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Out of bounds? The boundary specification problem for centrality in
psychological networks

Zachary P. Neal and Jennifer Watling Neal
Michigan State University

The analysis of psychological networks has become common in multiple subfields including
clinical, social, and personality psychology, where the focus is often on identifying highly
central nodes that represent symptoms, beliefs, or traits. However, the boundaries of these
networks are often ambiguous and relevant nodes are often missing from the network. In this
paper, we use a series of simulations to show that even under typical conditions of missing-
ness, the centrality of nodes in an empirical psychological network are poorly correlated or
uncorrelated with their centrality in a hypothetical ‘true’ psychological network, and thus are
invalid. We illustrate the implications of this lack of validity using an empirical example drawn
from a recent study of political belief system networks, demonstrating that the original study
would have drawn incorrect conclusions about American’s most central political beliefs. We
conclude by recommending that centrality measures should be computed and interpreted only
in psychological networks that include (nearly) all the nodes inside a theoretically meaningful
boundary.

Introduction

The estimation, analysis, and visualization of psycholog-
ical networks has become common in multiple subfields.
Clinical psychologists have studied networks of symptoms
to map the structure of psychopathologies (e.g., Borsboom
& Cramer, 2013; Cramer, Waldorp, Van Der Maas, &
Borsboom, 2010; Preszler, Marcus, Edens, & McDermott,
2018). Social psychologists have studied networks of po-
litical beliefs to define groups’ belief systems (e.g., Brandt,
2020; Brandt, Sibley, & Osborne, 2019; Dalege et al., 2016;
Schlicht-Schmälzle, Chykina, & Schmälzle, 2018). Per-
sonality psychologists have studied networks of personality
traits to understand how they combine to yield higher-order
personality dimensions or types (e.g., Christensen, Golino,
& Silvia, 2020; Costantini et al., 2019; Dalege, Borsboom,
van Harreveld, & van der Maas, 2019; Marcus, Preszler, &
Zeigler-Hill, 2018). In many cases, the analysis involves
identifying highly central nodes in the network, with the
goal of finding the most important or influential symptoms,
beliefs, or traits. These methods have been adapted from
theoretical and methodological traditions in social network
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analysis, but this adaptation has not adequately considered
one problem that is well-documented in that literature: the
boundary specification problem.

The boundary specification problem refers to the difficulty
of deciding which nodes should be included in a network.
Although all nodes in a theoretically- or naturalistically-
defined population should be included in a network, we ar-
gue that this is impossible or impractical for many psycho-
logical networks because the boundary of the population is
unknown or very wide. For example, because it is unknown
how many exhibitable traits or holdable beliefs exist, it is im-
possible to measure a complete network that includes nodes
representing all traits or all beliefs, or indeed even to know
how many nodes a network is missing. In practice, such net-
works are bounded by whatever traits or beliefs have been
measured. In this paper, we use a simulation to demonstrate
that a psychological network estimated from such incomplete
data yields invalid node centralities, then provide an empir-
ical example from the context of political belief systems to
illustrate how the boundary specification problem can lead
to erroneous conclusions in practice.

Background

Psychological networks and centrality

A network is a collection of objects (called nodes or ver-
tices) and the relationships (called edges) that exist between
pairs of these objects. Psychologists have been measuring
social networks, where the nodes are people and the edges
are social relationships (e.g., friendship, advice), for many
decades (e.g., Festinger, Schachter, & Back, 1950; Moreno
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& Jennings, 1934; Travers & Milgram, 1977).1 More re-
cently, psychologists have begun examining networks in
which the nodes are measured items or scales, and the edges
are the statistical associations among them. In this paper, we
use the term psychological network to refer to this latter type
of network.

Psychological networks have grown in popularity and are
now studied in many subfields, including clinical (e.g., Bors-
boom & Cramer, 2013; Cramer et al., 2010; Preszler et al.,
2018), social (e.g., Brandt, 2020; Brandt et al., 2019; Dalege
et al., 2016; Schlicht-Schmälzle et al., 2018), and politi-
cal psychology (e.g., Christensen et al., 2020; Dalege et al.,
2019; Marcus et al., 2018). Across all of these subfields,
the estimation of a psychological network begins by measur-
ing, for example, a set of beliefs held by participants. These
raw data take the form of a conventional rectangular case-by-
variable dataset. They are then transformed into a psycho-
logical network, which takes the form of a square variable-
by-variable matrix containing the statistical associations be-
tween pairs of variables.2 A variety of methods exist for per-
forming this transformation (Epskamp, Boorsboom, & Fried,
2018; Forbes, Wright, Markon, & Krueger, 2017a). How-
ever, among the most common are Gaussian graphical mod-
els (GGM), which estimate the edge weights so they can be
interpreted as partial correlation coefficients. Methods for es-
timating and analyzing psychological networks have been the
subject of significant debate recently (Borsboom et al., 2017;
Bringmann & Eronen, 2018; Epskamp, Fried, et al., 2018;
Forbes et al., 2017a; Forbes, Wright, Markon, & Krueger,
2017b, 2021, 2019; Fried, van Borkulo, & Epskamp, 2020;
Hallquist, Wright, & Molenaar, 2019; Jones, Williams, &
McNally, 2020; Steinley, Hoffman, Brusco, & Sher, 2017).
While this debate has clarified many issues, there remain
questions about the meaningfulness of one family of mea-
sures that is widely used in psychological networks: central-
ity.

