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Abstract

In network approaches to psychopathology, disorders result from the causal
interplay between symptoms (e.g., worry → insomnia → fatigue), possibly
involving feedback loops (e.g., a person may engage in substance abuse to
forget the problems that arose due to substance abuse). The present review
examines methodologies suited to identify such symptom networks and dis-
cusses network analysis techniques that may be used to extract clinically and
scientifically useful information from such networks (e.g., which symptom
is most central in a person’s network). The authors also show how net-
work analysis techniques may be used to construct simulation models that
mimic symptom dynamics. Network approaches naturally explain the lim-
ited success of traditional research strategies, which are typically based on
the idea that symptoms are manifestations of some common underlying fac-
tor, while offering promising methodological alternatives. In addition, these
techniques may offer possibilities to guide and evaluate therapeutic inter-
ventions.
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INTRODUCTION

Why is it that some people, from all walks of life, are vulnerable to developing mental disor-
ders, while others seem to get through life’s trials and tribulations relatively unscathed? Why are
researchers unable to identify the essential characteristics of mental disorders, whether psycho-
logical, neurological, or genetic in character? What are mental disorders in the first place?

In contrast to the expectations that existed a century ago, when psychopathology research
became an organized scientific enterprise, there appear to be no simple answers to these and
other fundamental questions about the origins of psychopathology. The great unitary schools of
thought in psychopathology research that tried to reduce mental disorders to simple psychological,
environmental, or biological dysfunctions or predispositions have all tripped over the massively
multifactorial etiology of these disorders (Kendler 2005a, Nolen-Hoeksema & Watkins 2011,
Zachar & Kendler 2007). For example, in recent years, many had hoped to identify neatly separated
gene sets that cause certain mental disorders. However, it turns out that “genes do not read DSM-
IV” (Stefanis 2008): Despite the moderate heritability of many disorders, effects of particular genes
on the risk for developing particular mental disorders are small and rarely, if at all, specific to these
disorders (Kendler 2005b).

Intriguingly, however, despite the fact that disorders apparently have causes everywhere and
nowhere, the symptoms of mental disorders do create reliable patterns of covariance. That is,
there must be something that makes a symptom of, say, major depression (MD) hang together
more strongly with another symptom of MD than with a symptom of, say, panic disorder (PD).
What is that something?

The currently dominant answer to that question is “the disorder itself.” Inspired by the suc-
cessful paradigm of Western medicine (Hyland 2011), the disease model states that the problems
that people encounter in life are “symptoms” of a reasonably small set of underlying “disorders”
that cause these symptoms (analogous to a lung tumor, which causes shortness of breath, chest
pain and coughing up blood). Thus, with this model in mind, the symptoms of MD hang together
strongly because they are caused by the same underlying disorder, namely MD. It is exactly this
kind of thinking that inspired the quest for psychological/environmental/biological essences of
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mental disorders. And as we have seen, this quest has failed, and we interpret this failure as a
falsification of the disease model in psychopathology.

We are not alone in questioning the appropriateness of the disease model for psychopathology:
Most scholars agree that this currently dominant paradigm is problematic. It is, however, at present,
unclear how we could free ourselves from it. This is because current handling of psychopathology
data is predicated on traditional psychometric approaches that are the technical mirror of this
paradigm. In these approaches, observables (clinical symptoms) are explained by means of a small
set of latent variables, just like symptoms are explained by disorders. For example, in a latent
variable model, PD is a latent variable that causes its observable symptoms, such as experiencing
panic attacks. From this psychometric perspective, symptoms are regarded as measurements of
a disorder, and in accordance, symptoms are aggregated in a total score that reflects a person’s
stance on that latent variable (Borsboom 2008a,b; Borsboom et al. 2003). Thus, the dominant
paradigm is not merely a matter of theoretical choice, but also of methodological and pragmatic
necessity: For the greater part of the scientific history of clinical psychology, the common cause
idea—by which a common latent disorder determines a set of symptoms—was simply the only
psychometric game in town.

