgt.

34
34

Smallest

Figure 5.6. Example output from Stata’s “summarize” command with “detail” option.

quite useful together for getting a complete picture of the variation for a
single variable.

5.10.1 Rank Statistics

The calculation of rank statistics begins with the ranking of the values of
a continuous variable from smallest to largest, followed by the identifica-
tion of crucial junctures along the way. Once we have our cases ranked,
the midpoint as we count through our cases is known as the median case.
Remember that earlier in the chapter we defined the variable in Figure 5.6
as the percentage of popular votes for major-party candidates that went
to the candidate from the party of the sitting president during U.S. presi-
dential elections from 1876 to 2008. We will call this variable “Incumbent
Vote” for short. To calculate rank statistics for this variable, we need to
first put the cases in order from the smallest to the largest observed value.
This ordering is shown in Table 5.2. With rank statistics we measure the
central tendency as the median value of the variable. The median value
is the value of the case that sits at the exact center of our cases when
we rank them from the smallest to the largest observed values. When we
have an even number of cases, as we do in Table 5.2, we average the
value of the two centermost ranked cases to obtain the median value (in
our example we calculate the median as 51.233+51.682

2 = 51.4575). This
is also known as the value of the variable at the 50% rank. In a similar
way, we can talk about the value of the variable at any other percentage
rank in which we have an interest. Other ranks that are often of interest
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Rank Year Value

1 1920 36.148
2 1932 40.851
3 1952 44.71
4 1980 44.842
5 2008 46.311
6 1992 46.379
7 1896 47.76
8 1892 48.268
9 1876 48.516

10 1976 48.951
11 1968 49.425
12 1884 49.846
13 1960 49.913
14 1880 50.22
15 2000 50.262
16 1888 50.414
17 2004 51.233
18 1916 51.682
19 1948 52.319
20 1900 53.171
21 1944 53.778
22 1988 53.832
23 1908 54.483
24 1912 54.708
25 1996 54.737
26 1940 54.983
27 1956 57.094
28 1924 58.263
29 1928 58.756
30 1984 59.123
31 1904 60.006
32 1964 61.203
33 1972 61.791
34 1936 62.226

Table 5.2 Values of
incumbent vote ranked
from smallest to largest

are the 25% and 75% ranks, which are also
known as the first and third “quartile ranks”
for a distribution. The difference between
the variable value at the 25% and the 75%
ranks is known as the “interquartile range”
or “IQR” of the variable. In our example
variable, the 25% value is 48.516 and the
75% value is 54.983. This makes the IQR =
54.983 −48.516 = 6.467. In the language of
rank statistics, the median value for a variable
is a measure of its central tendency, whereas
the IQR is a measure of the dispersion, or
spread, of values.

With rank statistics, we also want to look
at the smallest and largest values to identify
outliers. Remember that we defined outliers
at the beginning of this section as “cases for
which the value of the variable is extremely
high or low relative to the rest of the values for
that variable.” If we look at the highest values
in Table 5.2, we can see that there aren’t really
any cases that fit this description. Although
there are certainly some values that are a lot
higher than the median value and the 75%
value, they aren’t “extremely” higher than the
rest of the values. Instead, there seems to be
a fairly even progression from the 75% value
up to the highest value. The story at the other
end of the range of values in Table 5.2 is a
little different. We can see that the two low-
est values are pretty far from each other and
from the rest of the low values. The value of
36.148 in 1920 seems to meet our definition
of an outlier. The value of 40.851 in 1932 is
also a borderline case. Whenever we see out-
liers, we should begin by checking whether
we have measured the values for these cases

accurately. Sometimes we find that outliers are the result of errors when
entering data. In this case, a check of our data set reveals that the outlier
case occurred in 1920 when the incumbent-party candidate received only
36.148% of the votes cast for the two major parties. A further check of
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Figure 5.7. Box-whisker plot of incumbent-party presidential vote percentage, 1876–
2008.

our data indicates that this was indeed a correct measure of this variable
for 1920.22