A node’s centrality in a network aims to capture its ‘im-
portance’ given the network’s structure. Centrality is not a
single measure, but refers to a family of measures that each
capture different conceptualizations of nodal importance (for
an overview and comparison of centrality measures, see Bor-
gatti & Everett, 2006). In psychological networks, a node’s
centrality is sometimes interpreted as evidence of its causal
influence over other nodes. For example, in their review of
psychopathology networks, Borsboom and Cramer (2013)
recommend the use of centrality measures to identify symp-
toms that may cause other symptoms. In other cases, the
focus is not explicitly causal, but instead aims to descrip-
tively identify the most central nodes. For example, in their
study of New Zealanders’ political belief system, Brandt et
al. (2019) found that beliefs about groups were more cen-
tral than beliefs about issues. Similarly, in their study of
dark personality traits, Marcus et al. (2018) found that in-

terpersonal manipulation and callousness were consistently
central. Bringmann et al. (2019) articulated several concerns
about what, if anything, centrality measures measure in psy-
chological networks. Although they offered several potential
solutions, including developing new centrality measures with
psychological networks in mind, they mentioned in passing
one problem that we contend is so severe that even solving
all other problems would still fail to make centrality useful
in most psychological networks: the boundary specification
problem.

The boundary specification problem and centrality

The boundary specification problem was first described in
the study of social networks, and refers to the a priori specifi-
cation of inclusion criteria for the nodes in a network. Whole
network analytic techniques, including measuring central-
ity, require that the network include the entire population of
nodes, not a sample of nodes from a population. Inclusion
of the population of nodes requires specifying the boundary
of the population. Although some social network analysts
study systems where these boundaries are easy to specify
(e.g., all students in a classroom, all employees in an organi-
zation), others study systems where the boundaries are more
ambiguous (e.g., partners in a sexual network). Laumann,
Marsden, and Prensky (1992) explain that this ambiguity is
problematic because missing nodes lead to inaccurate mea-
surement of the network and invalid network analyses: “...it
is obviously of great consequence if a key intervening ac-
tor...is omitted due to oversight or use of data that are merely
convenient; such an error, because it distorts the overall con-
figuration of actors in a system, may render an entire analysis
meaningless” (p. 63).

When nodes are missing, an observed network’s topology
often differs from the unobserved complete network’s topol-
ogy. Simulation studies varying the amount of node miss-
ingness have demonstrated that this is particularly problem-
atic for measuring centrality. In these studies, researchers
started with simulated or empirical social networks that they
treated as ‘true’ networks, then dropped some nodes to ob-
tain ‘observed’ networks, measuring the validity of central-
ity measures by comparing the centrality scores of nodes
appearing in both the true and observed networks. For ex-
ample, using simulated Erdös-Rényi random graphs to ex-
amine the effects of varying levels of node missingness on
degree, betweenness, closeness, and eigenvector centrality,

1Although Moreno was listed as the sole author of this work, “it
is impossible to overestimate the importance of [Helen Hall] Jen-
nings” in this work (L. Freeman, 2004, p. 35). Therefore, we cite it
as co-authored by Moreno and Jennings.

2This transformation is closely related to what is known in net-
work science as bipartite projection (Breiger, 1974; Latapy, Mag-
nien, & Del Vecchio, 2008; Neal, 2014).
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Borgatti, Carley, and Krackhardt (2006) found that “accu-
racy not only declines with increasing [node missingness],
but does so predictably and monotonically” (p. 134). Like-
wise, additional studies using a variety of different empirical
networks and simulation designs have also demonstrated that
missing nodes reduce the validity of many centrality mea-
sures (Costenbader & Valente, 2003; Galaskiewicz, 1991;
Smith & Moody, 2013; Smith, Moody, & Morgan, 2017).

These simulation studies have examined several factors
that may affect the extent to which node missingness im-
pacts the validity of centrality measures, including the type
of centrality measure, the network’s structure, and the type
of missingness. First, although all centrality measures’ va-
lidity declines as more nodes are missing (Borgatti et al.,
2006), the decline in validity is more dramatic for central-
ity measures that depend on the whole network’s structure,
such as closeness and betweenness (Costenbader & Valente,
2003; Smith & Moody, 2013). Second, there is weak evi-
dence that the missingness-validity relationship is moderated
by network size, and mixed evidence that it is moderated by
network density (Borgatti et al., 2006; Galaskiewicz, 1991).
Finally, there is limited evidence that validity declines more
rapidly when more central nodes are systematically missing
(Smith et al., 2017). In some cases these findings can help re-
searchers mitigate invalidity (e.g., by choosing a robust cen-
trality measure), while in other cases they have limited prac-
tical value (e.g., because a researcher cannot know whether
the missing nodes were central or not). Notably, this work
has focused on unweighted networks and unweighted cen-
trality measures. However, because the edges in psycholog-
ical networks are weighted using partial correlations, they
offer limited insights in this context.

