
7 Bivariate Hypothesis Testing

OVERVIEW

Once we have set up a hypothesis test and collected data, how do we eval-

uate what we have found? In this chapter we provide hands-on discussions

of the basic building blocks used to make statistical inferences about the

relationship between two variables. We deal with the often-misunderstood

topic of “statistical significance” – focusing both on what it is and what it

is not – as well as the nature of statistical uncertainty. We introduce three

ways to examine relationships between two variables: tabular analysis, dif-

ference of means tests, and correlation coefficients. (We will introduce a

fourth technique, bivariate regression analysis, in Chapter 8.)

7.1 BIVARIATE HYPOTHESIS TESTS AND ESTABLISHING
CAUSAL RELATIONSHIPS

In the preceding chapters we introduced the core concepts of hypothesis
testing. In this chapter we discuss the basic mechanics of hypothesis testing
with three different examples of bivariate hypothesis testing. It is worth
noting that, although this type of analysis was the main form of hypothesis
testing in the professional journals up through the 1970s, it is seldomused as
the primarymeans of hypothesis testing in the professional journals today.1

This is the case because these techniques are good at helping us with only
the first principle for establishing causal relationships. Namely, bivariate

1 By definition, researchers conducting bivariate hypothesis tests are making one of two
assumptions about the state of the world. They are assuming either that there are no other
variables that are causally related to the dependent variable in question, or that, if there
are such omitted variables, they are unrelated to the independent variable in the model. We
will have much more to say about omitting independent variables from causal models in
Chapter 9. For now, bear in mind that, as we have discussed in previous chapters, these
assumptions rarely hold when we are describing the political world.
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146 Bivariate Hypothesis Testing

hypothesis tests help us to answer the question, “Are X and Y related?”
By definition – “bivariate” means “two variables” – these tests cannot help
us with the important question, “Have we controlled for all confounding
variables Z that might make the observed association between X and Y
spurious?”

Despite their limitations, the techniques covered in this chapter are
important starting points for understanding the underlying logic of sta-
tistical hypothesis testing. In the sections that follow we discuss how one
chooses which bivariate test to conduct and then provide detailed discus-
sions of three such tests. Throughout this chapter, try to keep in mind the
main purpose of this exercise: We are attempting to apply the lessons of
the previous chapters to real-world data. We will eventually do this with
more appropriate and more sophisticated tools, but the lessons that we
learn in this chapter will be crucial to our understanding of these more
advanced methods. Put simply, we are trying to get up and walk in the
complicated world of hypothesis testing with real-world data. Once we
have mastered walking, we will then begin to work on running with more
advanced techniques.

7.2 CHOOSING THE RIGHT BIVARIATE HYPOTHESIS TEST

As we discussed in previous chapters, and especially in Chapters 5 and
6, researchers make a number of critical decisions before they test their
hypotheses. Once they have collected their data and want to conduct a
bivariate hypothesis test, they need to consider the nature of their depen-
dent and independent variables. As we discussed in Chapter 5, we can
classify variables in terms of the types of values that cases take on. Table 7.1
shows four different scenarios for testing a bivariate hypothesis; which one
is most appropriate depends on the variable type of the independent vari-
able and the dependent variable. For each case, we have listed one or more

Table 7.1. Variable types and appropriate bivariate hypothesis tests

Independent variable type

Categorical Continuous

Dependent Categorical Tabular analysis Probit/logit (Ch.11)
variable type Continuous Difference of means Correlation coefficient;

bivariate regression model (Ch. 8)

Note: Tests in italics are discussed in this chapter.



147 7.3 All Roads Lead to p

appropriate type of bivariate hypothesis tests. In cases in which we can
describe both the independent and dependent variables as categorical, we
use a form of analysis referred to as tabular analysis to test our hypothesis.
When the dependent variable is continuous and the independent variable
is categorical, we use a difference of means test. When the independent
variable is continuous and the dependent variable is categorical, analysts
typically use either a probit or logit model. (These types of statistical models
are discussed in Chapter 11.) Finally, when both the dependent and inde-
pendent variables are continuous, we use a correlation coefficient in this
chapter, and, in Chapter 8, we will discuss the bivariate regression model.

7.3 ALL ROADS LEAD TO p

One common element across a wide range of statistical hypothesis tests is
the p-value (the p stands for “probability.”) This value, ranging between 0
and 1, is the closest thing that we have to a bottom line in statistics. But it is
often misunderstood and misused. In this section we discuss the basic logic
of the p-value and relate it back to our discussion in Chapter 6 of using
sample data to make inferences about an underlying population.

7.3.1 The Logic of p-Values

If we think back to the four principles for establishing causal relationships
that were discussed in Chapter 3, the third hurdle is the question “Is there
covariation between X and Y?” To answer this question, we need to apply
standards to real-world data for determining whether there appears to be
a relationship between our two variables, the independent variable X and
the dependent variable Y. The tests listed in the cells in Table 7.1 are com-
monly accepted tests for each possible combination of data type. In each of
these tests, we follow a common logic: We compare the actual relationship
between X and Y in sample data with what we would expect to find if X
and Y were not related in the underlying population. The more different
the empirically observed relationship is from what we would expect to find
if there were not a relationship, the more confidence we have that X and
Y are related in the population. The logic of this inference from sample to
population is the same as what we used in Chapter 6 to make inferences
about the population mean from sample data.

The statistic that is most commonly associated with this type of logical
exercise is the p-value. The p-value, which ranges between 0 and 1, is the
probability that we would see the relationship that we are finding because
of random chance. Put another way, the p-value tells us the probability
that we would see the observed relationship between the two variables in
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our sample data if there were truly no relationship between them in the
unobserved population. Thus, the lower the p-value, the greater confidence
we have that there is a systematic relationship between the two variables
for which we estimated the particular p-value.

