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Objective: To examine current vaccine sentiment on social media by constructing and analyzing semantic
networks of vaccine information from highly shared websites of Twitter users in the United States; and to
assist public health communication of vaccines.
Background: Vaccine hesitancy continues to contribute to suboptimal vaccination coverage in the United
States, posing significant risk of disease outbreaks, yet remains poorly understood.
Methods: We constructed semantic networks of vaccine information from internet articles shared by
Twitter users in the United States. We analyzed resulting network topology, compared semantic differ-
ences, and identified the most salient concepts within networks expressing positive, negative, and neu-
tral vaccine sentiment.
Results: The semantic network of positive vaccine sentiment demonstrated greater cohesiveness in dis-
course compared to the larger, less-connected network of negative vaccine sentiment. The positive sen-
timent network centered around parents and focused on communicating health risks and benefits,
highlighting medical concepts such asmeasles, autism, HPV vaccine, vaccine-autism link,meningococcal dis-
ease, and MMR vaccine. In contrast, the negative network centered around children and focused on orga-
nizational bodies such as CDC, vaccine industry, doctors, mainstream media, pharmaceutical companies, and
United States. The prevalence of negative vaccine sentiment was demonstrated through diverse messag-
ing, framed around skepticism and distrust of government organizations that communicate scientific evi-
dence supporting positive vaccine benefits.
Conclusion: Semantic network analysis of vaccine sentiment in online social media can enhance under-
standing of the scope and variability of current attitudes and beliefs toward vaccines. Our study synthe-
sizes quantitative and qualitative evidence from an interdisciplinary approach to better understand
complex drivers of vaccine hesitancy for public health communication, to improve vaccine confidence
and vaccination coverage in the United States.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Vaccine hesitancy

Suboptimal vaccination coverage in the United States continues
to pose significant risk of disease outbreaks, in part, due to vaccine
hesitancy [1]. Vaccine hesitancy refers to a combination of beliefs,
attitudes, and behaviors that influence an individual’s decision to
vaccinate despite vaccine availability; these behaviors include
refusal, delay, or reluctant acceptance despite having active con-
cerns [2,3]. Strategies to address vaccine refusal have focused on
individual reasons for not vaccinating, however, evidence of suc-
cessful interventions remains limited. A review of vaccine hesi-
tancy interventions expressed weak support for current
strategies in mitigating vaccine resistance [4]; interventions tar-
geted toward anti-vaccination groups are likely to be ineffective,
unsustainable, and potentially more detrimental compared to no
intervention at all [4–6].

Vaccine hesitancy stems from socio-cultural, political, and
otherwise non-medical factors that are poorly understood [7].
The underlying causes of vaccine hesitancy should not be attribu-
ted to scientific illiteracy alone [8], but rather viewed as a deliber-
ative and structured process that requires contextualized
examination at local levels [9,10]. In the case of our study, we focus
on semantic and rhetorical qualities of vaccine communication
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Table 2
Summary of measures for article text networks and sentiment group networks. The
table describes network characteristics of extracted web documents; joint semantic
networks of positive, negative, and neutral vaccine sentiment; and the corresponding
greatest connected component. Measures describe network size, density, and average
centrality.

Vaccine sentiment Positive Negative Neutral

Document text networks
Number of documents

(total = 50)
23
documents

21
documents

6
documents

Average number of nodes (per
document)

53.1 nodes 90.9 nodes 43.8 nodes

Average number of edges (per
document)

49 edges 90.7 edges 39.7 edges

Average degree (per document) 1.9 1.98 1.8

Vaccine sentiment networks
Average degree 3.356 2.95 2.348

Number of connected
components

21 49 12

Greatest component subgraph
Nodes/total network nodes 585/652

nodes
1140/1257
nodes

171/201
nodes

Edges/total network edges 1042/1094
edges

1783/1854
edges

216/236
edges

Average degree 3.562 3.128 2.526

Diameter 12 13 17
Density 0.0061 0.0027 0.0149
Number of communities 21 31 10
Average path length 4.492 4.77 6.78

Average degree centrality 0.0061 0.0027 0.0149
Average betweenness centrality 0.006 0.0033 0.0342
Average closeness centrality 0.2292 0.2161 0.1533
Average node connectivity 1.3117 1.1835 1.035
Average clustering coefficient 0.196 0.14 0.131
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amongst the general public within contexts of differing vaccine
sentiment.

1.2. Social network analysis and digital epidemiology

The advent of the Internet and social media has provided new
platforms for persuasion and rapid spread of (mis)information,
bringing forth new challenges and opportunities to an age-old pub-
lic health problem. Social Network Analysis (SNA) broadly studies
social interactions of contact networkswith significant implications
for public health [11], such as contributing evidence that belief sys-
tems are a primary barrier to vaccination [12]. Novel public health
tools such as SNA employ computational frameworks in the context
of digital epidemiology [13]. Online social media such as Twitter are
novel avenues to acquire real-time data of attitudes, beliefs, and
behaviors, particularly for underrepresented demographic groups
who disproportionately comprise Twitter users [14]. By leveraging
online data, studies can examine the dynamics of massively inter-
acting populations, such as online health sentiment and its potential
impact on infectious disease outbreaks [15,16].