Figure 5.7 presents a box-whisker plot of the rank statistics for our
presidential vote variable. This plot displays the distribution of the variable
along the vertical dimension. If we start at the center of the box in Figure 5.7,
we see the median value (or 50% rank value) of our variable represented as
the slight gap in the center of the box. The other two ends of the box show
the values of the 25% rank and the 75% rank of our variable. The ends of
the whiskers show the lowest and highest nonoutlier values of our variable.
Each statistical program has its own rules for dealing with outliers, so it
is important to know whether your box-whisker plot is or is not set up to
display outliers. These settings are usually adjustable within the statistical
program. The calculation of whether an individual case is or is not an outlier
in this box-whisker plot is fairly standard. This calculation starts with the
IQR for the variable. Any case is defined as an outlier if its value is either
1.5 times the IQR higher than the 75% value or if its value is 1.5 times
the IQR lower than the 25% value. For Figure 5.7 we have set things up

22 An obvious question is “Why was 1920 such a low value?” This was the first presidential
election in the aftermath of World War I, during a period when there was a lot of eco-
nomic and political turmoil. The election in 1932 was at the very beginning of the large
economic downturn known as “the Great Depression,” so it makes sense that the party of
the incumbent president would not have done very well during this election.
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so that the plot displays the outliers, and we can see one such value at the
bottom of our figure. As we already know from Table 5.2, this is the value
of 36.119 from the 1920 election.

5.10.2 Moments

The statistical moments of a variable are a set of statistics that describe
the central tendency for a single variable and the distribution of values
around it. The most familiar of these statistics is known as the mean value
or “average” value for the variable. For a variable Y, the mean value is
depicted and calculated as

Ȳ =
∑n

i=1 Yi

n
,

where Ȳ, known as “Y-bar,” indicates the mean of Y, which is equal to the
sum of all values of Y across individual cases of Y, Yi, divided by the total
number of cases, n.23 Although everyone is familiar with mean or average
values, not everyone is familiar with the two characteristics of the mean
value that make it particularly attractive to people who use statistics. The
first is known as the “zero-sum property”:

n
∑

i=1

(Yi −Ȳ) = 0,

which means the sum of the difference between each Y value, Yi, and the
mean value of Y, Ȳ, is equal to zero. The second desirable characteristic of
the mean value is known as the “least-squares property”:

n
∑

i=1

(Yi −Ȳ)2 <

n
∑

i=1

(Yi −c)2 ∀ c ̸= Ȳ,

which means that the sum of the squared differences between each Y value,
Yi, and the mean value of Y, Ȳ, is less than the sum of the squared differences
between each Y value, Yi, and some value c, for all (∀) c’s not equal to (̸=)Ȳ.
Because of these two properties, the mean value is also referred to as the
expected value of a variable. Think of it this way: If someone were to ask
you to guess what the value for an individual case is without giving you
any more information than the mean value, based on these two properties
of the mean, the mean value would be the best guess.

23 To understand formulae like this, it is helpful to read through each of the pieces of the
formula and translate them into words, as we have done here.
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The next statistical moment for a variable is the variance. We represent
and calculate the variance as follows:

var(Y) = varY = s2
Y =

∑n
i=1(Yi −Ȳ)2

n −1
,

which means that the variance of Y is equal to the sum of the squared
differences between each Y value, Yi, and its mean divided by the number
of cases minus one.24 If we look through this formula, what would happen
if we had no variation on Y at all (Yi = Ȳ ∀ i)? In this case, variance would
be equal to zero. But as individual cases are spread further and further from
the mean, this calculation would increase. This is the logic of variance: It
conveys the spread of the data around the mean. A more intuitive measure
of variance is the standard deviation:

sd(Y) = sdY = sY =
√

var(Y) =
√

∑n
i=1(Yi −Ȳ)2

n −1
.

Roughly speaking, this is the average difference between values of Y
(Yi) and the mean of Y (Ȳ). At first glance, this may not be apparent. But
the important thing to understand about this formula is that the purpose of
squaring each difference from the mean and then taking the square root of
the resulting sum of squared deviations is to keep the negative and positive
deviations from canceling each other out.25

The variance and the standard deviation give us a numerical summary
of the distribution of cases around the mean value for a variable.26 We can
also visually depict distributions. The idea of visually depicting distributions
is to produce a two-dimensional figure in which the horizontal dimension (x
axis) displays the values of the variable and the vertical dimension (y axis)
displays the relative frequency of cases. One of the most popular visual
depictions of a variable’s distribution is the histogram, such as Figure 5.8.