One common characteristic across most statistical techniques is that,
for a particular measured relationship, the more data on which the mea-
surement is based, the lower our p-value will be. This is consistent with one
of the lessons of Chapter 6 about sample size: The larger the sample size, the
more confident we can be that our sample will more accurately represent
the population.2 (See Subsection 6.4.2 for a reminder.)

7.3.2 The Limitations of p-Values

Although p-values are powerful indicators of whether or not two variables
are related, they are limited. In this subsection we review those limitations.
It is important that we also understand what a p-value is not: The logic of a
p-value is not reversible. In other words, p = .001 does not mean that there
is a .999 chance that something systematic is going on. Also, it is important
to realize that, although a p-value tells us something about our confidence
that there is a relationship between two variables, it does not tell us whether
that relationship is causal.

In addition, it might be tempting to assume that, when a p-value is
very close to zero, this indicates that the relationship between X and Y is
very strong. This is not necessarily true (though it might be true). As we
previously noted, p-values represent our degree of confidence that there is
a relationship in the underlying population. So we should naturally expect
smaller p-values as our sample sizes increase. But a larger sample size does
not magically make a relationship stronger; it does increase our confidence
that the observed relationship in our sample accurately represents the under-
lying population. We saw a similar type of relationship in Chapter 6 when
we calculated standard errors. Because the number of cases is in the denom-
inator of the standard error formula, an increased number of cases leads
to a smaller standard error and a more narrow confidence interval for our
inferences about the population.

Another limitation of p-values is that they do not directly reflect the
quality of the measurement procedure for our variables. Thus, if we are
more confident in our measurement, we should be more confident in a
particular p-value. The flip side of this is that, if we are not very confident

2 Also, the smaller the sample size, the more likely it is that we will get a result that is not
very representative of the population.
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in our measurement of one or both of our variables, we should be less
confident in a particular p-value.

Finally, we should keep in mind that p-values are always based on
the assumption that you are drawing a perfectly random sample from the
underlying population. Mathematically, this is expressed as

pi = P ∀i.

This translates into “the probability of an individual case from our pop-
ulation ending up in our sample, pi, is assumed to equal P for all of the
individual cases i.” If this assumption were valid, we would have a truly
random sample. Because this is a standard that is almost never met, we
should use this in our assessment of a particular p-value. The further we
are from a truly random sample, the less confidence we should have in our
p-value.

7.3.3 From p-Values to Statistical Significance

As we outlined in the preceding subsection, lower p-values increase our
confidence that there is indeed a relationship between the two variables in
question. A common way of referring to such a situation is to state that the
relationship between the two variables is statistically significant. Although
this type of statement has a ring of authoritative finality, it is always a
qualified statement. In other words, an assertion of statistical significance
depends on a number of other factors. One of these factors is the set of
assumptions from the previous section. “Statistical significance” is achieved
only to the extent that the assumptions underlying the calculation of the
p-value hold. In addition, there are a variety of different standards for what
is a statistically significant p-value. Most social scientists use the standard
of a p-value of .05. If p is less than .05, they consider a relationship to be
statistically significant. Others use a more stringent standard of .01, or a
more loose standard of .1.3

We cannot emphasize strongly enough that finding that X and Y have
a statistically significant relationship does not necessarily mean that the
relationship between X and Y is strong or especially that the relationship
is causal. To evaluate whether or not a relationship is strong, we need to
use our substantive knowledge about what it means for the value of Y to
change by a particular amount. We will discuss assessments of the strength
of relationships in greater detail in Chapter 9. To evaluate the case for a

3 More recently, there has been a trend toward reporting the estimated p-value and letting
readers make their own assessments of statistical significance.



150 Bivariate Hypothesis Testing

causal relationship, we need to evaluate how well our theory has performed
in terms of all four of the causal hurdles from Chapter 3.

7.3.4 The Null Hypothesis and p-Values

In Chapter 1 we introduced the concept of the null hypothesis. Our defini-
tion was “A null hypothesis is also a theory-based statement but it is about
what we would expect to observe if our theory were incorrect.” Thus, fol-
lowing the logic that we previously outlined, if our theory-driven hypothesis
is that there is covariation between X and Y, then the corresponding null
hypothesis is that there is no covariation between X and Y. In this context,
another interpretation of the p-value is that it conveys the level of confidence
with which we can reject the null hypothesis.

7.4 THREE BIVARIATE HYPOTHESIS TESTS

We now turn to three specific bivariate hypothesis tests. In each case, we are
testing for whether there is a relationship between X and Y. We are doing
this with sample data, and then, based on what we find, making inferences
about the underlying population.

7.4.1 Example 1: Tabular Analysis

Tabular presentations of data on two variables are still used quite widely.
In the more recent political science literature, scholars use them as stepping-
stones on the way to multivariate analyses. It is worth noting at this point
in the process that, in tables, most of the time the dependent variable is
displayed in the rows whereas the independent variable is displayed in the
columns. Any time that you see a table, it is very important to take some
time to make sure that you understand what is being conveyed. We can
break this into the following three-step process:

1. Figure out what the variables are that define the rows and columns of
the table.

2. Figure out what the individual cell values represent. Sometimes they
will be the number of cases that take on the particular row and column
values; other times the cell values will be proportions (ranging from 0 to
1.0) or percentages (ranging from 0 to 100). If this is the case, it is critical
that you figure out whether the researcher calculated the percentages or
proportions for the entire table or for each column or row.

3. Figure out what, if any, general patterns you see in the table.
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Table 7.2. Union households and vote in the 2008 U.S.
presidential election

Not from a union From a union
Candidate household household Total

McCain 47.1 33.4 45.0
Obama 52.9 66.6 55.0
Total 100.0 100.0 100.0

Note: Cell entries are column percentages.

