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Previous work has found that people feel significantly more satisfied with explanations of psychological
phenomena when those explanations contain neuroscience information—even when this information is
entirely irrelevant to the logic of the explanations. This seductive allure effect was first demonstrated by
Weisberg, Keil, Goodstein, Rawson, and Gray (2008), and has since been replicated several times
(Fernandez-Duque, Evans, Christian, & Hodges, 2015; Minahan & Siedlecki, 2016; Rhodes, Rodriguez, &
Shah, 2014; Weisberg, Taylor, & Hopkins, 2015). However, these studies only examined psychological
phenomena. The current study thus investigated the generality of this effect and found that it occurs
across several scientific disciplines whenever the explanations include reductive information: reference
to smaller components or more fundamental processes. These data suggest that people have a general
preference for reductive information, even when it is irrelevant to the logic of an explanation.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

What is the relationship between the form of an explanation
and its content? In ideal circumstances, the quality of an explana-
tion should be determined by its success at generating understand-
ing of the target phenomenon. Form should matter less, if at all.
However, there are many cases where the form of an explanation
erroneously influences people’s judgment of its quality, leading
people to feel that they have gained a sense of understanding from
statements or situations that aren’t actually explanatory (see
Trout, 2002). For example, people judge longer explanations as
better (Kikas, 2003; Langer, Blank, & Chanowitz, 1978). Similarly,
both adults (Lombrozo & Carey, 2006) and children (Kelemen,
1999) preferentially endorse teleological explanations that refer
to goals or end-states, even when mechanistic explanations would
be more appropriate.

One particularly interesting instance of this kind of error is the
seductive allure effect in psychology: People judge explanations of
psychology findings as better when those explanations contain
logically irrelevant neuroscience information (Weisberg, Keil,
Goodstein, Rawson, & Gray, 2008). That is, people feel that they
understand a psychological phenomenon better when it is
described using the language of neuroscience, although this
language should make no difference. Although this finding has
been replicated several times, demonstrating its robustness
(Fernandez-Duque, Evans, Christian, & Hodges, 2015; Minahan &
Siedlecki, 2016; Rhodes, Rodriguez, & Shah, 2014; Weisberg,
Taylor, & Hopkins, 2015), it is still unclear why this effect happens.
One possibility is that it is specific to psychology and neuroscience;
something about neuroscientific language in particular plays a role
in improving explanations of psychological phenomena. However,
recent work has not yet identified the mechanism by which
neuroscience content may have this effect. Although early
evidence suggested that neuroscience images influence people’s
judgments (McCabe & Castel, 2008), these results have failed to
replicate (Gruber & Dickerson, 2012; Hook & Farah, 2013;
Michael, Newman, Vuorre, Cumming, & Garry, 2013; see Farah &
Hook, 2013 for a review). Additionally, neuroscience jargon (e.g.,
‘‘fMRI imaging”) has no effect over and above references to the
brain in plain language (e.g., ‘‘brain scans”: Weisberg et al., 2015,
Study 3).

Therefore, neither appealing imagery nor scientific-sounding
jargon is responsible for making neuroscience information seduc-
tive. Although it is still possible that some other property unique
to the pairing of psychology and neuroscience is responsible for
the seductive allure effect, an alternative explanation is that this
effect is representative of a more general bias in judging
explanations.

The current work investigates one potential candidate for this
general bias: a preference for reductive explanations. Reductive
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Fig. 1. Hierarchy of sciences used in current study.
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explanations are those that refer to more fundamental processes
that underlie the target phenomenon or that describe components
that constitute the target phenomenon (see Craver, 2007; van Riel
& Van Gulick, 2016). People may judge explanations of psycholog-
ical phenomena that contain irrelevant neuroscience information
as better because they believe that this is the proper form of a sci-
entific explanation or because explanations that include more fun-
damental information seem more informative (Kim & Keil, 2003).
On this theory, because lay theories in Western culture posit that
the brain underlies psychological states, explanations of psycho-
logical phenomena that contain references to the brain are judged
as better. But this effect should not be limited to psychology; if
explanations with reductive forms are preferred, then the seduc-
tive allure effect should occur whenever an explanation includes
reductive information.

Reductive explanations can be fruitful in some circumstances
(e.g., explaining why a car broke down by referring to its compo-
nent parts). But past experience with effective reductive explana-
tions may lead participants to overly value explanations that
merely appear to reduce a phenomenon to a more fundamental
level. This is consistent with past work showing that people prefer
longer explanations or teleological explanations (Kikas, 2003;
Langer et al., 1978; Lombrozo & Carey, 2006): There are circum-
stances in which such explanations are appropriate, suggesting
that people’s undue preference for them in experimental settings
represents the over-application of a heuristic for judging explana-
tions rather than a complete error. Similarly, a preference for
reduction is not always wrong, but can lead to errors in judgment
when explanations have only the appearance of reduction without
the content.

The philosophical literature does not provide a single, agreed-
upon definition for reductionism. Indeed, much of the debate in
the field centers around when reductive explanations are appropri-
ate (Fodor, 1975; Nagel, 1961). Because our goal is to investigate
the psychological effects of explanations that have a reductionist
form, remaining neutral about whether such explanations are in
fact better, for the present purposes we restrict our investigation
to explanations that contain irrelevant information from a lower
level in a reductive hierarchy of sciences (Fig. 1). We hypothesize
that the seductive allure effect should be seen broadly across the
sciences, leading to preferences of explanations for biological phe-
nomena that contain some information from chemistry, for
example.