1.3. Semantic networks

Semantic networks are graphical representations of knowledge
based on meaningful relationships of written text, structured as a
network of words cognitively related to one another [17,18], in this
study, vaccine information. Within the semantic network, nodes
are words that represent concepts found in text. The connections
between nodes are referred to as edges which represent relation-
ships between connected concepts. Semantic networks allow
extraction of meaningful ideas by identifying emergent clusters
of concepts rather than analyzing frequencies of isolated words
[19]; in this way, analyzing online social media can enhance under-
standing of complex health behavior, particularly for vaccine
hesitancy.

Similar studies have analyzed websites using search engine
results and natural language processing (NLP) [20,21]. Text net-
work analysis traditionally employs semi-automated techniques
in which information is extracted and analyzed using both human
and computerized methods, dealing with challenges such as coref-
erence resolution, synonym resolution, and ambiguity [22]. To
Table 1
Summary of sampled documents. The table summarizes article characteristics by vaccine se
vaccine type focus, and specific vaccine topics.

Vaccine sentiment articles (total n = 50) Positive (n = 23)

Document type Blog = 8 (34.8%)
News = 7 (30.4%)
Magazine = 5 (21.7%)
Informational = 3

(13.0%)
Article source type Media = 9 (39.1%)

Government = 8 (34.8%)
News = 4 (17.4%)
Industry = 1 (4.4%)
Resource = 1 (4.4%)

Target vaccine population Childhood = 16 (69.6%)
Adolescent = 3 (13.0%)
Adult = 1 (4.4%)
Multiple = 3 (13.0%)

Vaccine type focus General = 8 (34.8%)
Specific = 15 (65.2%)

Specific vaccines Measles/MMR = 9
HPV = 3
Influenza = 1
Meningococcal = 1
Rubella = 1
limit these issues, we constructed semantic networks manually
and then performed network analysis within our study.

Both proximate and non-proximate determinants of vaccine
hesitancy necessitate an interdisciplinary approach [23,24]. Our
study presents a novel framework that applies methods of network
analysis to semantic networks [25] within the context of vaccine
sentiment.
ntiment group and describes document type, article source, target vaccine population,

Negative (n = 21) Neutral (n = 6)

Blog = 15 (71.4%) News = 4 (66.7%)
Alternative News = 2 (9.5%) Blog = 1 (16.7%)
Magazine = 2 (9.5%) Magazine = 1 (16.7%)
Commercial = 1 (4.8%)
News = 1 (4.8%)
Media = 15 (71.4%) Government = 2 (33.3%)
Industry = 3 (14.3%) Media = 2 (33.3%)
Personal = 2 (9.5%) News = 2 (33.3%)
Forum = 1 (4.8%)

Childhood = 15 (71.4%) Childhood = 3 (50.0%)
Adolescent = 0 Adolescent = 2 (33.3%)
Adult = 0 Adult = 1 (16.7%)
Multiple = 6 (28.6%) Multiple = 0
General = 14 (66.7%) General = 3 (50%)
Specific = 7 (33.3%) Specific = 3 (50%)

Shingles = 1 Whooping cough = 2
Polio = 1 Influenza = 1
Gardasil = 1
Measles = 1
Swine flu = 1
Tdap = 1
Hepatitis B = 1
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1.4. Study objective

Our objective was to examine current vaccine sentiment on
social media by constructing and analyzing semantic networks of
vaccine information from highly shared websites of Twitter users
in the United States.
1.5. Public health significance

The Strategic Advisory Group of Experts on Immunization
(SAGE) Working Group on Vaccine Hesitancy (WG) reported speci-
fic research needs to better understand context-specific causes
underlying vaccine hesitancy [26]. To help address this gap, we uti-
lized quantitative network methods in analyzing qualitative
aspects of vaccine information–an efficient approach to investigat-
ing the scope and variability of current attitudes and beliefs toward
vaccines. Such findings are pivotal in informing and improving
public health communication of vaccine confidence.
2. Methods

2.1. Data retrieval and document selection

We used ChatterGrabber [27], a web-scraping tool that ran-
domly samples public tweets of Twitter users in the United States.
(Details on ChatterGrabber including search term conditions, qual-
ifiers, and exclusions are in Appendix A). Webpage links from col-
Fig. 1. Maximum k-core subgraphs show clusters of significant vaccine concepts with
connected subgraph in which all nodes have degree of at least k) for networks of [a] posi
vaccine sentiment (k = 2) where increasing node and text size represents increasing betw
network concepts within the positive sentiment network. [b] Maximum k-core (k = 4) su
network. [c] Maximum k-core (k = 2) subgraph show clusters of significant network con
lected tweets identified current sources of vaccine information
based on the frequency of link shares during the time of data col-
lection. Our analysis focuses on the textual content of relevant
webpage articles (also referred to as documents) and not the
tweeted text per se. Document types selected for analysis included
blog posts, media stories, informational articles, and news reports.
We excluded academic publications, court documents, and media
formats such as images, PDF files, and videos.