However, there is now a new game in town, and it is called network analysis. In this review, we
argue that complex network approaches, which are currently being developed at the crossroads
of various scientific fields (Barabási 2011), have the potential to provide a way of thinking about
disorders that does justice to their complex organization. In such approaches, disorders are con-
ceptualized as systems of causally connected symptoms rather than as effects of a latent disorder.
Using network analysis techniques, such systems can be represented, analyzed, and studied in
their full complexity. In addition, network modeling has the philosophical advantage of dropping
the unrealistic idea that symptoms of a single disorder share a single causal background, while it
simultaneously avoids the relativistic consequence that disorders are merely labels for an arbitrary
set of symptoms: It provides a middle ground in which disorders exist as systems, rather than as
entities (see also Kendler et al. 2011).

We aim at explicating the basic theoretical premises of this network approach as well as offering
a practical guide for how to collect and analyze psychopathological data with a network model in
mind. Our goal is to allow interested readers to directly replicate our examples and apply them
to their own data. Thus, all analyses are carried out on publicly available data from the National
Comorbidity Survey Replication study (NCS-R; Kessler et al. 2004, 2005a,b) and executed using
multiple freely available software packages that run in the free software statistical environment R
(http://cran.r-project.org): igraph (Csárdi & Nepusz 2006), PcAlg (Kalisch et al. 2012), ppcor
(Kalisch et al. 2012), and qgraph (Epskamp et al. 2012). Our R-code (available by following the
Supplemental Materials link from the Annual Reviews home page at http://www.annualreviews.
org) allows readers to replicate the analyses as they go along. The emphasis on free availability of
data and replicability of the reported analyses occasionally means that the analyses may not be fully
appropriate for the data (e.g., when computing partial correlations on dichotomous variables); in
these cases, which will be indicated to the reader, the empirical results have the main purpose
of illustration rather than interpretation in meaningful substantive terms. Before delving into
statistics and data analysis, however, we first attack a central problem of current psychopathology
research head-on: the erroneous but influential paradigm that symptoms are caused by disorders.

SYMPTOMS AND DISORDERS IN PSYCHOPATHOLOGY

Let us start with the facts. We know for certain that people suffer from symptoms (e.g., fatigue,
insomnia, hallucinations, depressed mood) and that these symptoms cluster in a nonarbitrary
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Major depression 

depr inte weig slee conc suicmoto fati repr

Figure 1
The relation between the disorder major depression (MD) and its observable symptoms according to a medical disease model.
According to this model, MD (the oval at the top of the figure) is the root cause of its observable symptoms (the boxes at the bottom of
the figure). Arrows point from the root cause (MD) to its observable symptoms, but not the other way around. See Table 1 for
definitions of abbreviated terms.

way. It is important to note here that for most psychopathological conditions, the symptoms
[i.e., the problems as they are listed in diagnostic systems such as the Diagnostic and Statistical
Manual of Mental Disorders (DSM)] are the only empirically identifiable causes of distress. That
is, mental disorders are themselves not empirically identifiable in that they cannot be diagnosed
independently of their symptoms: There is no lab test for MD, PD, or schizophrenia as exists for,
say, Down syndrome (i.e., identifying the presence of a third copy of chromosome 21).

It is useful to contrast the situation in psychopathology with that in medicine. Suppose one
suffers from symptoms like headaches, forgetfulness, and foggy eyesight. These symptoms may be
the result of a brain tumor. Such a tumor is an empirically identifiable entity that is conceptually
separated from its symptomatic effects: One may have (a) headaches without a brain tumor and (b)
a brain tumor without headaches. If the headaches are actually a symptom of the tumor, it is further
the case that (c) one in fact does have headaches and a brain tumor, and (d ) the headaches would not
have been present without the tumor. Thus, in medicine, one can separate the medical condition
from its symptoms [one can occur without the other; see conditions (a) and (b)] and one can identify
the medical condition as the root cause of the symptoms [see conditions (c) and (d )]; as a result, it
is usually beneficial to treat the root cause—in this example, removing the brain tumor. Much of
the success of modern medicine is based on this disease model, which in fact could be argued to
be the single most important idea in medical diagnosis as we currently know it (Hyland 2011).