To test this hypothesis, we presented subjects with descriptions
of phenomena across a range of sciences in a plausible reductive
hierarchy: social science, psychology, neuroscience, biology, chem-
istry, and physics (Fig. 1). This particular ordering of the hierarchy
makes intuitive sense: Society-level processes reduce to individual
human behavior which reduces to neural activity which reduces to
the activity of individual cells, etc. It is also consistent with
research on the relations between academic disciplines. This
research typically uses a variety of bibliographic measures, such
as overlap in references, clustering of journals, and prerequisites
in college course catalogues, to generate maps of the scientific
landscape (e.g., Fanelli & Glänzel, 2013). A recent meta-analysis
of 20 such maps generated an ordering very similar to the one used
here; although it included a larger number of disciplines, the
ordering of our six target fields was the same as depicted in
Fig. 1 (Klavans & Boyack, 2009). To further confirm that this
hierarchy was intuitive to the participants in the current study,
we included a measure of attitudes towards these difference
sciences.

For the main task of the current study, participants read a brief
description of phenomena drawn from each of these sciences.
Following each description, they were presented with one of four
possible explanations, according to a Quality (good/bad) �
Explanation Level (horizontal/reductive) design. They were asked
to rate the quality of this explanation and to provide a justification
for this rating for a subset of the items. Horizontal explanations
referred only to the science from which the phenomenon itself
was drawn (e.g., using biological language to explain a biological
phenomenon). Reductive explanations included information from
the next lower level in the hierarchy (e.g., using chemical language
to explain a biological phenomenon). Crucially, the reductive infor-
mation we provided did not alter the logic that was central to each
explanation. Thus, the items in our reductive condition are not
accurately representative of true reductive explanations, since true
reduction would likely entail a change not just in vocabulary, but
also in logical structure as more fundamental mechanisms and
principles are invoked. Our items are designed merely to appear
reductive. As with the general preference for greater length or
references to teleology in explanations described above, a
preference for reductive explanations is not in itself an error.
However, our stimuli were carefully constructed so that the
reductive information would not provide any explanatory power,
allowing us to separate out a potential preference for explanations
with a reductive form even in the absence of any helpful reductive
content.

Using the form of a reductive explanation without its
accompanying content allows us to test for a reductive bias while
maintaining logical consistency of explanations across both hori-
zontal and reductive conditions. This design duplicates the design
of previous experiments that demonstrate the seductive allure of
neuroscience, yet applies to the numerous stepwise pairings of dis-
ciplines implied by the aforementioned hierarchy. If participants
show a general preference for the appearance of reduction, they
should judge reductive explanations as better than horizontal
explanations for all sciences, even though the explanatory content
of both is the same. If the seductive allure effect is unique to the
pairing of psychology and neuroscience, however, we should
observe this preference only for psychology and not for the other
sciences.

In addition to collecting participants’ ratings of our explana-
tions, we assessed a variety of individual difference measures to
determine what might influence these ratings. As noted above,
we asked participants to rate the prestige of the sciences that we
included (design based on Fernandez-Duque et al., 2015). We addi-
tionally measured participants’ logical reasoning abilities and their
degree of cognitive reflection (Toplak, West, & Stanovich, 2014),
which might impact their abilities to accurately rate explanations
in general, as well as their overall science literacy (National
Science Board, 2014), which might impact their abilities to think
about explanations within the sciences.
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2. Method

2.1. Participants

Participants were recruited from two populations: workers on
Amazon’s Mechanical Turk (n = 167) and undergraduate students
enrolled in psychology classes (n = 152). MTurk workers were paid
$0.50 for their participation, and undergraduate students received
course credit. Some participants (20 MTurk workers and 40 under-
graduates) were excluded from the sample for failing attention
check questions (described in Section 2.4). The final sample used
for all analyses thus consisted of 147 MTurk workers and 112
undergraduates. MTurk workers (80 women, 55 men, 12 did not
report gender) were 39.8 years of age on average (range: 19–71),
and undergraduates (64 women, 44 men, 4 did not report gender)
were 19.8 years of age on average (range: 18–23). Most of the
MTurk workers (89.8%) had completed at least some college;
46.3% reported having an associate’s or bachelor’s degree, and
15.0% reported having a master’s degree or higher. Among the
undergraduates, 36.0% were freshmen, 28.8% were sophomores,
20.7% were juniors, and 13.5% were seniors; 1 participant did not
report his or her year.
2.2. Design

All participants completed an online survey hosted by Qualtrics.
The survey had six components: Rating Explanations, Science
Literacy, Reflective Thinking, Logical Syllogisms, Perceptions of
Science, and Demographic Information. All participants completed
the Rating Explanations component first and the Demographic
Information last. The other four components were presented in a
random order after the Rating Explanations component.

The Rating Explanations task used a 2 (Explanation Level:
horizontal, reductive) � 2 (Quality: good, bad) � 6 (Science:
physics, biology, chemistry, neuroscience, psychology, social
science) design. To be consistent with previous studies of this
effect (Weisberg et al., 2008, 2015), explanation level was
between-subjects: Participants were randomly assigned to either
the horizontal (74 MTurk workers, 54 undergraduates) or
reductive (73 MTurk workers, 58 undergraduates) condition.
Quality and science were within-subjects: All participants
rated two explanations from each science, one good and one
bad.
Table 1
Sample phenomenon and explanations from biology.

Male anole lizards bob their heads up and down rhythmically as part of a mating ritua
see a female lizard of their species. However, their rate of head-bobbing also increases
are present.
Why do male lizards bob their heads when other males are nearby?