A total of 26,389 tweets were collected between April 16, 2015
and May 29, 2015 from which we obtained 8416 unique web links.
To generalize findings from a representative pool of popular vac-
cine articles, we screened the top 100 most shared links for rele-
vance from which we randomly sampled 50 for analysis; we
excluded articles concerning non-human vaccines.
2.2. Vaccine sentiment coding

Articles were read for content and manually coded as having
either positive, negative, or neutral sentiment toward vaccines.
Coding was determined by whole-text assessment which included
examining the title/headline and the source/domain of articles. In
general, differences between sentiment were determined based
on consistency of statements that clearly identified group affilia-
tion, such as encouraging vaccination and highlighting benefits
(positive sentiment) or discouraging vaccination and highlighting
risks (negative sentiment). Articles that were ambiguous or mixed
in sentiment were coded as neutral. Three researchers (GJK, SRE,
in the semantic networks. Visualizations of maximum k-cores (i.e., the maximal
tive vaccine sentiment (k = 4), [b] negative vaccine sentiment (k = 4), and [c] neutral
eenness centrality. [a] Maximum k-core (k = 4) subgraph show clusters of significant
bgraph show clusters of significant network concepts within the negative sentiment
cepts within the neutral sentiment network.



Fig. 1 (continued)
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LM) independently coded a subset of 10 articles for sentiment;
there was no inter-annotator variability and resulted in consistent
sentiment coding.

2.3. Construction of vaccine sentiment networks

Document text networks were merged by sentiment group,
thereby aggregating similar documents into a single semantic net-
work, one for each vaccine sentiment (positive, negative, and neu-
tral). We standardized node and edge labels to resolve lexical
differences and grammatical dependencies across disparate
sources. Details on semantic network annotation, construction,
and analysis of vaccine sentiment networks are described in
Appendix B.

2.4. Semantic network analysis

Our analysis of the positive, negative, and neutral sentiment
networks was focused on the greatest connected component (or
subgraph). We applied several measures of network analysis to
the generated semantic networks in order to limit biased interpre-
tation of selected network metrics [25] (Appendix B). Descriptive
statistics included network size, density, and diameter, where net-
work size is the total number of nodes (i.e., vaccine concepts); den-
sity measures the interconnectedness of nodes [28]; and diameter
characterizes compactness of the network. We evaluated multiple
measures of centrality which describes the importance, influence,
or significance of concepts within the semantic network in various
ways [29]; specific types include degree centrality, betweenness
centrality, closeness centrality, and eigenvector centrality [30].

Community detection algorithms [31] describe cohesive groups
in the network [32], and clusters of important vaccine concepts
were visualized by the network’s maximum k-core (the maximal
connected subgraph in which all nodes have degree of at least k)
[33]. We assessed differences in emphasis framing, which is the
salience of certain story elements over others [34], for central con-
cepts from networks of differing sentiment. Closeness vitality [49]
measures how much the distances between all pairs of nodes
change when a particular node is removed. This is an indicator of
how much each node contributes to the overall structural cohesion
of the network.

NetworkX [35] and iGraph [36] were used in network construc-
tion and analysis; visualizations were created in Gephi [37].
3. Results

3.1. Document characteristics

From the sample of webpages (n = 50), we coded 23 documents
as having positive vaccine sentiment, 21 documents with negative
vaccine sentiment, and 6 documents were classified as neutral.
Table 1 summarizes document characteristics grouped by vaccine
sentiment. Blog posts were the most shared document type overall,
followed by news and ‘‘alternative news” for positive and negative
sentiment articles respectively. Content of positive sentiment doc-
uments focused on specific childhood, adolescent, and adult vacci-
nes, whereas negative sentiment documents focused primarily on
childhood vaccines and vaccination in general.
3.2. Document text networks

Network properties of vaccine documents are summarized in
Table 2. Negative sentiment documents (n = 21) formed the largest
semantic networks with a mean network size of 90.9 concepts
(nodes) per document, compared to smaller networks of positive
sentiment (n = 23) and neutral sentiment documents (n = 6) with
a mean of 51.3 and 43.8 concepts per document respectively.
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3.3. Vaccine sentiment networks

Document text networks were aggregated by vaccine sentiment
to form 3 semantic networks representing positive, negative, and
neutral sentiment. Network measures are summarized in Table 2.
Network visualizations are in Appendix C.

In regards to the greatest component subgraph, size indicates
the number of concepts in the network, whereas density describes
interconnectedness of the concepts. The greatest component of the
negative network was largest in size (1140 concepts) but less
dense (0.0027) than the positive network (0.0061) also much smal-
ler in size (585 concepts). Community detection analysis [31] iden-
tified 21 distinct communities within the positive network, 31
communities in the negative, and 10 communities in the neutral
network. Compared to the original number of merged documents
per sentiment network, the number of cohesive communities
exceeded the number of original documents within the negative
and neutral networks, whereas the positive network formed fewer
communities than the original number of documents used in
merging. Community findings and density measures for the posi-
tive network suggest a more cohesive and interconnected belief
system among positive sentiment concepts compared to the larger,
less-connected network of negative sentiment. Correspondingly,
the average clustering coefficient (i.e., the tendency of nodes to
form groups) and average node centrality for degree, betweenness,
closeness, and eigenvector centrality were higher for the positive
network compared to the negative. Positive and negative networks
exhibited structural similarities in regards to diameter (12 and 13,
respectively) and average path length (4.5 and 4.8, respectively).
Visualizations of maximum k-core subgraphs for each sentiment
network highlight clusters of significant concepts in Fig. 1.