The problem for psychological networks

Figure 1 illustrates the process of studying centrality in an
empirical psychological network, situating the present study
among prior related work, and highlighting why studying
centrality in psychological networks may be problematic. In
this section, we use bold capital letters to refer to specific
steps in figure 1.

Measurement of a psychological network begins by em-
pirically measuring variables that capture some of the beliefs,
symptoms, or traits held by participants (D). The measured
variables represent a subset drawn from the unobserved set
of all the beliefs, symptoms or traits held by those partic-
ipants (A). A psychological network is estimated from the
empirically measured data using one of several methods that
yield a network containing a node for each measured belief,
symptom, or trait (Epskamp, Boorsboom, & Fried, 2018, E).
This observed psychological network is a subgraph of the
unobserved true network, which contains a nodes for all the
beliefs, symptoms or traits held by the participants (B). Fi-
nally, the centralities of nodes in the observed psychological

network are computed using graph theoretic methods (Bor-
gatti & Everett, 2006), which yield a score for each measured
belief, symptom, or trait (F). To be valid, these scores should
match the scores that would be obtained from the true net-
work, which are the criterion (C).

Prior research has investigated the effect of incomplete
data in two ways. First, as we discuss above, a significant
body of work in the social network analysis literature has in-
vestigated what happens if some nodes are missing, finding
a monotonic decline in the validity of centrality scores (e.g.,
Borgatti et al., 2006; Costenbader & Valente, 2003; Smith &
Moody, 2013, in figure 1: B→E→F↔C). Second, an emerg-
ing body of work in the psychological network literature has
investigated what happens if some participants are dropped
(e.g., Beard et al., 2016; Briganti, Kempenaers, Braun, Fried,
& Linkowski, 2018; Epskamp, Boorsboom, & Fried, 2018).
In this prior work, some participants (i.e., cases) are dropped
from the empirical data, a new network is estimated from
which centrality scores are computed and compared to those
from the full sample (in figure 1: D→G→H→I↔F). Us-
ing bootstrap methods, the goal is to determine whether, in
a given sample, centrality scores exhibit sufficient stability,
which is typically evaluated using the CS-coefficient. An-
swering both of these questions in the context of psycholog-
ical networks is faciliated by the bootnet package, which
automates both node-drop and case-drop bootstrapping (Ep-
skamp, Boorsboom, & Fried, 2018).

Although prior work has demonstrated that node-
missingness and case-dropping can lead to invalidity and in-
stability in centrality scores, respectively, we investigate a
different form of missingness in this study. We ask what hap-
pens when some variables are unmeasured? The path in fig-
ure 1 we investigate (A→D→E→F↔C) may look similar to
prior work on node-missingness, but missingness in psycho-
logical networks occurs further ‘upstream,’ not among nodes
in a network, but among the variables from which the net-
work is estimated. There are two reasons that unmeasured
variables may lead to invalid centrality scores. First, when a
variable is unmeasured in the empirical data, the correspond-
ing node will be missing in the empirical network, thereby
leading to the type of invalidity previously documented in
the social network literature. Second, when a variable is un-
measured in the empirical data, all the edge weights among
the remaining nodes may change when the network is esti-
mated because psychological network estimation techniques
rely on partial correlations to define edge weights. Thus,
in the psychological network context, an unmeasured vari-
able results not only in a missing node, but potentially also
in different edge weights among the nodes that are present.
Epskamp, Boorsboom, and Fried (2018) commented on this
potential risk, noting that “dropping 50% of the nodes leads
to entirely different network structures” (p. 200), but did not
investigate its impact on centrality scores.
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Figure 1

Boundary specification, psychological network construction, and assessments of stability and validity.

This observation by Epskamp, Boorsboom, and Fried
(2018) highlights a second reason that psychological net-
works may be different from social networks in a way that
could exacerbate the invalidity of centrality scores. When
psychological networks are missing nodes, the percentage of
missing nodes may be quite large. The size of the universe
of beliefs, symptoms, or traits is often unknown, but is likely
to be large because it consists of, for example, all holdable
beliefs or all exhibitable traits. Even when the scope of the
universe is theoretically bounded (e.g., political beliefs), it
is likely still very large (e.g., all holdable political beliefs).
Because the size of these universes is often unknown, it is
difficult to know how many nodes are missing in psycholog-
ical networks, but some examples from the literature suggest
it is substantial.