Let’s go through these steps with Table 7.2. In this table we are testing
the theory that affiliation with trade unions makes people more likely to
support left-leaning candidates.4 We can tell from the title and the column
and rowheadings that this table is comparing the votes of people fromunion
householdswith those not fromunion households in the 2008U.S. presiden-
tial election. We can use the information in this table to test the hypothesis
that voters from union households were more likely to support Democratic
Party presidential candidate BarackObama.5 As the first step in reading this
table, we determine that the columns indicate values for the independent
variable (whether or not the individual was from a union household) and
that the rows indicate values for the dependent variable (presidential vote).
The second step is fairly straightforward; the table contains a footnote that
tells us that the “cell entries are column percentages.” This is the easiest
format for pursuing step 3, because the column percentages correspond to
the comparison that we want to make. We want to compare the presiden-
tial votes of people from union households with the presidential votes of
people not from union households. The pattern is fairly clear: People from
the union households overwhelmingly supported Obama (66.6 for Obama
and 33.4 for McCain), whereas people from the nonunion households only
marginally favored Obama (52.9 for Obama and 47.1 for McCain). If we
think in terms of independent (X) and dependent (Y) variables, the com-
parison that we have made is between the distribution of the dependent
variable (Y = Presidential Vote) across values of the independent variable
(X = Type of Household).

4 Take a moment to assess this theory in terms of the first two of the four hurdles that we
discussed in Chapter 3. The causal mechanism is that left-leaning candidates tend to support
policies favored by trade unions. Is this credible? What about hurdle 2? Can we rule out
the possibility that support for left-leaning candidates make one more likely to be affiliated
with a trade union?

5 What do you think about the operationalization of these two variables? How well does it
stand up to what we discussed in Chapter 5?
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Table 7.3. Gender and vote in the 2008 U.S.
presidential election: Hypothetical scenario

Candidate Male Female Row total

McCain ? ? 45.0
Obama ? ? 55.0
Column total 100.0 100.0 100.0

Note: Cell entries are column percentages.

In Table 7.2, we follow the simple convention of placing the values of
the independent variable in the columns and the values of the dependent
variable in the rows. Then, by calculating column percentages for the cell
values, this makes comparing across the columns straightforward. It is wise
to adhere to these norms, because it is the easiest way to make the compar-
ison that we want, and because it is the way many readers will expect to
see the information.

In our next example we are going to go step-by-step through a bivariate
test of the hypothesis that gender (X) is related to vote (Y) in U.S. presiden-
tial elections. To test this hypothesis about gender and presidential vote, we
are going to use data from the 2008 National Annenberg Election Survey
(NAES from here on). This is an appropriate set of data for testing this
hypothesis because these data are from a randomly selected sample of cases
from the underlying population of interest (U.S. adults). Before we look at
results obtained by using actual data, think briefly about the measurement
of the variables of interest and what we would expect to find if there was
no relationship between the two variables.

Table 7.3 shows partial information from a hypothetical example in
which we know that 45.0% of our sample respondents report having voted
for JohnMcCain and 55.0%of our sample respondents report having voted
for Barack Obama. But, as the question marks inside this table indicate, we
do not know how voting breaks down in terms of gender. If there were
no relationship between gender and presidential voting in 2008, consider
what we would expect to see given what we know from Table 7.3. In other
words, what values should replace the question marks in Table 7.3 if there
were no relationship between our independent variable (X) and dependent
variable (Y)?

If there is not a relationship between gender and presidential vote, then
we should expect to see no major differences between males and females in
terms of how they voted for John McCain and Barack Obama. Because we
know that 45.0% of our cases voted for McCain and 55.0% for Obama,
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Table 7.4. Gender and vote in the 2008 U.S.
presidential election: Expectations for hypothetical
scenario if there were no relationship

Candidate Male Female Row total

McCain 45.0 45.0 45.0
Obama 55.0 55.0 55.0
Column total 100.0 100.0 100.0

Note: Cell entries are column percentages.

Table 7.5. Gender and vote in the 2008 U.S.
presidential election

Candidate Male Female Row total

McCain ? ? 1,434
Obama ? ? 1,755
Column total 1,379 1,810 3,189

Note: Cell entries are number of respondents.

what should we expect to see for males and for females? We should expect
to see the same proportions of males and females voting for each candi-
date. In other words, we should expect to see the question marks replaced
with the values in Table 7.4. This table displays the expected cell values
for the null hypothesis that there is no relationship between gender and
presidential vote.

Table 7.5 shows the total number of respondents who fit into each
column and row from the 2008 NAES. If we do the calculations, we can
see that the numbers in the rightmost column of Table 7.5 correspond with
the percentages from Table 7.3. We can now combine the information from
Table 7.5 with our expectations from Table 7.4 to calculate the number of
respondents that we would expect to see in each cell if gender and presi-
dential vote were unrelated. We display these calculations in Table 7.6. In
Table 7.7, we see the actual number of respondents that fell into each of
the four cells.

Finally, in Table 7.8, we compare the observed number of cases in each
cell (O) with the number of cases that we would expect to see if there were
no relationship between our independent and dependent variables (E).

We can see a pattern. Amongmales, the proportion observed voting for
Obama is lower than what we would expect if there were no relationship
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Table 7.6. Gender and vote in the 2008 U.S. presidential
election: Calculating the expected cell values if gender and
presidential vote are unrelated

Candidate Male Female

McCain (45% of 1,379) (45% of 1,810)
= 0.45×1,379= 620.55 = 0.45×1,810= 814.5

Obama (55% of 1,379) (55% of 1,810)
= 0.55×1,379= 758.45 = 0.55×1,810= 995.5

Note: Cell entries are expectation calculations if these two variables are
unrelated.

Table 7.7. Gender and vote in the 2008 U.S.
presidential election

Candidate Male Female Row total

McCain 682 752 1,434
Obama 697 1,058 1,755
Column total 1,379 1,810 3,189

Note: Cell entries are number of respondents.