3.4. Central concepts

Fig. 2 plots significant concepts of each sentiment network by
centrality measures for degree, betweenness, and closeness cen-
trality (Appendix D). The most central concepts (greater than 2
standard deviations from the mean) ranked by eigenvector central-
ity are plotted in Fig. 3 and listed in Table 3.

Excluding expected nodes such as vaccines and vaccination, the
most central concepts for the positive network included parents,
measles, children, SB 277, autism, community, religious groups, anti-
vaccination, vaccine-autism link, HPV vaccine, meningococcal disease,
and MMR vaccine. Significant concepts within the negative senti-
ment network were children, thimerosal, CDC, vaccine industry, mer-
cury, autism, flu shots, mainstream media, doctors, SB 277, vaccine
ingredients, mandatory vaccines, and pharmaceutical companies.
And the most central concepts of the neutral network were SB
277, anti-vaccination, parents, children, pertussis vaccine, home-
school, education, pertussis, vaccine-autism link, side effects, Dwoskin
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Family Foundation, whole-cell vaccine, effective, acellular pertussis
vaccine, and high-dose flu vaccine.
3.5. Dynamic visualizations

Dynamic, interactive visualizations and network data files from
this study are available online (Appendix E).
4. Discussion

4.1. Semantic network analysis of vaccine sentiment

A long line of research in the psychology of memory and seman-
tic processing has provided evidence for semantic network-like
organization of internal representations and spreading activation
as a process by which memories are activated and meaning is pro-
cessed [53,54,50,51]. In thismodel, when an item inmemory is acti-
vated, e.g., by a person reading about it or hearing about it, the
activation spreads from that node in the person’s internal semantic
network to nearby nodes. Spreading activation is also hypothesized
as the model for the automatic activation of attitudes [55].
Fig. 2. Significant vaccine concepts by measures of degree centrality, betweenness centra
concepts from positive, negative, and neutral sentiment networks. Degree centrality (poin
From this perspective, closeness centrality is a useful metric to
understand the organization of the vaccination semantic networks
(though other centrality measures are quite similar in ranking, as
the results show). Closeness centrality is a direct measure of which
concepts are likely to be activated repeatedly in each of the seman-
tic networks, even as different concepts are mentioned.

Many central concepts of the positive network were present in
the negative network, but not vice versa. For example, while posi-
tive and neutral sentiment documents explicitly addressed the
concept of anti-vaccination, negative sentiment articles did not. In
regards to highly central concepts of the negative network, the
positive network lacked any reference to the vaccine industry and
mainstream media; CDC and doctors also held lesser significance
in the context of positive vaccine sentiment.

Significant concepts within the positive network were related to
health and medicine, such as measles, autism, HPV vaccine, vaccine-
autism link, meningococcal disease, and MMR vaccine. In contrast,
significant concepts of the negative network referred to organiza-
tional bodies such as CDC, vaccine industry, doctors, mainstream
media, pharmaceutical companies, and United States. A notable con-
trast was the emergence of parents as the most central concept in
the positive network, versus children, the most central node in the
negative network.
lity, and closeness centrality. The figure includes centrality measures for significant
t size), betweenness centrality (x-axis), and closeness centrality (y-axis) are plotted.



Fig. 3. Significant concepts ranked by eigenvector centrality. The figure plots the most central nodes by eigenvector centrality score for networks of positive, negative, and
neutral vaccine sentiment.
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Documents expressing positive and neutral vaccine sentiment
were characterized by dense semantic networks with fewer con-
cepts, compared to the semantic network of negative sentiment
which presented a high number of vaccine concepts with low con-
nectivity. Compared to the positive sentiment network, the nega-
tive sentiment network has more components, lower edge
density, a larger diameter, and larger average path length (Table 2).
Hence, positive sentiment documents indicated greater cohesive-
ness in vaccine-positive discourse compared to vaccine-negative
documents which addressed a broad range of topics as potential
contributors to vaccine hesitancy.
4.2. Message framing