In some cases, individual items serve as the nodes in psy-
chological networks. For example, Brandt (2020) computed
centrality scores from a network of 19 political belief items.
It is impossible to know how many holdable political beliefs
exist, but Curry, Alfano, Brandt, and Pelican (2020) hypoth-
esize that morality is a combinatorial system and speculate
there could be more than 8 million distinct moral values.
However, even if we very conservatively estimate there are
only 200 holdable political beliefs, Brandt’s network would
still be missing more than 90% of the possible nodes. In
a similar example, Preszler et al. (2018) computed central-
ity scores from a network of either 12 or 20 personality trait
items. Again, it is impossible to know how many exhibitable
indicators of personality traits exist, but there are 3,320 items

in the International Personality Item Pool (IPIP; Goldberg et
al., 2006). This suggests that Preszler et al.’s network could
be missing more than 99% of the possible nodes. Because
individual beliefs or indicators of personality traits are so
numerous, psychological networks that treat items-as-nodes
risk very high levels of missingness.

In other cases, entire domains or dimensions measured
from multi-item scales serve as the nodes in psychological
networks. For example, Marcus et al. (2018) computed cen-
trality scores from a network of 9 dimensions of dark per-
sonality. However, they note as a limitation that “the net-
works did not include other dark personality traits, most
notably sadism...and did not include broadband personality
traits such as agreeableness” (p. 62). Although it is diffi-
cult to know how many dimensions of personality exist, con-
sidering only those that the authors specifically identify as
missing, their network could be missing 50% of the possible
nodes. Because scales are, by definition, less numerous than
items, both true and observed scales-as-nodes psychological
networks will be smaller in size. However, because multi-
item scales are still costly to collect, such networks may still
exhibit high levels of missingness.

Overview of Analyses

To investigate the impact of the boundary specification
problem on centrality measures in psychological networks,
we conduct a simulation, then provide a concrete empirical
example. In the simulation, we generate synthetic ‘true’ psy-
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chological networks of varying size and structure, computing
centrality scores from these networks, which we treat as a
criterion. We then compare these criterion centrality scores
to centrality scores computed from an empirical psycholog-
ical network that has been estimated from data with unmea-
sured variables and thus is missing some nodes. In the empir-
ical example, we illustrate the practical impact of boundary
specification using data from a recent political belief network
study (Brandt, 2020), comparing the original results to those
obtained when the network is estimated from data that con-
tains more variables. The replication code for both analyses
is available at http://osf.io/x4nbj.

Simulation

Methods

Following the lead of other network studies (Borgatti et
al., 2006; Costenbader & Valente, 2003; Hoffman, Steinley,
Gates, Prinstein, & Brusco, 2018), we use simulation to un-
derstand the impact of variable missingness on the validity
of centrality scores computed from an empirical psychologi-
cal network. Specifically, we simulate a ‘true’ psychological
network from which we compute ‘true’ centrality scores, and
an empirical psychological network from which we compute
empirical centrality scores, then compare these two sets of
centrality scores. There are two ways to perform such simu-
lations: numeric and analytic.

A numeric simulation begins by simulating a traditional
case-by-variable dataset intended to represent data on all the
beliefs, symptoms, or traits of participants (Figure 1A). From
these simulated data, the true psychological network can be
estimated (B) and the true centrality scores can be computed
(C). Additionally, by dropping some of the variables to pro-
duce a smaller dataset intended to represent the observed data
(D), an empirical psychological network can be estimated
(E) and the empirical centrality scores can be computed (F).
This strategy has the advantage of mirroring the process used
in practice for studying centrality in psychological networks;
however, it also has several disadvantages. First, there are
many ways to estimate a psychological network from data
(i.e., A→B, or D→E), and the choice of estimation model
could impact the simulation results. Second, these estima-
tion models require large numbers of observations to ensure
stable estimates, and the number of simulated observations
could impact the simulation results. Third, most of these es-
timation models are computationally intensive, limiting the
number of simulations that can be performed. Finally, sim-
ulating data from which a network is estimated, rather than
simulating the network itself, makes it challenging to experi-
mentally manipulate characteristics of the network to explore
how they impact the validity of centrality scores.