Good

Horizontal This happens because the male lizards are extremely territorial, and hea
bobbing is a distinctive behavior typical of this particular species of liza
During mating season when they are in competition with each other fo
females, males use various dominance displays to defend their territory
They perceive other males as a threat and engage in increased head-
bobbing, which is a sign of aggression

Reductive This happens because the male lizards are extremely territorial. During
mating season when they are in competition with each other for female
males use various dominance displays to defend their territory. They
perceive other males as a threat and engage in increased head-bobbing
which is a sign of aggression. Aggressive behavior is known to be
associated with elevated levels of testosterone and other aggression
enabling hormones
2.3. Materials

The Rating Explanations task used 24 different phenomena
(four per science). All phenomena and their corresponding expla-
nations are available in the online supplemental materials and
via the Open Science Framework (see Table 1 for an example).
The phenomena described concepts, principles, or research find-
ings from each of the six sciences. To select the 24 phenomena,
we began with a set of 46 (between 5 and 10 per science) and pre-
sented them to participants from MTurk (N = 58) and the psychol-
ogy participant pool (N = 72). We presented a subset of 23
phenomena to each participant, chosen so that each participant
received half of the pilot phenomena from each discipline. Partici-
pants read only the phenomena without any accompanying expla-
nations. We asked (a) how interested participants were in the
phenomenon (3-point scale: not interested, somewhat interested,
very interested), (b) whether they already knew an explanation
for the phenomenon, and (c) in which discipline the phenomenon
belonged (anthropology, chemistry, physics, sociology, economics,
neuroscience, psychology, political science, biology, or other). For a
subset of 3 of the items where participants indicated that they
already knew the explanation, we asked participants to provide
the explanation in order to verify their initial ratings. To select
which phenomena from this pilot set would be used in the study,
we chose the 4 from each discipline that had the best combination
of high interest scores, low rates of participants claiming that they
already knew the explanation, poor explanations for those partici-
pants who provided them, and accurate categorizations by disci-
pline. All of the phenomena we chose received a majority of
‘‘somewhat interested” or ‘‘very interested” scores and were cate-
gorized into their correct field by a majority of participants. Partic-
ipants said that they already knew the explanation for these
phenomena only 26% of the time on average. The complete set of
pilot data is provided in the online supplemental materials.

For each phenomenon, we constructed four corresponding
explanations: horizontal-good, horizontal-bad, reductive-good,
and reductive-bad. All of the explanations were verified by experts
in the respective fields. This was done by consulting with these
experts, both in person and over email, throughout the process of
developing the stimuli. In our conversations with the experts from
each field, we explained the goals of the experiment, and the
authors and the expert edited the explanations together to ensure
that they met these goals. More details are provided below as we
describe each explanation category.
l to attract females. They typically increase their rate of head-bobbing when they
when they see another male lizard of the same species, even if no female lizards

Bad

d-
rd.
r
.

This happens because the male lizards are seeking mates, and head-bobbing
is a distinctive behavior typical of this species of lizard. During mating
season when they are trying to attract females, males use a variety of
behaviors that are characteristic of anole lizards. They perceive the
presence of other males and engage in increased head-bobbing, which is
commonly seen during mating season

s,

,

-

This happens because the male lizards are seeking mates. During mating
season when they are trying to attract females, males use a variety of
behaviors that are characteristic of lizards. They perceive the presence of
other males and engage in increased head-bobbing, which is commonly
seen during mating season. Aggressive behavior is known to be
associated with elevated levels of testosterone and other aggression-
enabling hormones
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The horizontal-good versions of the explanations were the ones
that researchers or textbooks provided for the phenomena, and our
expert consultants verified that these explanations were clear and
accurate (Table 1). The bad explanations were constructed by
removing the key explanatory information from the good explana-
tions and replacing it with either circular restatements of the phe-
nomenon or with non-explanatory information. For the example in
Table 1, the information about male lizards being in competition
with each other for mates was replaced with a restatement of
the information from the phenomenon about males trying to
attract females. In another example, information about why micro-
waves can cook a potato faster than traditional ovens was replaced
with irrelevant information about how gas ovens use fuel and
microwaves use electricity. As in these examples, all of the bad
explanations made statements that were true; at no point did we
provide participants with false information. This was done so that
participants could not merely use the accuracy or inaccuracy of the
information provided by the explanation in making their judg-
ments. Crucially, however, the bad explanations provided no
mechanistic information that could explain the phenomenon. We
worked closely with our expert consultants to ensure that the
bad explanations were indeed non-explanatory. After the creation
of the full stimulus set, we coded each item for whether the bad
explanations used circularity or irrelevant information to deter-
mine whether this influenced participants’ judgments.

Both horizontal-good and horizontal-bad explanations used
only terminology and concepts from the same discipline as the
phenomenon. That is, biological phenomena were described only
in biological terms, chemical phenomena were described in chem-
ical terms, etc. Explanations in the reductive condition additionally
used terminology from the discipline below that of the phenomena
in our reductive hierarchy: biological explanations were supple-
mented with chemistry information, chemistry explanations were
supplemented with physics information, etc. For phenomena from
the domain of physics, the reductive explanations referred to smal-
ler particles and/or more fundamental forces (e.g., reducing ‘‘fric-
tion” to ‘‘vibration of molecules”). We did not rewrite the
entirety of the horizontal explanations in the terms of the reduc-
tive discipline, but rather included terminology and concepts from
that discipline where possible within the explanation’s existing
structure. This allowed us to match our stimuli closely across con-
ditions and to maintain the same explanatory information in both
conditions.

The bold text in Table 1 is the added reductive information
(bold text is used here for emphasis, but was not used in the stim-
uli presented to participants). In this case, it was presented as an
additional piece of information at the end of the explanation. In
other cases, the reductive explanations translated some of the
information into different but equivalent terms from the reductive
field. In the microwave example mentioned above, the good-
reductive explanation replaced ‘‘create friction in the water inside
the potato” with ‘‘cause the water molecules inside the potato to
vibrate.” We coded how the reductive information was
incorporated into the explanations to determine if this affected
participants’ ratings.