Table 7.8. Gender and vote in the 2008 U.S.
presidential election

Candidate Male Female

McCain O= 682;E= 620.55 O= 752;E= 814.5
Obama O= 697;E= 758.45 O= 1,058;E= 995.5

Note: Cell entries are the number observed (O); the number expected
if there were no relationship (E).

between the two variables. Also, among men, the proportion voting for
McCain is higher than what we would expect if there were no relationship.
For females this pattern is reversed – the proportion voting for Obama
(McCain) is higher (lower) than we would expect if there were no rela-
tionship between gender and vote for U.S. president. The pattern of these
differences is in line with the theory that women support Democratic Party
candidates more than men do. Although these differences are present, we
have not yet determined that they are of such a magnitude that we should
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now have increased confidence in our theory. In other words, we want to
know whether or not these differences are statistically significant.

To answer this question, we turn to the chi-squared (χ2) test for tabular
association. Karl Pearson originally developed this test when he was testing
theories about the influence of nature versus nurture at the beginning of the
20th century. His formula for the χ2 statistic is

χ2 =
∑ (O−E)2

E
.

The summation sign in this formula signifies that we sum over each
cell in the table; so a 2× 2 table would have four cells to add up. If we
think about an individual cell’s contribution to this formula, we can see the
underlying logic of the χ2 test. If the value observed,O, is exactly equal to
the expected value if there were no relationship between the two variables,
E, then we would get a contribution of zero from that cell to the overall
formula (because O−E would be zero). Thus, if all observed values were
exactly equal to the values that we expect if there were no relationship
between the two variables, then χ2 = 0. The more theO values differ from
the E values, the greater the value will be for χ2. Because the numerator
on the right-hand side of the χ2 formula (O−E) is squared, any difference
between O and E will contribute positively to the overall χ2 value.

Here are the calculations for χ2 made with the values in Table 7.8:

χ2 =
∑ (O−E)2

E

= (682−620.55)2

620.55
+ (752−814.5)2

814.5
+ (697−758.45)2

758.45
+ (1,058−995.5)2

995.5

= 3,776.1
620.55

+ 3,906.25
814.5

+ 3,776.1
758.45

+ 3906.25
995.5

= 6.09+4.8+4.98+3.92= 19.79.

So our calculated value of χ2 is 19.79 based on the observed data.
What do we do with this? We need to compare that 19.79 with some pre-
determined standard, called a critical value, of χ2. If our calculated value is
greater than the critical value, then we conclude that there is a relationship
between the two variables; and if the calculated value is less than the critical
value, we cannot make such a conclusion.

How do we obtain this critical value? First, we need a piece of informa-
tion known as the degrees of freedom (df) for our test.6 In this case, the df
calculation is very simple: df = (r−1)(c−1), where r is the number of rows

6 We define degrees of freedom in the next section.
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in the table, and c is the number of columns in the table. In the example in
Table 7.8, there are two rows and two columns, so (2−1)(2−1) = 1.

You can find a table with critical values of χ2 in Appendix A. If we
adopt the standard p-value of .05, we see that the critical value of χ2 for
df = 1 is 3.841. Therefore a calculated χ2 value of 19.79 is well over the
minimum value needed to achieve a p-value of .05. In fact, continuing out
in this table, we can see that we have exceeded the critical value needed to
achieve a p-value of .001.

At this point, we have established that the relationship between our
two variables meets a conventionally accepted standard of statistical signif-
icance (i.e., p< .05). Although this result is supportive of our hypothesis,
we have not yet established a causal relationship between gender and presi-
dential voting. To see this, think back to the four hurdles along the route to
establishing causal relationships that we discussed in Chapter 3. Thus far,
we have cleared the third hurdle, by demonstrating that X (gender) and Y
(vote) covary. Fromwhat we know about politics, we can easily cross hurdle
1, “Is there a credible causal mechanism that links X to Y?” Women might
be more likely to vote for candidates like Obama because, among other
things, women depend on the social safety net of the welfare state more than
men do. If we turn to hurdle 2, “Can we rule out the possibility that Y could
cause X?,” we can pretty easily see that we have met this standard through
basic logic. We know with confidence that changing one’s vote does not
lead to a change in one’s gender. We hit the most serious bump in the road
to establishing causality for this relationship when we encounter hurdle 4,
“Have we controlled for all confounding variables Z that might make the
association between X and Y spurious?” Unfortunately, our answer here is
that we do not yet know. In fact, with a bivariate analysis, we cannot know
whether some other variable Z is relevant because, by definition, there are
only two variables in such an analysis. So, until we see evidence that Z
variables have been controlled for, our scorecard for this causal claim is
[y y y n].

7.4.2 Example 2: Difference of Means

In our second example, we examine a situation in which we have a continu-
ous dependent variable and a categorical independent variable. In this type
of bivariate hypothesis test, we are looking to see if the means are different
across the values of the independent variable. We follow the basic logic
of hypothesis testing: comparing our real-world data with what we would
expect to find if there were no relationship between our independent and
dependent variables. We use the sample means and standard deviations to
make inferences about the unobserved population.



157 7.4 Three Bivariate Hypothesis Tests

Our theory in this section will come from the study of parliamentary
governments. When political scientists study phenomena across different
forms of government, one of the fundamental distinctions that they draw
between different types of democracies is whether the regime is parliamen-
tary or not. A democratic regime is labeled “parliamentary” when the lower
house of the legislature is the most powerful branch of government and
directly selects the head of the government.7 One of the interesting features
of most parliamentary regimes is that a vote in the lower house of the legisla-
ture can remove the government from power. As a result, political scientists
have been very interested in the determinants of how long parliamentary
governments last when the possibility of such a vote exists.

One factor that is an important difference across parliamentary democ-
racies is whether the party or parties that are in government occupy a
majority of the seats in the legislature.8 By definition, the opposition can
vote out of office a minority government, because it does not control a
majority of the seats in the legislature. Thus a pretty reasonable theory
about government duration is that majority governments will last longer
than minority governments.