An analytic simulation overcomes these challenges by ex-
ploiting the relationship between zero-order and partial cor-

relations. It begins by simulating a partial correlation matrix
intended to represent a true psychological network (B), from
which centrality scores can be computed (C). To obtain an
empirical psychological network (i.e., a partial correlation
matrix) that would be observed had it been estimated from
data containing only a subset of variables (E), (1) the partial
correlation matrix is transformed into a correlation matrix,
then (2) the rows and columns corresponding to the missing
variables are dropped, and finally (3) this reduced correlation
matrix is transformed back to a partial correlation matrix.
Empirical centrality scores (F) can then be computed from
this new partial correlation matrix representing an empirical
psychological network. In the simulations below, we use this
analytic approach because it is faster, provides greater con-
trol over the characteristics of the simulated networks, and
eliminates the influence of a particular network estimation
model or the number of observations.3

We simulate the true psychological networks varying their
size and structure at two levels to achieve a 2 × 2 simulation
design. The small networks containing 20 nodes (i.e., esti-
mated from 20 variables) represent a scales-as-nodes context
like that studied by Marcus et al. (2018), while the large net-
works containing 200 nodes (i.e., estimated from 200 vari-
ables) represent an items-as-nodes context like that studied
by Brandt (2020) and Preszler et al. (2018). Similarly, the
random networks represent a context in which there is no
higher-order structure in the variables’ associations, while
the clustered networks represent a context in which the vari-
ables’ associations are clustered in four domains.

To simulate networks of the desired size, we used the
ggm.simulate.pcor function in the GeneNet package
to generate a random partial correlation matrix, and the
corpcor package to convert between partial correlation and
zero-order correlation matrices (Schaefer, Opgen-Rhein, &
Strimmer., 2020; Schafer et al., 2017). To obtain clustered
partial correlation matrices for the clustered simulation con-
dition, we assigned 25% of the variables to each of four
‘domains,’ then shuffled the values in this matrix until we
achieved a modularity of 0.35 < Q < 0.45 (Newman & Gir-
van, 2004). To ensure that all simulated networks resembled
psychological networks, we verified that each partial corre-
lation matrix (1) was positive semi-definite, (2) contained
more positive than negative values, and (3) did not contain
any values equal to exactly zero. Within each of the 4 sim-
ulation conditions, we simulated 1000 ‘true’ psychological
networks.

From each simulated true psychological network, we used
the centrality_auto function in the qgraph package to
compute four centrality measures commonly used in psy-
chological network analysis: strength, closeness, between-
ness, and expected influence (Borgatti & Everett, 2006;

3In an earlier version of this paper, available on PsyArXiv, we
used the numeric approach and obtained similar results.

http://osf.io/x4nbj
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Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom,
2012; L. C. Freeman, 1978; Robinaugh, Millner, & McNally,
2016). We then used the analytic method described above to
obtain the empirical psychological network that would be ob-
served if it had been estimated from the same data, but with
only a subset of variables and thus containing only a sub-
set of nodes. We consider empirical psychological networks
estimated from data in which up to 75% of the variables are
missing from the complete data, and thus in which up to 75%
of the nodes in the true network are missing. We again used
qgraph to compute the same four centrality measures from
the empirical psychological network. Finally, to measure the
validity of these empirical centrality scores, we computed
their Spearman correlation with the centrality scores com-
puted from the true network.4

Results

Figure 2 shows the simulation results for four types of
psychological network: (A) small and random, (B) small and
clustered, (C) large and random, and (D) large and clustered.
Within each panel, an example simulated true psychologi-
cal network is shown, with edge color indicating the partial
correlation sign (red = negative, blue = positive) and edge
thickness indicating the partial correlation magnitude. For
simulated true psychological networks that are random, the
nodes are all white, while for networks that are clustered, the
nodes are colored by their domain membership. Each line in
the plots displays, for the respective centrality measure, the
mean and 95% confidence interval of the Spearman correla-
tion between centrality scores computed (a) from a true net-
work and (b) from an empirical network estimated from data
missing some variables, and thus also missing some nodes.

All four simulation conditions display the same pattern
of monotonic decrease in Spearman correlations. This indi-
cates that as more variables are missing from the data used
to estimate a empirical psychological network, resulting in
an empirical network with more missing nodes, the remain-
ing nodes’ empirical centrality scores fail to match their true
centrality scores. That is, the empirical centrality scores are
invalid because they fail to measure what they are intended to
measure. None of the centrality measures perform well, al-
though expected influence (Robinaugh et al., 2016) appears
to perform somewhat better than classical graph-theoretic
measures (Borgatti & Everett, 2006; L. C. Freeman, 1978).

Given these findings, it is worth asking: Are these cor-
relations too low? That is, are centrality scores computed
from an incomplete psychological network too invalid to be
useful? Of course, one’s tolerance for invalidity is neces-
sarily context-dependent. However, consider the proportion
of nodes that are likely missing from a typical psychological
network. As we show above, it is not uncommon for an em-
pirical psychological network to be missing 50%-99% of the
nodes that would be contained in the unobserved but com-

plete network (Brandt, 2020; Marcus et al., 2018; Preszler
et al., 2018). When 50% of relevant variables are measures,
even under the best circumstances – the true network is large
and random, and expected influence is used to measure node
centrality – the empirical centrality scores capture less than
half the variation in the true centrality scores (ρ = 0.695,
ρ2 = 0.483). When more variables are unmeasured, or when
other centrality measures are used, or when the true net-
work has a different structure, the correspondence between
true and empirical centrality scores is worse. Thus, under
a broad set of circumstances, we find that when computed
from psychological networks, empirical centrality scores of-
ten provide little information about which beliefs, symptoms,
or traits are actually more or less central.