We worked with our expert consultants to ensure that all of the
information provided by the reductive explanations was both true
and irrelevant to the logic of the explanation: Saying that micro-
waves create friction inside the potato is equivalent to saying that
microwaves cause vibration in water molecules inside the potato.
Thus, the reductive information never added any additional
explanatory information. In this way, our reductive explanations
allowed us to test whether participants were genuinely paying
attention to the logic of the explanation (which was equivalent
between the horizontal and reductive versions of each explana-
tion) or whether their ratings of explanation quality would be
swayed by the inclusion of true, but logically irrelevant, informa-
tion from a more fundamental discipline.

For each phenomenon, the four versions of the explanation
were matched as closely as possible outside of the manipulations
for quality and explanation level. The added reductive text was
identical for good and bad versions of the explanation. Length of
explanation was carefully matched; within a phenomenon, the
four versions of the explanation never differed in length by more
than 4 words. Additionally, there were no significant differences
in average word count among the six sciences.

The 24 phenomena were divided into two pre-determined sets
of 12 (two per science), and participants were randomly assigned
to receive one of the two sets. Each set was further subdivided into
two blocks of six phenomena (one per science); the order in which
these two blocks were presented was randomly determined for
each participant. Within each block, the six phenomena were pre-
sented in a random order. Each participant saw one good and one
bad explanation from each science; two combinations of good and
bad explanations were pseudorandomly determined ahead of time
and participants were randomly assigned to one of the two
different permutations. Further, participants were randomly
assigned to either the horizontal or reductive condition, and all
12 explanations that they rated came from their assigned explana-
tion level. This counterbalancing method led to 16 different
randomly-assigned presentation orders in a 2 (Item Set: A or
B) � 2 (Block Order) � 2 (Good/Bad combination)� 2 (Explanation
Level: horizontal, reductive) design.

2.4. Procedure

2.4.1. Rating explanations
All participants completed the Rating Explanations task first.

For this task, participants used a sliding scale ranging from 3 to
�3 to indicate their responses. They were first given instructions
on how to use the slider; this also served as a check that partici-
pants were reading instructions. They were told to use the slider
to select 0 on the first page in order to proceed with the survey.
If they selected anything other than 0, they were directed to
another page asking them again to select 0. Participants who did
not select the correct response on this second page (three MTurk
workers and nine undergraduates) were excluded from analyses.

After these general instructions on using the slider, participants
were given instructions for the explanations task (modified from
Fernandez-Duque et al., 2015):

You will now be presented with descriptions of various scien-
tific findings. All the findings come from solid, replicable
research; they are the kind of material you would encounter
in a textbook. You will also read an explanation of each finding.
Unlike the findings themselves, the explanations of the findings
range in quality. Some explanations are better than others: They
are more logically sound.

Your job is to judge the quality of such explanations, which
could range from very poor (�3) to very good (+3).
On each trial, participants were presented with a description of
a scientific phenomenon, which was displayed for 10 s before par-
ticipants could advance to the next screen. On the next screen, an
explanation was displayed below the phenomenon, and
participants were instructed to rate the quality of the explanation.
Participants rated 12 explanations, with an attention check trial
administered after the first six (Oppenheimer, Meyvis, &
Davidenko, 2009). This trial was similar in format to the others.
First, a description of a phenomenon was presented for 10 s. When
participants advanced to the next screen, instead of seeing an
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explanation, they saw text instructing them to select 3 on the scale.
Participants who did not select 3 (17 MTurk workers and 31 under-
graduates) were excluded from analyses.

After completing all 12 trials, participants were asked to give
further justification of their responses for two of the phenomena
they had viewed. The survey software randomly selected one phe-
nomenon for which the participant had given a positive rating and
one for which they had given a negative rating. These two were
presented to participants in a random order. Participants were
shown the phenomenon and explanation again and reminded of
whether their rating had been positive or negative. They were then
asked to explain why they gave that rating and to describe what
additional information would have improved the explanation.
These open-ended questions were followed by two multiple choice
questions.1 First, participants were asked how reading the
explanation changed their understanding of the phenomenon, with
five response options: ‘‘I understand it much better than I did
before”, ‘‘I understand it a little better than I did before”, ‘‘My
understanding has not changed”, ‘‘I understand it a little less than
I did before”, ‘‘I understand it a lot less than I did before”. The last
question asked whether participants would like to change their
rating after having thought more about the explanation; they could
respond that they would make their rating higher, make it lower, or
keep it unchanged.

After the explanations task, participants completed four addi-
tional measures, presented in random order: Science Literacy,
Reflective Thinking, Logical Syllogisms, and Perceptions of Science.
The complete set of questions for each of these measures are
included in the online supplemental materials and via the Open
Science Framework.
2.4.2. Science literacy
To assess participants’ general understanding of science, we

used a set of science indicator questions from the National Science
Foundation (National Science Board, 2014). Questions assessed
participants’ basic understanding of probability and experimental
design, as well as factual knowledge from a variety of scientific dis-
ciplines. Participants were given one score for this measure that
represented the total number of questions they answered correctly
(out of 15).
2.4.3. Reflective thinking
Reflective thinking was measured using an updated version of

the Cognitive Reflection Test (Toplak et al., 2014). This measure
consists of four mathematical word problems. For each, there is
an intuitive, but incorrect, answer that follows from a quick read-
ing of the question. Computing the correct answer requires partic-
ipants to think more carefully about the problem. Participants’
scores on this measure represented the number of questions they
answered correctly (out of 4).
2

2.4.4. Logical syllogisms
To assess logical reasoning, participants were asked to solve

four logical syllogisms presented in multiple choice format. Each
consisted of two premises (e.g., ‘‘Some mechanics are baseball fans.
No baseball fans enjoy board games”). Participants were then given
three possible conclusions and a ‘‘None of the above” option and
asked to indicate which conclusion must be true given the pre-
mises. In pilot testing (N = 35), participants averaged 2.3 out of 4
correct on these items (SD = 1.0; Range = 0–4). Participants’ scores
on this measure represented the number of questions they
answered correctly (out of 4).
1 Analysis of these questions is included in the online supplemental materials.
2.4.5. Perceptions of science
This measure was adapted from Fernandez-Duque et al. (2015)

to assess participants’ views of 10 scientific disciplines:
anthropology, chemistry, physics, sociology, economics, neuro-
science, psychology, political science, and biology. Participants
rated each science on a 10-point scale in response to three different
questions (presented in a random order). The questions asked
about the perceived scientific rigor of each discipline, the extent
of the knowledge gap between a novice and an expert in each
discipline, and the societal prestige of each discipline. For each dis-
cipline, the ratings on the three items were summed to create a
single score (out of 30).