Our study revealed sentiment-specific terminology used in
framing positive and negative messages within vaccine communi-
cation. This included differences in term valence such as required
vaccines versus mandated vaccines and side effects versus adverse
effects, the selective targeting of parents versus children, and the
overall presentation of evidence-based science versus social com-
mentary related to issues of governance for the positive and nega-
tive vaccine sentiment networks, respectively.
Overall, the prevalence of negative vaccine sentiment was
demonstrated through diverse messaging, framed around institu-
tional distrust and skepticism towards the organizations that deli-
ver scientific evidence of positive vaccine benefits. This is also
shown by the list of top nodes for the closeness vitality measure
for each network (Table D4), which is an indicator of the concepts
which are responsible for providing structural cohesion to the
semantic network [49]. Positive and negative vaccine articles lar-
gely differed in the framing of trust. Positive articles emphasized
trust in vaccination by relying on scientific evidence as trusted
authority. Negative articles framed trust issues not around vacci-
nation science itself, but around the institutions that govern or
finance matters of personal health. Neutral vaccine articles exem-
plified various sources of news coverage that expressed a mix of
both positive and negative attitudes toward vaccines. Top news
stories at the time of data collection included a new study debunk-
ing the vaccine-autism link and the passing of California Senate Bill
277 [38], which removed exemptions from school vaccination
requirements. News coverage generally expressed positive vaccine
sentiment, reporting official statements and statistics. In contrast,
news coverage by negative vaccine articles additionally introduced
a range of tangential topics, often proposing arguments through
rhetorical questions and reframing official statistics.



Table 3
Top nodes by eigenvector centrality. The table lists the most central concepts of each sentiment network ranked by eigenvector centrality score (greater than 2 standard
deviations from the mean).

Eigenvector centrality

Positive sentiment network Negative sentiment network Neutral sentiment network

Mean = 0.0626 Mean = 0.0318 Mean = 0.0975
Std Dev = 0.0936 Std Dev = 0.06 Std Dev = 0.11
Parents 1 Vaccines 1 SB 277 1
Vaccines 0.8209 Children 0.6188 Vaccines 0.4304
Measles 0.7458 Thimerosal 0.5248 Anti-vaccination 0.4177
Vaccination 0.6373 CDC 0.5054 Parents 0.3863
Children 0.5382 Vaccine industry 0.4898 Children 0.3830
SB 277 0.4207 Mercury 0.4440 Pertussis vaccine 0.3540
Autism 0.4025 Autism 0.3894 Home-school 0.3209
Community 0.3937 Flu shots 0.3367 Education 0.3206
Religious groups 0.3905 Mainstream media 0.3342
Anti-vaccination 0.3802 Doctors 0.2862
Vaccine-autism link 0.3608 SB 277 0.2659
Herd immunity 0.3058 Vaccine ingredients 0.2632
Vaccine refusal 0.3024 Mandatory vaccines 0.2457
Vaccination exemption 0.3013 Pharmaceutical companies 0.2400
Personal belief exemption 0.2909 Vaccine-autism link 0.2041
Disease 0.2829 Toxic chemical ingredients 0.1999
Measles vaccine 0.2706 Aluminum 0.1889
Schools 0.2685 Vaccination 0.1853
HPV vaccine 0.2674 Monosodium glutamate 0.1811
Vaccine delay 0.2603 Hepatitis B vaccine 0.1793
Meningococcal disease 0.2551 Vaccine-injured children 0.1763

Vaccine safety 0.1721
Evidence 0.1655
Informed consent 0.1643
Intelligent questions 0.1612
Formaldehyde 0.1609
Pregnant women 0.1598
Pandemic H1N1 swine flu vaccine 0.1595
Big pharma 0.1591
Vaccines are safe 0.1565
Quackery 0.1552
Vaccine damage 0.1547
SV40 0.1545
Science 0.1531
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4.3. Limitations

We assumed that popular vaccination information shared on
Twitter is representative of prevalent vaccine sentiment, but may
not reflect the broad spectrum of vaccine sentiment in the general
population. Coding documents for neutral sentiment was difficult
since documents presented a mix of both positive and negative
attitudes, and not truly vaccine-neutral. Because health behaviors
are founded upon a variety of beliefs and attitudes that change
over time, vaccine sentiment categories are difficult to delineate
since they do not exist as polarized groups.

While we attempted to resolve issues of meaning and context
by manually transcribing implicit statements into explicit state-
ments, reference resolution grew increasingly difficult across dif-
ferent documents. Consequently, there is potential inconsistency
from the manual annotation of document text into network data,
particularly when dealing with ambiguous language such as slang,
hyperbole, and poetic devices. Despite these limitations, employ-
ing human interpretation of text greatly enhances qualitative
aspects of data and is arguably more accurate than current NLP
methods which lack explicit domain-specific knowledge or situa-
tional information [22]. Lastly, our analysis did not assess the qual-
itative relationships of connected concepts. Future studies
incorporating edge data can provide detailed insight into the com-
parison of belief structures of varying vaccine sentiment.

Our study presents only a broad overview of general network
measures. Greater depth into specific metrics, such as community
detection analysis, can provide useful insight and should be
addressed in future studies.
4.4. Implications for public health and vaccine communication

The SAGE WG on Vaccine Hesitancy [26] states that communi-
cation is a tool to address vaccine sentiment rather than a determi-
nant of hesitancy. However, poor communication can undermine
vaccine acceptance in any setting [39]. Our study lends itself to
the development of effective communication strategies for target
populations by identifying specific factors that influence vaccine
hesitancy–an integral component of every immunization program
[39].