Empirical Example

Methods

The simulations reported in the previous section demon-
strate that when variables are missing from the data from
which a psychological network is estimated, and thus when
the network is missing nodes, the computed centrality scores
of the remaining nodes are invalid. However, because the
simulations are performed using abstract, synthetic data, they
fail to show what this invalidity might look like in practice.
For this reason, in this section we provide a concrete empiri-
cal example of the practical impact of boundary specification
in psychological networks, and specifically how it can lead to
erroneous conclusions about node centralities.

Providing an empirical example is challenging for two
reasons. First, as we argue above, psychologists often do
not have empirical data on all relevant beliefs, symptoms, or
traits, and therefore often do not have a complete psycho-
logical network. Second, even if empirical data was avail-
able that included variables measuring all relevant beliefs,
symptoms, or traits, in many cases estimating the network
would require estimating so many parameters that the sample
size would almost certainly be insufficient (Epskamp, Boors-
boom, & Fried, 2018).

To overcome the first issue, we use the example of a polit-
ical belief network studied by Brandt (2020). Although the
original study used 19 variables in the World Values Survey
(WVS; Inglehart et al., 2014) to measure Americans’ polit-
ical belief network between 2005 and 2008, the WVS actu-
ally contains 69 variables measuring political beliefs. These

4We compute the Spearman correlation, rather than the Pearson
correlation because, in practice, the substantive aim is usually to
identify the relative ordering of traits’ or beliefs’ centrality, but not
their actual centrality scores. Forbes et al. (2019) recommended
also measuring the “proportion of [nodes] with the same rank-order
for...centrality between networks (p. 7). In all cases, this alternative
measure is lower than the Spearman correlation, pointing toward the
same conclusion that centrality scores computed from incomplete
data are invalid.
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Figure 2

Validity of centrality scores in (A) small and random, (B) small and clustered, (C) large and random, and (D) large
and clustered psychological networks. Lines show the mean and 95% CI of the Spearman correlation (y-axis) between
centrality scores computed from a true network and an empirical network that is estimated from a subset of variables and
thus missing a given proportion of nodes (x-axis). Example true networks show the sign (red = negative, blue = positive) and
magnitude of partial correlations among variables.

data therefore permit an illustrative thought experiment: If
those 69 variables represented all holdable political beliefs
and thus allowed the measurement of a complete political
belief system network, how valid are the centralities of be-
liefs computed in the original study from a network measured
using only 19 variables and thus containing only 19 nodes?
Of course, there are almost certainly more than 69 holdable
political beliefs, but even in this reduced thought experiment
it is clear that the original study’s data omitted at least 72%
of relevant variables and examined networks missing at least
72% of nodes.

To overcome the second issue, which is significant be-
cause these data contain only 931 observations, we use the

analytic approach we employed in the simulations above.
First, we compute the zero-order correlations among the 69
(in the ‘complete’ network) or 19 (in the ‘observed’ network)
variables, which is straightforward because N = 931 is suf-
ficient for computing a zero-order correlation. Second, in
both cases we treat these as correlations as coming from an
arbitrarily large sample, and transform them into partial cor-
relations, which we analyze as a psychological network. As
in the simulations, this approach does not require the large
number of observations necessary for most network estima-
tion approaches, and does not depend on any particular net-
work estimation approach.5

5In his original analysis, Brandt (2020) estimated the network
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To investigate the practical impact of variable and node
missingness on centrality scores, we follow the same ap-
proach as the simulation. First, we computed four common
centrality measures in both the complete 69-node network
and the observed 19-node network.6 Second, for each mea-
sure, we computed the Spearman correlation between the
centrality scores of the 19 nodes present in both networks.

Results

Table 1 reports the strength centrality for each node in the
19-node network studied by Brandt (2020), as well as the
strength centrality for each of these nodes and three addi-
tional example nodes in the larger 69-node network. Com-
puting strength centrality from the 19-node observed net-
work would lead a researcher to conclude, among other
things, that beliefs about homosexuality are most central to
Americans’ belief system, and that beliefs about euthanasia
are the second most central.

However, computing strength centrality from a complete
69-node network reveals that such conclusions about Ameri-
cans’ most central political beliefs are incorrect. First, beliefs
about homosexuality are not the most central among these
19 beliefs. Instead, the most central of these 19 beliefs is the
belief that experts should rule the country. Second, beliefs
about euthanasia are not the second most central, and indeed
are not particularly central at all, ranking 10th of 19. Third,
none of these beliefs are as central to Americans’ belief sys-
tems as some other beliefs that were omitted from the ob-
served network entirely, including beliefs about equal rights
for women and about the Women’s movement. Taken to-
gether, whereas the observed network would suggest Ameri-
cans’ belief system is dominated by moral beliefs about such
issues as homosexuality, euthanasia, and abortion, the com-
plete network suggests that Americans’ belief system is actu-
ally dominated by concern for women and the environment.