2.4.6. Demographics
At the end of the survey, participants answered a series of

demographic questions, including gender, age, and year in school
(for undergraduates) or highest degree completed (for MTurk
workers). Participants from both samples were asked to pick the
category that most closely matched the field of their highest
degree (physical sciences, social sciences, engineering, humanities,
health, and business) and to give the exact field. They were also
asked whether they had taken any college- or graduate-level
courses in anthropology, chemistry, physics, sociology, economics,
neuroscience, psychology, political science, biology, or philosophy.
3. Results

Data from the explanations task were analyzed with a
mixed-effects linear regression model (using the lme4 package in
R) predicting the rating given on each trial from the sample
(MTurk, undergraduates), the quality of the explanation (good,
bad), the explanation level (horizontal, reductive), and the science
from which the phenomenon was drawn (physics, chemistry, biol-
ogy, neuroscience, psychology, and social science). Sample and
explanation level were between-participants variables and quality
and science were within-participants. All possible interactions
between variables were tested. The four-way interaction and most
of the three-way interactions did not significantly improve model
fit, as assessed by likelihood ratio testing, and these were dropped;
this did not change the significance of any other predictors in the
model.

Different random-effects structures were tested, and the best-
fitting model included random intercepts by participant and item
as well as a random effect of item on the slope for the quality vari-
able. The final regression model can be seen in Table 2. Significance
levels were calculated by generating bootstrapped confidence
intervals for the regression coefficients at 90%, 95%, and 99%.2

The science variable was deviation coded such that the coefficient
for each science represents the difference between the effect of that
science and the grand mean of sample; physics was the reference
level included in the model intercept. In all tables and graphs, the
science listed refers to the discipline from which the phenomenon
was drawn (e.g., the bars for Biology in Fig. 2 show participants’
responses to explanations for biological phenomena, which either
did or did not include information from chemistry).

3.1. Explanation level

The primary research questions were whether participants
would prefer reductive explanations and whether this would differ
by the science of the phenomenon. The regression revealed a
Significance levels obtained using this method were the same as those found
using the lmerTest package in R, which uses Satterthwaite’s approximation to
determine degrees of freedom.



Table 2
Mixed-effects regression predicting ratings of explanations.

Predictor Estimate [95% CI] t value

Intercept 1.13 [0.96, 1.29] 13.32**

Sample �0.25 [�0.44, �0.07] �2.66**

Quality 1.27 [1.07, 1.47] 12.20**

Explanation Level 0.21 [0.02, 0.42] 2.23*

Science
Chemistry 0.08 [�0.24, 0.42] 0.49
Biology 0.05 [�0.27, 0.42] 0.33
Neuroscience 0.28 [�0.07, 0.63] 1.67
Psychology �0.27 [�0.60, 0.08] �1.59
Social Science �0.14 [�0.45, 0.15] �0.86

Sample � Quality 0.54 [0.30, 0.76] 4.92**

Sample � Explanation Level �0.13 [�0.52, 0.27] �0.67

Sample � Science
Chemistry 0.05 [�0.17, 0.29] 0.43
Biology �0.14 [�0.37, 0.11] �1.13
Neuroscience 0.20 [�0.05, 0.42] 1.66+

Psychology 0.12 [�0.10, 0.35] 0.98
Social Science �0.12 [�0.36, 0.13] �1.00

Quality � Explanation Level �0.14 [�0.37, 0.10] �1.33

Quality � Science
Chemistry �0.19 [�0.62, 0.20] �0.83
Biology 0.00 [�0.49, 0.43] 0.00
Neuroscience �0.30 [�0.75, 0.14] �1.31
Psychology 0.44 [0.00, 0.87] 1.90+

Social Science �0.02 [�0.42, 0.38] �0.09

Explanation Level � Science
Chemistry 0.04 [�0.19, 0.27] 0.32
Biology 0.03 [�0.20, 0.27] 0.21
Neuroscience 0.08 [�0.16, 0.33] 0.69
Psychology 0.22 [�0.02, 0.44] 1.79+

Social Science �0.39 [�0.65, �0.15] �3.19**

Sample � Quality � Explanation
Level

0.49 [0.01, 0.94] 2.23*

* p < 0.05.
** p < 0.01.
+ p < 0.10.
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significant main effect of explanation level (Fig. 2): Reductive
explanations (M = 1.26, SD = 1.71) were rated significantly higher
than horizontal explanations (M = 1.04, SD = 1.88). There were also
significant Explanation Level � Science interactions, indicating
that the magnitude of this overall effect differed by science.
Specifically, the effect of explanation level was marginally larger
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Fig. 2. Average ratings of explanations by science, explanation lev
for psychology compared to the rest of the sample. Additionally,
the explanation level coefficient for social science was significantly
smaller than the rest of the sample.