24 The “minus one” in this equation is an adjustment that is made to account for the number
of “degrees of freedom” with which this calculation was made. We will discuss degrees of
freedom in Chapter 7.

25 An alternative method that would produce a very similar calculation would be to calculate

the average value of the absolute value of each difference from the mean: (
∑n

i=1 |Yi−Ȳ|
n ).

26 The skewness and the excess kurtosis of a variable convey the further aspects of the distri-
bution of a variable. The skewness calculation indicates the symmetry of the distribution
around the mean. If the data are symmetrically distributed around the mean, then this statis-
tic will equal zero. If skewness is negative, this indicates that there are more values below the
mean than there are above; if skewness is positive, this indicates that there are more values
above the mean than there are below. The kurtosis indicates the steepness of the statistical
distribution. Positive kurtosis values indicate very steep distributions, or a concentration
of values close to the mean value, whereas negative kurtosis values indicate a flatter distri-
bution, or more cases further from the mean value. Both skewness and excess kurtosis are
measures that equal zero for the normal distribution, which we will discuss in Chapter 6.
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Figure 5.8. Histogram of incumbent-party presidential vote percentage, 1876–2008.

One problem with histograms is that we (or the computer program with
which we are working) must choose how many rectangular blocks (called
“bins”) are depicted in our histogram. Changing the number of blocks in
a histogram can change our impression of the distribution of the variable
being depicted. Figure 5.9 shows the same variable as in Figure 5.8 with 2
and then 10 blocks. Although we generate both of the graphs in Figure 5.9
from the same data, they are fairly different from each other.

Another option is the kernel density plot, as in Figure 5.10, which is
based on a smoothed calculation of the density of cases across the range of
values.

5.11 LIMITATIONS OF DESCRIPTIVE STATISTICS AND GRAPHS

The tools that we have presented in the last three sections of this chapter
are helpful for providing a first look at data, one variable at a time. Taking
a look at your data with these tools will help you to better know your
data and make fewer mistakes in the long run. It is important, however,
to note that we cannot test causal theories with a single variable. After
all, as we have noted, a theory is a tentative statement about the possible
causal relationship between two variables. Because we have discussed how
to describe only a single variable, we have not yet begun to subject our
causal theories to appropriate tests.
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Figure 5.9. Histograms of incumbent-party presidential vote percentage, 1876–2008,
depicted with 2 and then 10 blocks.
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Figure 5.10. Kernel density plot of incumbent-party presidential vote percentage, 1876–
2008.
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5.12 CONCLUSIONS

How we measure the concepts that we care about matters. As we can see
from the preceding examples, different measurement strategies can and
sometimes do produce different conclusions about causal relationships.

One of the take-home points of this chapter should be that measure-
ment cannot take place in a theoretical vacuum. The theoretical purpose of
the scholarly enterprise must inform the process of how we measure what
we measure. For example, recall our previous discussion about the various
ways to measure poverty. How we want to measure this concept depends
on what our objective is. In the process of measuring poverty, if our theo-
retical aim is to evaluate the effectiveness of different policies at combating
poverty, we would have different measurement issues than would schol-
ars whose theoretical aim is to study how being poor influences a person’s
political attitudes. In the former case, we would give strong consideration to
pretransfer measures of poverty, whereas in the latter example, posttransfer
measures would likely be more applicable.

The tools that we have presented in this chapter for describing a vari-
able’s central tendency and variation are helpful for providing a first look at
data, one variable at a time. Taking a look at your data with these tools will
help you to better know your data and make less mistakes in the long run.
It is important, however, to note that we cannot test causal theories with a
single variable. After all, as we have noted, a theory is a tentative statement
about the possible causal relationship between two variables. Since we have
only discussed how to describe a single variable, we have not yet begun to
subject our causal theories to appropriate tests.

CONCEPTS INTRODUCED IN THIS CHAPTER

• categorical variables – variables for which cases have values that are
either different or the same as the values for other cases, but about
which we cannot make any universally holding ranking distinctions.