Appearances suggest that, in psychopathology, an analogous process is at work. An example is
presented in Figure 1, in which MD is the root cause of its observable symptoms (see Table 1
for the accompanying legend). However, this similarity between psychopathology and modern
medicine is only superficial. Certainly, clients are diagnosed with a disorder on the basis of a set
of symptoms, after which the diagnosis is used to choose a treatment protocol. This suggests the
identification and treatment of a root cause. However, although in the past decades much has been
made of the suggestion that symptoms in psychopathology do have such root causes (variously
suggested to have a basis in repressed desires, learned helplessness, hormonal imbalances, neural
abnormalities, or genetic defects), it has so far been impossible to identify these empirically. In
fact, it is impossible to identify any of the common mental disorders as conditions that exist
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Table 1 Legend for Figures 1, 2, 4, 7, and 8

Abbreviation Meaning
Belongs to
disorder

depr Depressed mood MD
inte Loss of interest MD
weig Weight problems MD
moto Psychomotor disturbances MD
repr Self-reproach MD
suic Suicidal ideation MD
mSle Sleep problems MD
mFat Fatigue MD
mCon Concentration problems MD
slee Sleep problems MD/GAD
conc Concentration problems MD/GAD
fati Fatigue MD/GAD
gSle Sleep problems GAD
gFat Fatigue GAD
gCon Concentration problems GAD
anxi Chronic anxiety/worry GAD
even Anxiety about >1 event GAD
ctrl No control over anxiety GAD
irri Irritable GAD
musc Muscle tension GAD
edge Feeling on edge GAD

GAD, generalized anxiety disorder; MD, major depression.

independently of their symptoms. In our view, it is unlikely that this will change; that is, we
consider it unlikely that somewhere in the future, with better detection equipment and larger
sample sizes, we will be able to identify such conditions independently of their symptoms.

The reason that this is so unlikely is that, in order for a disease model to hold, it should be
possible to conceptually separate conditions from symptoms; that is, it must be possible (or at
least imaginable) that a person should have a condition/disease without the associated symptoms.
For medical diseases, this is not only a conceptual possibility, but a commonly observed state of
affairs: For example, a sizeable proportion of patients with lung cancer in its early stages do not
report having any symptoms. For mental disorders, however, such scenarios are very unlikely: If
MD were a condition that existed independently of its symptoms, then it should be possible to be
depressed without feeling blue or disinterested (the core symptoms of MD as defined in DSM-IV).
If PD were a separately identifiable disease, then it should be possible to have PD without ex-
periencing panic attacks. If substance use disorder were a separately identifiable disease, then it
should be possible to have this disorder without abusing a substance. These are situations so highly
unlikely to occur that we propose to accept, if only as a working assumption, the proposition that
mental disorders cannot be separated from their symptoms. As an important corollary, this means
that disorders cannot be causes of these symptoms—at least, not in the way that tumors and bac-
terial infections are causes of symptoms in medicine. This strongly suggests that the treatment
of disorders as causes that exist independently of the symptoms used to identify them involves an
unwarranted reification (Hyman 2010).
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Clearly, the relation between symptoms and disorders has to be conceptualized differently, not
only because mental disorders are not identifiable as separate disease entities, but also because
there appear to be many direct causal relations between symptoms. These symptom-symptom
relations are not only likely to produce a considerable part of the empirical covariance between
symptoms, but may also play an important generative role in the etiology of a disorder. To again
contrast this situation with medical diseases, it is useful to note that the relation between symptoms
and disease is typically causally asymmetric: the tumor causes foggy eyesight, not the other way
around. However, in psychopathology, research suggests that mental disorders may be caused by
the direct activation of symptoms through, for instance, adverse life events (Cramer et al. 2012,
Keller et al. 2007). For example, the death of a spouse might trigger insomnia, which a few weeks
later culminates into a full-blown episode of MD, and the mechanism that realizes this process
is likely to involve symptom-symptom causation. For instance, one may consider a chain such
as chronic stress → depressed mood → self-reproach → insomnia → fatigue → concentration
problems. Such a chain results in five present symptoms and thus a diagnosis of an episode of MD.
However, for a person who develops MD following major health problems, such as myocardial
infarction, the route to MD may follow a different path and, for instance, start with somatic
symptoms (De Jonge et al. 2006). Similarly, one may consider causal pathways such as having a
panic attack → worry about the consequences of having such an attack (PD), and pathological use
of cocaine → failure to be a responsible parent [substance use disorder (SUD)].