We can move from this theory to a hypothesis test by using a data set
produced by Michael D. McDonald and Silvia M. Mendes titled “Govern-
ments, 1950–1995.” Their data set covers governments from 21 Western
countries. For the sake of comparability, we will limit our sample to those
governments that were formed after an election.9 Our independent variable,
“Government Type,” takes on one of two values: “majority government” or

7 An important part of research design is determining which cases are and are not covered
by our theory. In this case, our theory, which we will introduce shortly, is going to apply
to only parliamentary democracies. As an example, consider whether or not the United
States and the United Kingdom fit this description at the beginning of 2007. In the United
States in 2007, the head of government was President George W. Bush. Because Bush was
selected by a presidential election and not by the lower branch of government, we can
already see that the United States at the beginning of 2007 is not covered by our theory.
In the United Kingdom, we might be tempted at first to say that the head of government
at the beginning of 2007 was Queen Elizabeth II. But, if we consider that British queens
and kings have been mostly ceremonial in UK politics for some time now, we then realize
that the head of government was the prime minister, Tony Blair, who was selected from the
lower house of the legislature, the House of Commons. If we further consider the relative
power of the House of Commons compared with the other branches of government at the
beginning of 2007, we can see that the United Kingdom met our criteria for being classified
as parliamentary.

8 Researchers usually define a party as being in government if its members occupy one or
more cabinet posts, whereas parties not in government are in opposition.

9 We have also limited the analyses to cases in which the governments had a legal maximum
of four years before they must call for new elections. These limitations mean that, strictly
speaking, we are only able to make inferences about the population of cases that also fit
these criteria.
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Figure 7.1. Box-whisker plot of Government Duration for majority and minority
governments.

“minority government.”Our dependent variable, “Government Duration,”
is a continuous variable measuring the number of days that each govern-
ment lasted in office. Although this variable has a hypothetical range from
1 day to 1461 days, the actual data vary from an Italian government that
lasted for 31 days in 1953 to a Dutch government that lasted for 1749 days
in the late 1980s and early 1990s.

To get a better idea of the data that we are comparing, we can turn to
two graphs that we introduced in Chapter 5 for viewing the distribution of
continuous variables. Figure 7.1 presents a box-whisker plot of government
duration for minority and majority governments, and Figure 7.2 presents a
kernel density plot of government duration for minority and majority gov-
ernments. From both of these plots, it appears that majority governments
last longer than minority governments.

To determine whether the differences from these figures are statistically
significant, we turn to a difference of means test. In this test we compare
what we have seen in the two figures with what we would expect if there
were no relationship betweenGovernment Type andGovernmentDuration.
If there were no relationship between these two variables, then the world
would be such that the duration of governments of both types were drawn
from the same underlying distribution. If this were the case, the mean or
average value of Government Duration would be the same for minority and
majority governments.
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Figure 7.2. Kernel density plot of Government Duration for majority and minority
governments.

To test the hypothesis that thesemeans are drawn from the same under-
lying distribution, we use another test developed by Karl Pearson for these
purposes. The test statistic for this is known as a t-test because it follows
the t-distribution. The formula for this particular t-test is

t = Ȳ1 − Ȳ2

se(Ȳ1 − Ȳ2)
,

where Ȳ1 is the mean of the dependent variable for the first value of the
independent variable and Ȳ2 is the mean of the dependent variable for the
second value of the independent variable. We can see from this formula that
the greater the difference between the mean value of the dependent variable
across the two values of the independent variable, the further the value of
t will be from zero.

In Chapter 6 we introduced the notion of a standard error, which
is a measure of uncertainty about a statistical estimate. The basic logic
of a standard error is that the larger it is, the more uncertainty (or less
confidence) we have in our ability to make precise statements. Similarly,
the smaller the standard error, the greater our confidence about our ability
to make precise statements.

To better understand the contribution of the top and bottom parts of
the t-calculation for a difference of means, look again at Figures 7.1 and 7.2.
The further apart the two means are and the less dispersed the distributions
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Table 7.9. Government type and government
duration

Government Number of Mean Standard
type observations duration deviation

Majority 124 930.5 466.1
Minority 53 674.4 421.4
Combined 177 853.8 467.1

(as measured by the standard deviations s1 and s2), the greater confidence
we have that Ȳ1 and Ȳ2 are different from each other.

Table 7.9 presents the descriptive statistics for government duration by
government type. From the values displayed in this table we can calculate
the t-test statistic for our hypothesis test. The standard error of the differ-
ence between two means (Ȳ1 and Ȳ2), se(Ȳ1 − Ȳ2), is calculated from the
following formula:

se(Ȳ1 − Ȳ2) =
√√√√(

(n1 −1)s21 + (n2 −1)s22
n1 +n2 −2

)
×

√(
1
n1

+ 1
n2

)
,

where n1 and n2 are the sample sizes, and s21 and s
2
2 are the sample variances.

If we label the number of days in government for majority governments Y1

and the number of days in government for minority governments Y2, then
we can calculate the standard error as

se(Ȳ1 − Ȳ2) =
√(

(124−1)(466.1)2 + (53−1)(421.4)2

124+77−2

)
×

√(
1

124
+ 1

53

)

se(Ȳ1 − Ȳ2) = 74.39.

Now that we have the standard error, we can calculate the t-statistic:

t = Ȳ1 − Ȳ2

se(Ȳ1 − Ȳ2)
= 930.5−674.4

74.39
= 256.1

74.39
= 3.44.

Now that we have calculated this t-statistic, we need one more piece
of information before we can get to our p-value. This is called the degrees
of freedom (df). Degrees of freedom reflect the basic idea that we will gain
confidence in an observed pattern as the amount of data on which that
pattern is based increases. In other words, as our sample size increases, we
become more confident about our ability to say things about the underlying
population. If we turn to Appendix B, which is a table of critical values for
t, we can see that it reflects this logic. This table also follows the same basic
logic as the χ2 table. The way to read such a table is that the columns are
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defined by targeted p-values, and, to achieve a particular target p-value, you
need to obtain a particular value of t. The rows in the t-table indicate the
number of degrees of freedom. As the number of degrees of freedom goes
up, the t-statistic we need to obtain a particular p-value goes down. We
calculate the degrees of freedom for a difference of means t-statistic based
on the sum of total sample size minus two. Thus our degrees of freedom is

n1 +n2 −2= 124+53−2= 175.