In this example, measuring a belief system network from
incomplete data leads to incorrect conclusions about which
beliefs are most central. Taking a wider perspective, the or-
der of strength centrality scores computed from an incom-
plete network are correlated with centrality scores computed
from a complete network at only ρ = 0.4649. That is, the
apparent ordering of beliefs by strength centrality in the ob-
served network captures only about 23% of the variation in
their actual ordering, indicating that the strength centralities
derived from incomplete data are invalid. We observe simi-
larly low validity in the other three centrality measures: be-
tweenness (ρ = 0.1265, ρ2 = 0.02), closeness (ρ = 0.5596,
ρ2 = 0.31), and expected influence (ρ = 0.8824, ρ2 = 0.78).

Clearly there is variation in these correlations, ranging
from very low for betweenness to higher (although still low
for establishing criterion validity) for expected influence.
However, it is important to note that we regard the 69-node
network as ‘complete’ in this example only for the sake of

Table 1

Strength centrality of beliefs in the observed network
(N = 19) and a hypothetically complete network (N = 69).

Variables/Nodes Observed Complete
Homosexualitya 1.528 3.131
Euthanasia 1.403 2.620
Strong leader should rule country 1.397 2.403
Abortion 1.395 3.045
Political ideology 1.312 2.816
Army should rule country 1.250 2.693
Private vs. public ownership 1.237 2.421
Experts should rule country 1.179 3.135
Value of competition 1.111 3.009
Income inequality 1.101 2.456
Men are better political leaders 1.093 2.636
Welfare vs. personal responsibility 1.078 2.918
Environmental taxes 1.057 2.579
Economic migration 1.023 2.465
Prostitution 1.015 2.962
Political system should be democratic 1.003 2.441
Men should have priority for jobs 0.973 2.288
Natives should have priority for jobs 0.806 2.142
Environment vs. economy 0.785 2.453
Equal rights for women — 3.275
Women’s movement — 3.145
Environmental protection movement — 3.102
47 additional variables/nodes — NR
Spearman ρ 0.4649
a The WVS asked “whether you think [“homosexuality”] can always be justified,
never be justified, or something in between.” We retain the original language here,
but note that the Gay and Lesbian Alliance Against Defamation (GLAAD) now
recommends using using alternative language (e.g., “gay and lesbian lives”).

illustration. We do not actually believe that the centrality
scores computed from it are valid either, because even this
larger network is almost certainly missing many holdable po-
litical beliefs. If we were able to measure a complete network
of all holdable political beliefs, our simulation results sug-
gest that the centrality scores computed from our 69-node
network would be a poor approximation, and the centrality
scores computed from the 19-node network would be even
worse.

using a Bayesian Gaussian graphical model (BGGM). In an earlier
version of this paper, available on PsyArXiv, we reported this em-
pirical example using BGGM and obtained similar results.

6For comparability with the simulation results, we report the
same four centrality measures: betweenness, closeness, strength,
and expected influence. In his original study, Brandt (2020) did not
compute expected influence, but did compute eigenvector, 1-step
expected influence, and 2-step expected influence. We observed the
same patterns in these three additional centrality measures.
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Discussion

Psychological networks – where nodes are symptoms,
traits, or beliefs and where edges capture their statistical as-
sociations – are now commonly studied in many subfields
of psychology, with a particular emphasis on identifying the
most central (i.e., important) nodes. However, the bound-
aries of these networks, which define the universe of rel-
evant variables from which these networks should be esti-
mated, and thus also the nodes that should be included in
the network, are often unknown or uncountably large. This
leads many empirical psychological networks to be poorly
bounded, estimated from data in which key variables are un-
measured and missing some and often a very large number
of nodes. By simulating ‘true’ psychological networks, we
have shown that centrality scores computed from networks
estimated from incomplete data are invalid. The magnitude
of invalidity depends primarily on the proportion of variables
that are unmeasured and nodes that are missing. We illustrate
the practical impact of invalid centrality scores in the context
of Americans’ political belief network, demonstrating that
conclusions drawn from incomplete data about Americans’
central political beliefs are incorrect.

There are three related causes for invalid centrality scores
in psychological networks. First, as has previously been
demonstrated in social networks (e.g., Borgatti et al., 2006;
Costenbader & Valente, 2003), the omission of a node
changes the topology of a network, thereby changing other
nodes’ centrality scores. Second, psychological networks are
not measured directly, but are estimated from non-network
data using statistical models (e.g., Gaussian graphical mod-
els) in which the weight of the edge connecting two nodes
is their statistical association (e.g., their partial correlation).
This estimation process means that when a variable (e.g., a
belief item) is unmeasured in the raw data, not only is the
corresponding node missing from the estimated network, but
in addition the edge weights among the remaining nodes
may also change. Third, the boundaries of psychological
networks are often ambiguous or unknown, leading the pro-
portion of variables that are unmeasured and nodes that are
missing to sometimes be very large. For example, a com-
plete political belief network would contain a node repre-
senting every holdable political belief, the number of which
is unknown but surely very large. However, in practice, an
empirical network contains only nodes representing political
beliefs that happen to be measured and appear in the data.