To further investigate this interaction, we conducted separate
regression analyses for each science predicting rating from
explanation level. Because this analysis still included multiple rat-
ings per participant and different items representing each science,
random intercepts for subject and item were included. The results
can be seen in Table 3. The effect of explanation level was statisti-
cally significant for psychology and neuroscience and marginally
significant for physics, chemistry, and biology. In all of these
sciences, in line with our hypothesis, reductive explanations were
rated higher than horizontal ones. Within social science, reductive
explanations were given lower ratings than horizontal explana-
tions, but the difference was not statistically significant. The statis-
tically significant difference between social science and the rest of
the sample observed in the main regression reflects this lack of a
condition effect in social science compared to the other sciences.
3.2. Quality and sample

We were also interested in participants’ general ability to tell
good from bad explanations and in any differences between under-
graduate students and MTurk workers. The regression analysis
(Table 1) revealed significant main effects of quality and sample.
Good explanations (M = 1.76, SD = 1.43) were rated significantly
higher than bad explanations (M = 0.53, SD = 1.93). Undergraduate
students (M = 1.01, SD = 1.85) gave significantly lower ratings on
average than MTurk workers (M = 1.26, SD = 1.76). However, both
of these effects are qualified by significant Sample � Quality and
Sample � Quality � Explanation Level interactions. These interac-
tions indicate that the difference between good and bad explana-
tions was larger for undergraduate students than for MTurk
workers, and that the Quality � Explanation Level interaction
was larger for MTurk workers than for undergraduate students
(Fig. 3).

To further explore these interactions, we conducted separate
regressions for each sample predicting rating from quality and
explanation level (including the same random effects structure as
the primary regression model). Among MTurk workers, there were
significant main effects of quality (b = 1.00, 95% CI[0.82, 1.21]) and
explanation level (b = 0.28, 95% CI[0.01, 0.54]) and a significant
interaction between the two (b = �0.39, 95% CI[�0.68, �0.10]).
Among undergraduate students, there was a significant main effect
ology Neuroscience Psychology Social Science

 Phenomenon

Horizontal−Good
Reductive−Good
Horizontal−Bad
Reductive−Bad

el, and quality. Error bars represent 95% confidence intervals.



Table 3
Effect of explanation level by science.

Science Horizontal:
mean (SD)

Reductive:
mean (SD)

Regression coefficient
[95% CI]

Physics 1.02 (1.87) 1.27 (1.70) 0.25 [�0.08, 0.54]+

Chemistry 1.09 (1.90) 1.36 (1.63) 0.26 [�0.05, 0.54]+

Biology 1.08 (1.92) 1.34 (1.71) 0.25 [�0.03, 0.60]+

Neuroscience 1.26 (1.81) 1.56 (1.50) 0.31 [0.02, 0.56]*

Psychology 0.66 (1.92) 1.09 (1.74) 0.43 [0.09, 0.74]*

Social
Science

1.13 (1.84) 0.90 (1.91) �0.17 [�0.49, 0.09]

* p < 0.05.
+ p < 0.10.
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Fig. 3. Sample � Quality � Explanation Level interaction.
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of quality (b = 1.54, 95% CI[1.27, 1.82]), but the main effect of
explanation level (b = 0.15, 95% CI[�0.15, 0.42]) and the interaction
(b = 0.09, 95% CI[�0.21, 0.42]) were not significant. Thus, although
both groups rated reductive explanations higher on average than
horizontal explanations, this difference was only statistically sig-
nificant among the MTurk workers. Furthermore, MTurk workers
were more affected by reductive information in their rating of
bad explanations than good explanations; no such interaction
was observed for undergraduates.
3.3. Interim summary

First, it is clear that participants are able to tell good from bad
explanations, although undergraduate students were more critical
of bad explanations than MTurk workers. More importantly, these
data provide evidence that the seductive allure effect is not specific
to the pairing of psychology and neuroscience. In five of the six
scientific disciplines tested, participants gave marginally or signif-
icantly higher ratings to explanations that included reductive
information, although the effect was strongest for psychology
explanations with added neuroscience. The opposite effect was
observed for social science phenomena; participants gave lower
ratings to the reductive explanations that included information
from psychology.
3.4. Justifications

After participants rated their 12 phenomena and explanations,
they were asked to explain briefly why they gave the rating that
they did for two of those items: one that they had rated positively
and one that they had rated negatively. For participants in the
reductive condition, two independent raters coded whether the
justifications included specific reference to the reductive informa-
tion from the explanation (Cohen’s kappa = 0.89). Of the 231 justi-
fications given by participants in the reductive condition, 20.8%
contained a reference to the reductive information (e.g., ‘‘It relates

the phenomenon to specific cognitive structures, like the frontal

lobe”; ‘‘It does not explain how the error in the P53 gene occurs”)
According to a mixed-effects logistic regression predicting whether
a justification included reference to the reductive information,
undergraduate students mentioned reduction significantly more
(27% of justifications) than MTurk workers (15% of justifications;
odds ratio = 2.12, 95% CI[1.05, 4.29]). This is consistent with earlier
work on the seductive allure effect in which undergraduate stu-
dents were more likely to refer to the brain when justifying their
ratings of psychology explanations (Weisberg et al., 2015).

3.5. Additional measures

We next investigated whether ratings of explanations were
affected by measures of general understanding of science and logic.
To do this, difference scores were computed for each subject by
subtracting their average rating of the bad explanations from their
average rating of the good explanations. Each participant thus had
a single score reflecting their ability to discriminate good from bad
explanations. Correlations between these difference scores and
scores on the logic, reflective thinking, and science literacy mea-
sures are presented in Table 4. Difference scores were significantly
positively correlated with scores on logical reasoning, reflective
thinking, and science literacy: For each of these measures, partici-
pants who scored higher were better able to tell good from bad
explanations.