Semantic network analysis of vaccine sentiment in online social
media can enhance our understanding of the scope and variability
of attitudes and beliefs toward vaccination. Our findings empha-
size the need to improve the framing and messaging of public
health communication, that not only highlights the vaccine bene-
fits, but also addresses specific issues related to vaccine hesitancy
and institutional distrust. Enhancing public trust in relevant scien-
tific institutions and engaging in efficient public health communi-
cation is critical in improving vaccine confidence and vaccination
coverage [40].

4.5. Conclusion

We discussed findings from a novel framework that uses
semantic network analysis as an efficient and effective way to ana-
lyze vaccine sentiment. This study adds to a growing body of vac-
cine hesitancy research by investigating emerging topics and the
various discourse surrounding current vaccine perspectives. Find-
ings related to significant concepts, the structure of its relations,
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and semantic qualities can better inform targeted vaccine commu-
nication strategies and enhance effectiveness of public health
efforts to increase vaccine confidence.
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Appendix A. ChatterGrabber parameters, search terms, and
summary of results

ChatterGrabber search terms were selected through an iterative
process involving manual selection and testing of data retrieval as
detailed in [27].

[A1] Description of ChatterGrabber parameters.
Location
 United States
Tweet data
 Text, ID, time posted, retweet count,
favorite count
User data
 Screen name, language

Media data
 Url, display Url
[A2] ChatterGrabber search terms.
Conditions
 Qualifiers
 Exclusions
Vaccine
 Autism
 Bullshit

Vaccinat
 Autistic
 Penn & teller

Vacine
 Conspiracy
 Penn and teller

Vacinate
 Gave my
 Enter the kingdom of heaven

MMR
 Gave me
 Heroin

Antivac
 Oprah
 Eye of a needle
Aspergers
 Thread

Poison
 Molds

Jenny mccarthy
 Record

Kristin cavallari
 Efficacy

Conspiracy
 Shoot up

Mercury
 Needle exchange

Aluminum
 Morphine

Truther
 Knit

Bravo
 Crochet

Anti
 Fracking

Manufacturers
 Insulin

Have known
 Malware

Vaccine choice
 Pincushion

Your child
 Addict

Your right
 Fuel

Cancer
 Needlework

Fertility
 Felt

Constitution
 Caffeine

Risks
 Scaling

Dangerous
 Space
[A3] Twitter data via ChatterGrabber.
n

Total number of collected tweets
 26,389

Number of unique urls
 8416

Number of unique domains
 2372

Number of web articles selected for analysis
 50
Appendix B. Network methods

B1. Network annotation and construction

To create document networks, article text was manually tran-
scribed into structured belief statements, or relevant information
extracted from natural language text. Similar to methods of infor-
mation extraction used by the Knowledge Vault project [41], docu-
ment text was formatted as triples, in which (subject, predicate,
object) correspond to (node, edge, node) in the network. For exam-
ple, the sentence ‘‘Vaccines prevent communicable diseases” is repre-
sented by (vaccines, prevent, communicable diseases). Three
researchers initially annotated a subset of 10 documents to gauge
inter-annotator variability in transcribing article documents into
network datasets. All co-references were resolved and the original
text was adhered to as much as possible. Discordant results were
resolved through consensus in order to maintain standard format-
ting of network data. Final network datasets were synthesized by
standardizing terminology, resolving grammatical dependencies
and lexical differences in the semantic network.

The resulting standards for network vocabulary were based on
term frequency. For example, synonymous nodes labeled ‘‘commu-
nicable diseases”, ‘‘infectious diseases”, and ‘‘contagious diseases”, we
applied the most commonly used term across same-sentiment
documents (in this case ‘‘infectious diseases”) to replace labels of
all semantically equivalent nodes.

B2. Definitions of network measures

Network size is the total number of nodes or vaccine-related
concepts. Density measures the interconnectedness of nodes, cal-
culated as the proportion of existing edges (or relations between
concepts) over all possible edges in the network [42]. Diameter
characterizes the compactness of the network, measured as the
longest path of all shortest paths across all node pairs.

Degree centrality characterizes how connected a node is to
other nodes in the network, measured by its number of connec-
tions (and normalized by the total number of network connec-
tions) [43]. Betweenness centrality measures the frequency of a
given node on the shortest paths to all other pairs of connected
nodes, representing the probability of a concept to be involved in
connecting two other concepts in the semantic network [43,44].
Closeness centrality measures closeness, calculating the sum of
the shortest paths between a node to all other nodes in the net-
work [43]. Nodes with smaller path lengths have higher closeness
centrality and are interpreted to be more important concepts than
nodes with longer paths [45]. Lastly, eigenvector centrality pro-
vides a more complex measure of node influence by assigning rel-
ative scores to all concepts in the network, based on the number
and quality of its relationships; a concept is significant to the
extent that it is connected to other significant concepts [46].