• central tendency – typical values for a particular variable at the center
of its distribution.

• construct validity – the degree to which the measure is related to other
measures that theory requires them to be related to.

• content validity – the degree to which a measure contains all of the
critical elements that, as a group, define the concept we wish to
measure.
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• continuous variable – a variable whose metric has equal unit differences
such that a one-unit increase in the value of the variable indicates the
same amount of change across all values of that variable.

• dispersion – the spread or range of values of a variable.
• equal-unit differences – a variable has equal unit differences if a one-

unit increase in the value of that variable always means the same thing.
• excess kurtosis – a statistical measure indicating the steepness of the

statistical distribution of a single variable.
• expected value – a synonym for mean value.
• face validity – whether or not, on its face, the measure appears to be

measuring what it purports to be measuring.
• histogram – a visual depiction of the distribution of a single vari-

able that produces a two-dimensional figure in which the horizontal
dimension (x axis) displays the values of the variable and the vertical
dimension (y axis) displays the relative frequency of cases.

• kernel density plot – a visual depiction of the distribution of a single
variable based on a smoothed calculation of the density of cases across
the range of values.

• least-squares property – a property of the mean value for a single vari-
able Y, which means that the sum of the squared differences between
each Y value, Yi, and the mean value of Y, Ȳ, is less than the sum of
the squared differences between each Y value, Yi, and some value c,
for all (∀) c’s not equal to ( ̸=) Ȳ.

• mean value – the arithmetical average of a variable equal to the sum
of all values of Y across individual cases of Y, Yi, divided by the total
number of cases.

• median value – the value of the case that sits at the exact center of our
cases when we rank the values of a single variable from the smallest to
the largest observed values.

• measurement bias – the systematic over-reporting or under-reporting
of values for a variable.

• measurement metric – the type of values that the variable takes on.
• mode – the most frequently occurring value of a variable.
• ordinal variable – a variable for which we can make universally holding

ranking distinctions across the variable values, but whose metric does
not have equal unit differences.

• outlier – a case for which the value of the variable is extremely high or
low relative to the rest of the values for that variable.

• rank statistics – a class of statistics used to describe the variation of
continuous variables based on their ranking from lowest to highest
observed values.
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• reliability – the extent to which applying the same measurement rules
to the same case or observation will produce identical results.

• skewness – a statistical measure indicating the symmetry of the
distribution around the mean.

• standard deviation – a statistical measure of the dispersion of a variable
around its mean.

• statistical moments – a class of statistics used to describe the variation
of continuous variables based on numerical calculations.

• validity – the degree to which a measure accurately represents the
concept that it is supposed to measure.

• variance – a statistical measure of the dispersion of a variable around
its mean.

• variation – the distribution of values that a variable takes across the
cases for which it is measured.

• zero-sum property – a property of the mean value for a single variable
Y, which means that the sum of the difference between each Y value,
Yi, and the mean value of Y, Ȳ, is equal to zero.

EXERCISES

1. Suppose that a researcher wanted to measure the federal government’s efforts
to make the education of its citizens a priority. The researcher proposed to
count the government’s budget for education as a percentage of the total GDP
and use that as the measure of the government’s commitment to education. In
terms of validity, what are the strengths and weaknesses of such a measure?

2. Suppose that a researcher wanted to create a measure of media coverage of a
candidate for office, and therefore created a set of coding rules to code words
in newspaper articles as either “pro” or “con” toward the candidate. Instead
of hiring students to implement these rules, however, the researcher used a
computer to code the text, by counting the frequency with which certain words
were mentioned in a series of articles. What would be the reliability of such a
computer-driven measurement strategy, and why?

3. For each of the following concepts, identify whether there would, in measuring
the concept, likely be a problem of measurement bias, invalidity, unreliability,
or none of the above. Explain your answer.

(a) Measuring the concept of the public’s approval of the president by using
a series of survey results asking respondents whether they approve or
disapprove of the president’s job performance.

(b) Measuring the concept of political corruption as the percentage of
politicians in a country in a year who are convicted of corrupt practices.

(c) Measuring the concept of democracy in each nation of the world by
reading their constitution and seeing if it claims that the nation is
“democratic.”