Participants also provided information about courses taken in
different scientific fields (physics, chemistry, biology, neuro-
science, psychology, and sociology). The total number of sciences
(out of 6) in which a participant had taken courses was a signifi-
cant predictor of overall difference scores in a linear regression: F
(1,214) = 6.27, p < 0.05, R2 = 0.02. That is, participants who had
studied a larger number of sciences at a college level or higher
were better at discriminating good from bad explanations in this
task. We also predicted that participants who had completed
coursework in philosophy might be better at detecting bad expla-
nations because philosophy courses often include explicit instruc-
tion in logic and analyzing explanations. Students who had taken
philosophy courses did perform significantly better on logical syl-
logisms than those who had not, t(214) = 2.56, p < 0.05, d = 0.35.
However, philosophy coursework was not a significant predictor
of difference scores on the explanations task in a linear regression:
F(1,214) = 0.14, p = 0.71.

3.6. Perceptions of science

As described in Section 2, participants rated each science on a
10-point scale for three different questions; the three ratings were
summed to give a single score out of 30 for each science. The
summed scores for sociology, economics, and political science
were highly correlated (alpha = 0.79 for undergraduates and 0.82
for MTurk workers), and the three were averaged to create a ‘‘social
science” score. By and large, these ratings mirror our reductive
scale of the sciences, with the more fundamental sciences being
rated as more rigorous, difficult, and prestigious. The exception
to this is neuroscience, which was rated higher than the three more
‘‘fundamental” sciences. Paired t-tests were conducted on all
adjacent pairs of fields (e.g., physics vs. chemistry, chemistry vs.
biology, etc.); all comparisons were statistically significant



Table 4
Correlations between difference scores and other variables.

Reflective
thinking

Science
literacy

Difference
scores

Logic 0.27* 0.13 0.18*

Reflective thinking 0.33* 0.27*

Science literacy 0.26*

* p < 0.008 (Alpha corrected for multiple comparisons).
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(p < 0.001). Means and effect sizes (Cohen’s d for within-subjects
tests) are shown in Fig. 4.
Table 5
Coding of explanation properties.

Item Circularity of bad
explanations

Centrality of reductive
explanations

Physics 1 4
Chemistry 1 2
Biology 2 0
Neuroscience 0 3
Psychology 4 2
Social Science 2 4

Total (out of 24) 10 15

Note: Cell values represent the number of items per science (out of 4) that were
coded as displaying each property. More information about this coding is available
in the online supplemental materials.
3.7. Item by item analyses

The analyses discussed thus far revealed some interesting
differences between sciences. However, it is possible that these
differences could be explained in terms of differences among the
individual stimulus items, rather than to more general differences
between the sciences. Although we made every effort to match
stimuli as closely as possible, there were still item-by-item differ-
ences in how bad explanations differed from good ones and how
reductive explanations differed from horizontal ones. To assess
this, we coded all of the stimuli on two dimensions of interest:
whether the bad explanations were circular and whether reductive
information was embedded in the central part of the explanation.
The 24 phenomena were coded independently by each of the three
authors; disagreements were resolved through discussion.

The first dimension regarded the difference between good and
bad explanations within a stimulus item. The bad versions of each
explanation were coded as either circular or non-circular. Circular
explanations involved merely restating the information presented
in the phenomenon without providing any additional information;
non-circular items included information not present in the phe-
nomenon, but this information was not sufficient to explain the
phenomenon. We hypothesized that circular explanations would
be rated lower because the circularity would make it easier for par-
ticipants to see that the bad explanation did not provide an answer
to the phenomenon in question.

The second dimension regarded the difference between hori-
zontal and reductive explanations. Specifically, we coded whether
the reductive information was presented as central or peripheral to
the explanation. For example, in Psychology Item 2 about the
other-race effect (see online supplemental materials), the reduc-
tive information (substituting ‘‘fusiform face area” for ‘‘perceptual
system”) is present within a sentence explaining that experience
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Fig. 4. Average rating on perception scale for each scientifi
with people of other races tunes the brain to better recognize dif-
ferences between faces. In contrast, in Psychology Item 4 about
arithmetic abilities in infancy, the labeling of the math area of
the brain as the parietal lobe is in its own sentence, separate from
the explanation about how infants’ expectations affect their look-
ing time. We hypothesized that reductive information would be
more persuasive if it was embedded within the crux of an explana-
tion because it would seem to contribute more to the explanation.
On the other hand, when the reductive information was added out-
side of the primary explanation, it could have boosted an explana-
tion’s perceived quality by appearing to provide additional
information.

Table 5 displays the number of items per science that were
coded as displaying each property. Because the sciences differ in
the extent to which each property was present, it is possible that
previously observed differences by science could be explained by
differences in these stimulus properties. Therefore, we examined
whether each property significantly predicted ratings of explana-
tions and whether controlling for that property in our primary
regression analyses affected the results.

As hypothesized, in a regression predicting explanation rating
from quality, explanation level, and circularity (including random
intercepts for participants), there was a significant Quality � Circu-
larity interaction (b = �0.26, 95% CI[�0.49, �0.04]): The difference
between good and bad explanations was larger when the bad
explanation was circular (Mgood = 1.68, Mbad = 0.32) than when it
was not (Mgood = 1.84,Mbad = 0.72). There were no significant inter-
actions involving circularity and explanation level. In other words,
participants gave lower ratings to bad explanations that were cir-
cular than bad explanations that contained irrelevant information,
regardless of explanation level. However, controlling for circularity
Neuroscience Psychology Social Sciences

ield
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c field. Error bars represent 95% confidence intervals.



E.J. Hopkins et al. / Cognition 155 (2016) 67–76 75
in the primary regression analysis reported earlier did not affect
the magnitude or significance of any other predictors.