Community detection using the Newman-Girvan algorithm
detects communities by consecutively removing each edge with
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the highest edge betweenness from the graph [31]. Edge-
betweenness refers to the number of shortest paths from one node
to another that traverse through that edge. Cohesive groups in the
network are measured by modularity, in which a good partition
has more intra-community edges than expected at random; mod-
ularity values other than zero represent deviations from random-
ness [32].
[C1] Full semantic network of p
Appendix C. Network visualizations

[C1–C3]: Full semantic networks of vaccine sentiment. Visual-
izations for full semantic networks of [C1] positive vaccine senti-
ment, [C2] negative vaccine sentiment, and [C3] neutral vaccine
sentiment. Node size represents betweenness centrality.
ositive vaccine sentiment



[C2] Full semantic network of negative vaccine sentiment
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[C3] Full semantic network of neutral vaccine sentiment

[C4–C6]: Greatest component subgraph of vaccine sentiment networks. Visualizations of the greatest component subgraph for networks
of [C4] positive vaccine sentiment, [C5] negative vaccine sentiment, and [C6] neutral vaccine sentiment, where increasing node size rep-
resents greater betweenness centrality.
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[C4] Greatest component subgraph of the positive sentiment network
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[C5] Greatest component subgraph of the negative sentiment network
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[C6] Greatest component subgraph of the neutral sentiment network

Appendix D. Degree centrality, betweenness centrality,
closeness centrality, and eigenvector centrality

[D1–D3]: Significant vaccine concepts by centrality. Centrality
characterizes the importance, influence, or power of vaccine-
related concepts in the semantic network. The table lists measures
for the most central concepts (greater than 2 standard deviations
from the network mean) by degree centrality, betweenness cen-
trality, closeness centrality, and eigenvector centrality for [D1]
positive sentiment, [D2] negative sentiment, and [D3] neutral sen-
timent networks.
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[D1] Most central nodes and centrality measures for the positive sentiment network.

Positive vaccine sentiment network

Degree centrality Betweenness centrality Closeness centrality Eigenvector centrality
Mean = 0.0061 Mean = 0.006 Mean = 0.2292 Mean = 0.0626
Std Dev = 0.0107 Std Dev = 0.0203 Std Dev = 0.038 Std Dev = 0.0936

Vaccines 0.1079 Parents 0.2718 Parents 0.3687 Parents 1
Parents 0.0993 Vaccines 0.2176 Vaccines 0.3482 Vaccines 0.8209
Measles 0.0993 Measles 0.1546 Children 0.3415 Measles 0.7458
Vaccination 0.0856 Anti-vaccination 0.1261 Measles 0.3382 Vaccination 0.6373
Autism 0.0616 Religious groups 0.1018 Community 0.3227 Children 0.5382
HPV vaccine 0.0565 Vaccine-autism link 0.0917 Religious groups 0.3219 SB 277 0.4207
Vaccine-autism link 0.0531 Meningococcal

disease
0.0905 Autism 0.3188 Autism 0.4025

Meningococcal disease 0.0531 Children 0.0825 SB 277 0.3158 Community 0.3937
Anti-vaccination 0.0479 Autism 0.0799 Vaccine-autism

link
0.3148 Religious groups 0.3905

Children 0.0445 HPV vaccine 0.0732 Anti-vaccination 0.3121 Anti-vaccination 0.3802
MMR vaccine 0.0411 Community 0.0574 Vaccination 0.3100 Vaccine-autism link 0.3608
Religious groups 0.0394 SB 277 0.0571 Herd immunity 0.3058
Measles vaccine 0.0377 Measles vaccine 0.0523 Vaccine refusal 0.3024
SB 277 0.0342 Side effects 0.0510 Vaccination exemption 0.3013
Disease 0.0308 Gardasil 0.0496 Personal belief

exemption
0.2909

Vaccination
exemption

0.0291 Disease 0.2829

Autism risk 0.0291 Measles vaccine 0.2706
Schools 0.2685
HPV vaccine 0.2674
Vaccine delay 0.2603
Meningococcal disease 0.2551

[D2] Most central nodes and centrality measures for the negative sentiment network.

Negative vaccine sentiment network

Degree centrality Betweenness centrality Closeness centrality Eigenvector centrality
Mean = 0.0027 Mean = 0.0033 Mean = 0.2161 Mean = 0.0318
Std Dev = 0.0058 Std Dev = 0.0148 Std Dev = 0.0365 Std Dev = 0.06

Vaccines 0.1054 Vaccines 0.3280 Vaccines 0.3582 Vaccines 1
Children 0.0623 Children 0.1889 Children 0.3375 Children 0.6188
Thimerosal 0.0588 CDC 0.1274 Vaccine industry 0.3275 Thimerosal 0.5248
CDC 0.0527 Vaccine industry 0.1213 Autism 0.3249 CDC 0.5054
Vaccine industry 0.0518 Autism 0.1028 Mercury 0.3245 Vaccine industry 0.4898
Autism 0.0386 Thimerosal 0.0869 Thimerosal 0.3209 Mercury 0.4440
Doctors 0.0351 Doctors 0.0863 CDC 0.3197 Autism 0.3894
Mainstream media 0.0351 Mercury 0.0629 SB 277 0.3072 Flu shots 0.3367
Mercury 0.0334 Mainstream media 0.0624 Mainstream media 0.3070 Mainstream media 0.3342
Flu shots 0.0263 Mandatory