From the p-value, we can look across the row for which df = 100 and see
the minimum t-value needed to achieve each targeted value of p.10 In the
second column of the t-table, we can see that, to have a p-value of .10
(meaning that there is a 10%, or 1 in 10, chance that we would see this
relationship randomly in our sample if there were no relationship between
X and Y in the underlying population), we must have a t-statistic greater
than or equal to 1.29. Because 3.44 > 1.29, we can proceed to the next
column for p = .05 and see that 3.44 is also greater than 1.66. In fact, if
we go all the way to the end of the row for df = 100, we can see that our
t-statistic is greater than 3.174, which is the t-value needed to achieve p
= .001 (meaning that there is a 0.1%, or 1 in 1000, chance that we would
see this relationship randomly in our sample if there were no relationship
betweenX and Y in the underlying population). This indicates that we have
very confidently cleared the third hurdle in our assessment of whether or
not there is a causal relationship between majority status and government
duration.

7.4.3 Example 3: Correlation Coefficient

In our final example of bivariate hypothesis testing we look at a situa-
tion in which both the independent variable and the dependent variable
are continuous. We test the hypothesis that there is a positive relation-
ship between economic growth and incumbent-party fortunes in U.S.
presidential elections.

In Chapter 5 we discussed the variation (or variance) of a single vari-
able, and in Chapter 1 we introduced the concept of covariation. In the
three examples that we have looked at so far, we have found there to be
covariation between being from a union household and presidential vote,
gender and presidential vote, and government type and government dura-
tion. All of these examples used at least one categorical variable. When we

10 Although our degrees of freedom equal 175, we are using the row for df = 100 to get a
rough idea of the p-value. With a computer program, we can calculate an exact p-value.
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Figure 7.3. Scatter plot of change in GDP and incumbent-party vote share.

have an independent variable and a dependent variable that are both con-
tinuous, we can visually detect covariation pretty easily in graphs. Consider
the graph in Figure 7.3, which shows a scatter plot of incumbent vote and
economic growth. Scatter plots are useful for getting an initial look at the
relationship between two continuous variables. Any time that you examine
a scatter plot, you should figure out what are the axes and then what each
point in the scatter plot represents. In these plots, the dependent variable (in
this case incumbent vote) should be displayed on the vertical axis while the
independent variable (in this case economic growth) should be displayed
on the horizontal axis. Each point in the scatter plot should represent the
values for the two variables for an individual case. So, in Figure 7.3, we are
looking at the values of incumbent vote and economic growth for each U.S.
presidential election year on which we have data for both variables.

When we look at this graph, we want to assess whether or not we see
a pattern. Since our theory implies that the independent variable causes the
dependent variable, we shouldmove from left to right on the horizontal axis
(representing increasing values of the independent variable) and see whether
there is a corresponding increase or decrease in the values of the dependent
variable. In the case of Figure 7.3, as wemove from left to right, we generally
see a pattern of increasing values on the vertical axis. This indicates that,
as expected by our hypothesis, when the economy is doing better (more
rightward values on the horizontal axis), we also tend to see higher vote
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percentages for the incumbent party in U.S. presidential elections (higher
values on the vertical axis).

Covariance is a statistical way of summarizing the general pattern of
association (or the lack thereof) between two continuous variables. The
formula for covariance between two variables X and Y is

covXY =
∑n

i=1(Xi − X̄)(Yi − Ȳ)

n
.

To better understand the intuition behind the covariance formula, it is
helpful to think of individual cases in terms of their values relative to the
mean ofX (X̄) and themean ofY (Ȳ). If an individual case has a value for the
independent variable that is greater than the mean ofX (Xi−X̄> 0) and its
value for the dependent variable is greater than the mean of Y (Yi− Ȳ > 0),
that case’s contribution to the numerator in the covariance equation will
be positive. If an individual case has a value for the independent variable
that is less than the mean of X (Xi − X̄ < 0) and a value of the dependent
variable that is less than the mean of Y (Yi− Ȳ < 0), that case’s contribution
to the numerator in the covariance equation will also be positive, because
multiplying two negative numbers yields a positive product. If a case has
a combination of one value greater than the mean and one value less than
the mean, its contribution to the numerator in the covariance equation will
be negative because multiplying a positive number by a negative number
yields a negative product. Figure 7.4 illustrates this; we see the same plot of

(− −) = + (+ −) = −

(− +) = − (+ +) = +
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Figure 7.4. Scatter plot of change in GDP and incumbent-party vote share with mean-
delimited quadrants.
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growth versus incumbent vote, but with the addition of lines showing the
mean value of each variable. In each of these mean-delimited quadrants we
can see the contribution of the cases to the numerator. If a plot contains
cases in mostly the upper-right and lower-left quadrants, the covariance
will tend to be positive. On the other hand, if a plot contains cases in
mostly the lower-right and upper-left quadrants, the covariance will tend
to be negative. If a plot contains a balance of cases in all four quadrants,
the covariance calculation will be close to zero because the positive and
negative values will cancel out each other. When the covariance between
two variables is positive, we describe this situation as a positive relationship
between the variables, and when the covariation between two variables is
negative, we describe this situation as a negative relationship.