In a regression predicting explanation rating from explanation
level, quality, and centrality, there was a marginally significant
Explanation Level � Quality � Centrality interaction (b = 0.44, 95%
CI[0.00, 0.94]): Among bad explanations only, the difference
between the reductive and horizontal conditions was larger
when the reductive explanation was not presented centrally
(Mreductive = 0.80, Mhorizontal = 0.23) than when it was
(Mreductive = 0.61, Mhorizontal = 0.48). Centrality had a much smaller
effect on the difference between the reductive and horizontal
conditions for good explanations: central (Mreductive = 1.86,
Mhorizontal = 1.68), non-central (Mreductive = 1.78, Mhorizontal = 1.72).
Reductive content may have increased the perceived quality of
bad explanations when it was peripheral to the explanation
because it appeared to add additional verifiable information. How-
ever, as with circularity, controlling for centrality in the primary
regression analysis reported earlier did not affect the magnitude
or significance of any other predictors.
4. Discussion

The main goal of the current study was to investigate the gen-
erality of the seductive allure effect. Prior research has demon-
strated that adding irrelevant neuroscience information to
explanations of psychological phenomena makes these explana-
tions seem better to naïve participants. We hypothesized that this
effect is due to a general preference for reductive explanations,
which means that it should manifest across different scientific
domains. Our data support this hypothesis: Participants judged
explanations containing irrelevant reductive information as better
across a range of sciences. The seductive allure effect is thus not
unique to the pairing of psychology and neuroscience.

Although this effect of explanation level was seen across
sciences, it was strongest for the psychology/neuroscience pairing.
In this case, the impact of reduction may be heightened by a rela-
tively positive view of neuroscience combined with a relatively
negative view of psychology. Participants gave neuroscience the
highest ratings of any science on the Perceptions of Science scale.
This suggests that neuroscience information may exert some
unique allure, even if this does not fully explain its appeal in
explanations of psychological phenomena. This appeal may be fur-
ther strengthened by a disinclination for psychology explanations,
in line with previous work finding generally poor public opinions
about psychology as a science (Keil, Lockhart, & Schlegel, 2010;
Lilienfeld, 2012). In support of these findings, the effect of reduc-
tive information for the social science/psychology pairing was in
the opposite direction from the rest of the sciences; participants
gave lower ratings to explanations that included reductive infor-
mation, which in this case was person-level psychology
information.

Future work should investigate this particular effect, as well as
why reduction is so appealing as an explanatory form in the
sciences. One possibility, as discussed in the Introduction, is that
people have past experience with situations where reductive infor-
mation was in fact helpful in understanding or explaining a phe-
nomenon. The results of the present study may thus represent an
over-generalization of this preference to cases with only the
appearance of reduction.

An alternative explanation is that participants do not prefer
reduction per se, but rather any explanation that integrates infor-
mation from multiple fields of science. One piece of evidence that
goes against this possibility comes from Fernandez-Duque et al.
(2015), who found that superfluous neuroscience information
had a larger effect on participants’ ratings of psychological
phenomena than superfluous information from hard sciences,
suggesting that simply adding any additional information from
an outside field is not sufficient to explain the effect. However, it
is possible that people prefer integrative explanations, but that
the added information must come from relevant fields. Hard
sciences such as genetics and quantum mechanics may be too far
removed from psychology to be seen useful in explanations of
psychological phenomena.

This opens up an interesting set of questions concerning the
proper level for reduction: Are explanations seen as more appeal-
ing when they contain information only from the immediately
adjacent science (e.g., chemistry for biology), or would further
reduction make explanations seem even better (e.g., physics for
biology)? An ongoing study in our lab aims to tease out these pos-
sibilities. Participants were asked to select which methods would
be useful for investigating the same phenomena used in this study,
and they could select from among six methods that were typical of
our target scientific fields. Preliminary results show that partici-
pants almost always selected methods from the field of the phe-
nomenon (58% of the time) or the immediately reductive field
(33%) as the most informative for understanding the phenomenon,
suggesting that they believe that information from nearby fields is
more explanatory than either further reduction or integration of
information from higher levels of the reductive hierarchy.

In addition to a preference for reductive information, several
other factors influenced participants’ ratings of explanations in
the current study. First, participants were reliably able to discrim-
inate good from bad explanations across all sciences, demonstrat-
ing an intact ability to sense explanation quality. They gave lower
ratings to bad explanations that were circular than bad explana-
tions that simply provided irrelevant information. The type of cir-
cularity used here may be a particularly salient indicator of poor
explanation quality (Rips, 2002); even young children prefer non-
circular explanations (Baum, Danovitch, & Keil, 2008; Corriveau &
Kurkul, 2014; Mercier, Bernard, & Clément, 2014).

Second, individual differences between participants on some of
our auxiliary measures were related to differences in explanation
ratings. Reflective thinking, as measured by the CRT, led to more
accurate discrimination between good and bad items. Further-
more, participants with better logical reasoning were more accu-
rate in rating explanations, suggesting that domain-general
training in logic may minimize the allure of reductive information.
In a current study, we are testing whether philosophy experts, who
receive specific training in logic, are less susceptible to the reduc-
tive allure effect.

Finally, greater general science knowledge led to more accurate
ratings. Participants who scored higher on our measure of scientific
literacy or who had taken courses in a wider variety of sciences
were better able to tell good from bad explanations. This is consis-
tent with previous research that found that neuroscience experts
were not seduced by irrelevant neuroscience (Weisberg et al.,
2008, Study 3). These results suggest that further training in
science may help people to better understand what makes some-
thing a good explanation, possibly mitigating the reductive allure
effect. Ongoing work in our lab tests this hypothesis by recruiting
experts in all six of our target sciences to determine the role of
expertise in more detail: Does training in a particular science pro-
tect against the reductive allure effect for that science, or in gen-
eral? Answering this question can provide further insight into
the nature of the effect itself and into how to improve people’s
judgments of scientific explanations.
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