vaccines
0.0583 Flu shots 0.3037 Doctors 0.2862

Pharmaceutical
companies

0.0263 Flu shots 0.0576 Doctors 0.3028 SB 277 0.2659

Mandatory vaccines 0.0255 Pharmaceutical
companies

0.0552 Vaccine ingredients 0.2990 Vaccine ingredients 0.2632

Vaccination 0.0237 Informed consent 0.0485 Mandatory
vaccines

0.2969 Mandatory vaccines 0.2457

SB 277 0.0228 People 0.0474 Toxic chemical
ingredients

0.2958 Pharmaceutical
companies

0.2400

United States 0.0202 Vaccine ingredients 0.0453 Vaccine-autism link 0.2952 Vaccine-autism link 0.2041
Measles 0.0193 United States 0.0449 Vaccine safety 0.2933 Toxic chemical 0.1999
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Appendix D (continued)

Negative vaccine sentiment network

Degree centrality Betweenness centrality Closeness centrality Eigenvector centrality
Mean = 0.0027 Mean = 0.0033 Mean = 0.2161 Mean = 0.0318
Std Dev = 0.0058 Std Dev = 0.0148 Std Dev = 0.0365 Std Dev = 0.06

ingredients
Vaccine ingredients 0.0184 Measles 0.0444 Intelligent

questions
0.2905 Aluminum 0.1889

Informed consent 0.0184 Vaccination 0.0438 Vaccines are safe 0.2895 Vaccination 0.1853
People 0.0184 Vaccine safety 0.0399 Monosodium glutamate 0.1811
Pandemic H1N1 swine

flu vaccine
0.0184 Adverse effects 0.0354 Hepatitis B vaccine 0.1793

Merck 0.0184 Vaccine-injured children 0.1763
Measles mortality 0.0184 Vaccine safety 0.1721

Evidence 0.1655
Informed consent 0.1643
Intelligent questions 0.1612
Formaldehyde 0.1609
Pregnant women 0.1598
Pandemic H1N1 swine
flu vaccine

0.1595

Big Pharma 0.1591
Vaccines are safe 0.1565
Quackery 0.1552
Vaccine damage 0.1547
SV40 0.1545
Science 0.1531

[D3] Most central nodes and centrality measures for the neutral vaccine network.

Neutral vaccine sentiment network

Degree centrality Betweenness centrality Closeness centrality Eigenvector centrality
Mean = 0.0149 Mean = 0.0342 Mean = 0.1533 Mean = 0.0975
Std Dev = 0.0204 Std Dev = 0.0839 Std Dev = 0.0296 Std Dev = 0.11

SB 277 0.1824 Vaccines 0.5749 Vaccines 0.2335 SB 277 1
Vaccines 0.1118 Dwoskin Family Foundation 0.4092 Side effects 0.2208 Vaccines 0.4304
Anti-vaccination 0.1059 Pertussis vaccine 0.3947 Pertussis vaccine 0.2199 Anti-vaccination 0.4177
Pertussis vaccine 0.0824 Vaccine-autism link 0.3620 Whole-cell vaccine 0.2133 Parents 0.3863
Pertussis 0.0824 SB 277 0.3294 Effective 0.2133 Children 0.3830
High-dose flu vaccine 0.0647 Children 0.2643 Pertussis vaccine 0.3540

Anti-vaccination 0.2554 Home-school 0.3209
Side effects 0.2347 Education 0.3206
Acellular pertussis vaccine 0.2077

[D4] Top ranked nodes by closeness vitality for the three networks.

Closeness vitality

Negative sentiment network Neutral sentiment network Positive sentiment network
Mean = 19148.407 Mean = 7029.871 Mean = 8449.754
Std Dev = 24052.786 Std Dev = 16597.291 Std Dev = 9778.734

Thimerosal 239154 Vaccines 127564 Meningococcal disease 79948
MTHFR C677T defect 222220 Dwoskin family foundation 109972 Vaccination 77396
Millions of dollars 210944 Vaccine-autism link 100468 Polio vaccine opposition 74438
Children with autism 201122 SB 277 49768 Wakefield study 64018
Measles mortality 179468 Acellular pertussis vaccine 48048 HPV vaccine 63748
Vaccine court 172456 Artificial vaccine 43430 Vaccines 61934

(continued on next page)
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Appendix D (continued)

Closeness vitality

Negative sentiment network Neutral sentiment network Positive sentiment network
Mean = 19148.407 Mean = 7029.871 Mean = 8449.754
Std Dev = 24052.786 Std Dev = 16597.291 Std Dev = 9778.734

National vaccine injury compensation program 168948 Anti-vaccination 41638 Autism 61016
Anti-vaccination 145200 Generation Rescue 37594 Orthodox Hasidic Jews 55846
Measles 141736 immune response 34424 Measles 47038
Adverse effects 141140 Focus for Health 32640 Hepatitis A vaccine 44804

3638 G.J. Kang et al. / Vaccine 35 (2017) 3621–3638
Appendix E. Data files

Data files and dynamic web-based interactive visualizations of
semantic networks can be accessed online at: http://dx.doi.org/
10.1016/j.vaccine.2017.05.052.
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