Table 7.10 presents the calculations for each year in the covariance
formula for the data that we presented in Figure 7.4. For each year, we
have started out by calculating the difference between each X and X̄ and
the difference between each Y and Ȳ. If we begin with the year 1876, we can
see that the value for growth (X1876) was 5.11 and the value for vote (Y1876)
was 48.516. The value for growth is greater than the mean and the value
for vote is less than the mean, X1876 − X̄ = 5.11−0.7025294 = 4.407471
and Y1876 − Ȳ = 48.516− 51.94718 = −3.431181. In Figure 7.4, the dot
for 1876 is in the lower-right quadrant. When we multiply these two mean
deviations together, we get (X1876 − X̄)(Y1876 − Ȳ) = −15.12283.

We repeat this same calculation for every case (presidential election
year). Each negative calculation like this contributes evidence that the
overall relationship between X and Y is negative, whereas each positive
calculation contributes evidence that the overall relationship between X
and Y is positive. The sum across all 34 years of data in Table 7.10 is
616.59088, indicating that the positive values have outweighed the neg-
ative values. When we divide this by 34, we have the sample covariance,
which equals 18.6846. This tells us that we have a positive relationship, but
it does not tell us how confident we can be that this relationship is different
from what we would see if our independent and dependent variables were
not related in our underlying population of interest. To see this, we turn
to a third test developed by Karl Pearson, Pearson’s correlation coefficient.
This is also known as Pearson’s r , the formula for which is

r= covXY√
varXvarY

.

Table 7.11 is a covariance table. In a covariance table, the cells across
the main diagonal (from upper-left to lower-right) are cells for which the
column and the row reference the same variable. In this case the cell entry
is the variance for the referenced variable. Each of the cells off of the main
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Table 7.10. Contributions of individual election years to the covariance calculation

Year Growth (Xi) Vote (Yi) Xi − X̄ Yi − Ȳ (Xi − X̄)(Yi − Ȳ )

1876 5.11 48.516 4.407471 –3.431181 –15.12283
1880 3.879 50.22 3.176471 –1.727179 –5.486332
1884 1.589 49.846 .8864706 –2.101179 –1.862634
1888 –5.553 50.414 –6.255529 –1.533179 9.590843
1892 2.763 48.268 2.060471 –3.679178 –7.580839
1896 –10.024 47.76 –10.72653 –4.187181 44.91393
1900 –1.425 53.171 –2.127529 1.223821 –2.603716
1904 –2.421 60.006 –3.123529 8.058821 –25.17196
1908 –6.281 54.483 –6.98353 2.535822 –17.70899
1912 4.164 54.708 3.461471 2.76082 9.556498
1916 2.229 51.682 1.526471 –.2651808 –.4047907
1920 –11.463 36.148 –12.16553 –15.79918 192.2054
1924 –3.872 58.263 –4.574529 6.315821 –28.89191
1928 4.623 58.756 3.920471 6.808821 26.69378
1932 –14.586 40.851 –15.28853 –11.09618 169.6442
1936 11.836 62.226 11.13347 10.27882 114.439
1940 3.901 54.983 3.198471 3.035822 9.709987
1944 4.233 53.778 3.53047 1.83082 6.463655
1948 3.638 52.319 2.935471 .3718202 1.091467
1952 .726 44.71 .0234706 –7.237181 –.169861
1956 –1.451 57.094 –2.153529 5.146822 –11.08383
1960 .455 49.913 –.2475294 –2.034182 .5035198
1964 5.087 61.203 4.38447 9.255819 40.58187
1968 5.049 49.425 4.34647 –2.522181 –10.96258
1972 5.949 61.791 5.24647 9.843821 51.64531
1976 3.806 48.951 3.103471 –2.99618 –9.298556
1980 –3.659 44.842 –4.361529 –7.105181 30.98945
1984 5.424 59.123 4.72147 7.175821 33.88043
1988 2.21 53.832 1.507471 1.884821 2.841312
1992 2.949 46.379 2.24647 –5.568178 –12.50875
1996 3.258 54.737 2.55547 2.789819 7.129301
2000 2.014 50.262 1.311471 –1.685179 –2.210063
2004 1.989 51.233 1.286471 –.7141783 –.9187693
2008 –2.26 46.311 –2.962529 –5.636179 16.69735

X̄ = 0.7025294 Ȳ = 51.94718
∑

(Xi − X̄)(Yi − Ȳ)

= 616.59088

diagonal displays the covariance for a pair of variables. In covariance tables,
the cells above the main diagonal are often left blank, because the values
in these cells are a mirror image of the values in the corresponding cells
below themain diagonal. For instance, in Table 7.11 the covariance between
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Vote Growth

Vote 35.4804

Growth 18.6846 29.8997

Table 7.11 Covariance table for

economic growth and

incumbent-party presidential vote,

1880–2004

growth and vote is the same as
the covariance between vote and
growth, so the upper-right cell in
this table is left blank.

Using the entries in Table 7.11,
we can calculate the correlation
coefficient:

r= covXY√
varX varY

,

r= 18.6846√
35.4804×29.8997

,

r= 18.6846√
1060.853316

,

r= 18.6846
32.57074325

,

r= 0.57366207.

There are a couple of points worth noting about the correlation coeffi-
cient. If all of the points in the plot line up perfectly on a straight, positively
sloping line, the correlation coefficient will equal 1. If all of the points in the
plot line up perfectly on a straight, negatively sloping line, the correlation
coefficient will equal −1. Otherwise, the values will lie between positive
one and negative one. This standardization of correlation coefficient val-
ues is a particularly useful improvement over the covariance calculation.
Additionally, we can calculate a t-statistic for a correlation coefficient as

tr = r
√
n−2√
1− r2

,

with n−2 degrees of freedom, where n is the number of cases. In this case,
our degrees of freedom equal 34−2= 32.

For the current example,

tr = r
√
n−2√
1− r2

,

tr = 0.57366207
√
34−2√

1− (0.57366207)2
,

tr = 0.57366207×5.656854249√
1− (0.329088171)

,
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tr = 3.245122719√
0.670911829

,

tr = 3.245122719
0.819092076

,

tr = 3.961853391.