In response to these challenges to the validity of central-
ity scores in psychological networks, researchers might be
tempted to frame their conclusions more tentatively as con-
ditional on their empirical network’s boundary. For exam-
ple, in the empirical example we present in Table 1, one
might be tempted to say “In a belief network of these 19
items, beliefs about homosexuality were the most central.”
Strictly speaking, this is not incorrect and might even repli-

cate in subsequent studies using different samples (Brandt,
2020; Williams, Rast, Pericchi, & Mulder, 2020), but it is
also not particularly informative. As we show, although be-
liefs about homosexuality appear to be the most central belief
in Americans’ belief system, this is an artifact of the empir-
ical network’s boundary (i.e., which beliefs happened to be
measured) and does not reflect the true nature of Americans’
belief system.

A second possible response may be to ask: what propor-
tion of variables can be unmeasured, and what proportion
of nodes can be missing, while still achieving reasonably
valid centrality scores? Answers to this question are of lim-
ited practical value in dealing with unmeasured variables and
missing nodes for two reasons. First, in practice, researchers
rarely know how large the universe of beliefs or traits is, and
therefore rarely known what proportion of nodes are missing
from their empirical network. Second, when the universe of
beliefs or traits is large (e.g., greater than 200, as is likely
the case for belief or trait items), our simulation results il-
lustrate that centrality indices are invalid even when the em-
pirical network includes 100 nodes. Therefore, even if the
necessary proportion of nodes were known, our simulations
suggest that when the universe is large, the required number
of nodes would be impractically large for even the most am-
bitious attempts at empirical data collection and estimating
a psychological network from such data would require an
impractically large sample.

To summarize, when centrality is computed in a psycho-
logical network that does not include (nearly) all the nodes
within a theoretically meaningful boundary, the centrality
scores computed from the network are invalid. That is, they
do not measure the nodes’ true centrality. Therefore, in addi-
tion to the list of recommendations Bringmann et al. (2019)
offered, we offer an additional and overarching recommen-
dation: Centrality should be computed and interpreted only
in psychological networks that measure (nearly) all the vari-
ables, and thus include (nearly) all the nodes, inside a the-
oretically meaningful boundary. In this analysis, we have
focused narrowly on the implications of boundary specifica-
tion for centrality because it is among the most commonly
used network analytic measures. However, in view of the so-
cial network literature on problems associated with boundary
specification and missingness (e.g., Butts, 2009; Kossinets,
2006; Laumann et al., 1992; Smith & Moody, 2013; Smith et
al., 2017), future research should consider whether a similar
recommendation should apply to other forms of analysis on
psychological networks such as the detection of communities
or small worldness (e.g., Borsboom, Cramer, Schmittmann,
Epskamp, & Waldorp, 2011; Mullen & Jones, 2021).

We conclude by returning to some open questions in the
literature. Brandt et al. (2019) asked “What is central in po-
litical belief system networks?” Our simulations and empir-
ical example offer an answer: Unless a belief system net-
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work includes a node for every holdable belief, we simply
cannot know which beliefs are actually central. Relatedly,
Bringmann et al. (2019) asked “What do centrality measures
measure in psychological networks?” Again, our simulations
and empirical example offer an answer: When a psycholog-
ical network is estimated from data that did not measure all
the variables in a theoretically-defined universe, the central-
ity scores often do not measure anything meaningful about
the true centrality of the remaining variables in that universe.

Given these answers, do networks have a role in psychol-
ogy? We believe they do. First, psychological networks
like those we discuss here may still be informative in con-
texts where a theoretically-bounded complete network pos-
sible, for example, when the universe of diagnostic criteria
for the universe of psychopathologies is known and measure-
able (Tio, Epskamp, Noordhof, & Borsboom, 2016). Second,
because there is “no clear boundary where network models
end and latent variable (or common cause) models begin”
(Bringmann & Eronen, 2018, p. 607), developments from
one modeling approach may inform the other (e.g., Chan-
drasekaran, Parrilo, & Willsky, 2010; Christensen & Golino,
2021; Epskamp, Rhemtulla, & Borsboom, 2017). Third, in-
ferential network models may offer opportunities to expand
the scope of existing methods of dyadic data analysis (e.g.,
Kenny, Kashy, & Cook, 2006) to accommodate triadic and
higher-order groups of interdependent actors. Finally, as we
noted at the outset, psychologists can stake some claim as
being among the earliest social network analysts, and psy-
chology remains critical for understanding social networks in
which the nodes are people and edges are social or affective
relations.
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