With the degrees of freedom equal to 34 (n= 34) minus two, or 32, we can
now turn to the t-table in Appendix B. Looking across the row for df = 30,
we can see that our calculated t of 3.96 is greater even than the critical t
at the p-value of .001 (which is 3.385). This tells us that the probability of
seeing this relationship due to random chance is less than .001 or 1 in 1000.
When we estimate our correlation coefficient with a computer program, we
get a more precise p-value of .0004. Thus we can be quite confident that
there is covariation between economic growth and incumbent-party vote
share and that our theory has successfully cleared our third causal hurdle.11

7.5 WRAPPING UP

We have introduced three methods to conduct bivariate hypothesis tests –
tabular analysis, difference of means tests, and correlation coefficients.
Which test is most appropriate in any given situation depends on the mea-
surement metric of your independent and dependent variables. Table 7.1
should serve as a helpful reference for you on this front.

We have yet to introduce the final method for conducting bivariate
hypothesis tests covered in this book, namely bivariate regression analysis.
That is the topic of our next chapter, and it serves as the initial building
block for multiple regression (which we will cover in Chapter 9).

CONCEPTS INTRODUCED IN THIS CHAPTER

• chi-squared (χ2) test for tabular association – a statistical test for a
relationship between two categorical variables.

• correlation coefficient – a measure of linear association between two
continuous variables.

• covariance – an unstandardized statistical measure summarizing the
general pattern of association (or the lack thereof) between two
continuous variables.

11 The first causal hurdle is pretty well cleared if we refer back to the discussion of the theory
of economic voting in earlier chapters. The second causal hurdle also can be pretty well
cleared logically by the timing of the measurement of each variable. Because economic
growth is measured prior to incumbent vote, it is difficult to imagine that Y caused X.
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• critical value – a predetermined standard for a statistical test such that
if the calculated value is greater than the critical value, then we con-
clude that there is a relationship between the two variables; and if the
calculated value is less than the critical value, we cannot make such a
conclusion.

• degrees of freedom – the number of pieces of information we have
beyond the minimum that we would need to make a particular
inference.

• difference of means test – a method of bivariate hypothesis testing that
is appropriate for a categorical independent variable and a continuous
dependent variable.

• Pearson’s r – the most commonly employed correlation coefficient.
• p-value – the probability that we would see the relationship that we

are finding because of random chance.
• statistically significant relationship – a conclusion, based on the

observed data, that the relationship between two variables is not due
to random chance, and therefore exists in the broader population.

• tabular analysis – a type of bivariate analysis that is appropriate for
two categorical variables.

EXERCISES

1. What form of bivariate hypothesis test would be appropriate for the following
research questions:

(a) You want to test the theory that being female causes lower salaries.
(b) You want to test the theory that a state’s percentage of college graduates

is positively related to its turnout percentage.
(c) You want to test the theory that individuals with higher incomes are more

likely to vote.

2. Explain why each of the following statements is either true or false:

(a) The computer program gave me a p-value of .000, so I know that my
theory has been verified.

(b) The computer program gave me a p-value of .02, so I know that I have
found a very strong relationship.

(c) The computer program gave me a p-value of .07, so I know that this
relationship is due to random chance.

(d) The computer program gave me a p-value of .50, so I know that there is
only a 50% chance of this relationship being systematic.

3. Take a look at Figure 7.5. What is the dependent variable? What are the
independent variables? What does this table tell us about politics?

4. What makes the table in Figure 7.5 so confusing?
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Figure 7.5. What is wrong with this table?

5. Conduct a tabular analysis from the information presented in the following
hypothetical discussion of polling results: “We did a survey of 800 respon-
dents who were likely Democratic primary voters in the state. Among these
respondents, 45% favored Obama whereas 55% favored Clinton. When we
split the respondents in half at the median age of 40, we found some stark differ-
ences: Among the younger half of the sample respondents, we found that 72.2%
favored Obama to be the nominee and among the older sample respondents,
we found that 68.2% favored Clinton.”

6. For the example in Exercise 5, test the theory that age is related to preference
for a Democratic nominee.

7. A lot of people in the United States think that the Watergate scandal in 1972
caused a sea change in terms of U.S. citizens’ views toward incumbent politi-
cians. Use the data in Table 7.12 to produce a difference of means test of the
null hypothesis that average reelection rates were the same before and after the
Watergate scandal. Because of the timing of the elections and the scandal, 1972
should be coded as a pre-scandal case. Do this test once each for the House and
the Senate. Show all of your work.
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Table 7.12. Incumbent
reelection rates in U.S.
congressional elections,
1964–2006

Year House Senate

1964 87 85
1966 88 88
1968 97 71
1970 85 77
1972 94 74
1974 88 85
1976 96 64
1978 94 60
1980 91 55
1982 90 93
1984 95 90
1986 98 75
1988 98 85
1990 96 96
1992 88 83
1994 90 92
1996 94 91
1998 98 90
2000 98 79
2002 96 86
2004 98 96
2006 94 79

8. Using the data set “BES2005 Subset,” produce a table that shows the combina-
tion values for the variables “LabourVote” (Y) and “IraqWarApprovalDich”
(X). Read the descriptions of these two variables and write about what this
table tells you about politics in the United Kingdom in 2005. Compute a χ2

hypothesis test for these two variables. Write about what this tells you about
politics in the United Kingdom in 2005.

9. Using the data set “BES2005 Subset,” test the hypothesis that values for
“BlairFeelings” (Y) are different across different values of “IraqWarAp-
provalDich” (X). Read the descriptions of these two variables and write about
what this table tells you about politics in the United Kingdom in 2005.

10. Using the data set “BES2005 Subset,” produce a scatter plot of the values for
“BlairFeelings” (Y) and “SelfLR” (X). Calculate a correlation coefficient and
p-value for the hypothesis that these two variables are related to each other.
Read the descriptions of these two variables and write about what this table
tells you about politics in the United Kingdom in 2005.