In sum, not only do we not know that symptoms are caused by mental disorders, but it is
in fact extremely unlikely that they are. As a result, the hypothesis that such disorders are the
proper entities to steer the organization of research, diagnosis, and treatment is, at best, awaiting
scientific justification. Importantly, however, the different causal status of medical diseases and
mental disorders with respect to their relations to symptoms does not merely infuse criticism of
current approaches; it also suggests an alternative methodology that holds significant promise for
the study of psychopathology. The heart of this approach lies precisely in what separates medical
conditions from mental disorders: the general idea that causal, meaningful relations between
symptoms not only exist and should be acknowledged, but in fact are the very stuff of which
mental disorders are made.

COMPLEX PSYCHOPATHOLOGY NETWORKS

The foundation of the network approach is simple (Cramer et al. 2010, Schmittmann et al. 2013):
Instead of interpreting symptoms as a function of a set of underlying/latent disorders, the net-
work approach conceptualizes symptoms as mutually interacting, often reciprocally reinforcing,
elements of a complex network. Thus, rather than interpreting symptoms as measurements of a la-
tent disorder (as is depicted in Figure 1; see Table 1 for the accompanying legend), symptoms are
viewed as part of a causal system (Borsboom 2008a). As such, the relation between symptoms and
disorder becomes one of mereology (a part–whole relation) rather than measurement (a causal
relation; Reise & Waller 2009). In that respect, psychopathology symptoms are not symptoms
in the strict sense of the word. Instead of passive receptors of the causal influence of a medical
condition, symptoms are causally active ingredients of the mental disorders themselves.

It should be noted that this move from latent disorders to networks of causally connected
symptoms is in itself a quite simple and straightforward matter. In particular, it does not involve
the acceptance of any particular theory about psychopathology. It merely results from accepting
two simple propositions: (a) Given the current evidence, we should forestall the conclusion that
symptoms of the same disorder are uniformly caused by a single psychological or biological condi-
tion (or a single constellation of such pathological conditions), and (b) psychopathology symptoms
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causally influence one another. Hypothesis a is merely a matter of scientific prudence, given the ab-
sence of credible mono-causal explanations for how psychopathology symptoms arise. Hypothesis
b cannot reasonably be denied by anyone familiar with the symptoms that are typically listed in
diagnostic systems in psychology.

Despite the fact that few scholars will be vehemently opposed to these hypotheses, the con-
sequences of accepting them are potentially radical. First and foremost, if it is indeed the case
that direct and possibly reciprocal interactions exist between symptoms, then it becomes unclear
whether the disorder itself is at all required as a separate entity to make sense of the empirical
correlational structure of symptoms. We do not need the disorder MD to explain why the symp-
toms of MD hang together: These symptoms are strongly correlated because they are part of the
same system, i.e., because they causally influence one another. For example, decreased appetite
and losing weight do not correlate highly because they are caused by the same disorder, MD,
but rather because they are causally related: decreased appetite → losing weight. Second, if one
accepts that symptoms and causal connections between them are what constitutes a mental dis-
order, then the term “comorbidity” gathers a different meaning: No longer can comorbidity be
meaningfully explained as a correlation between two disorders, nor as the result of a common
underlying (neurobiological) dysfunction or “super disorder” (e.g., Barlow et al. 2004). Instead,
the causal relations between symptoms constitute pathways that can connect different disorders,
for example via bridge symptoms (i.e., symptoms that are part of both disorders): chronic worry
[generalized anxiety disorder (GAD)] → sleep problems (GAD/MD) → fatigue (GAD/MD) →
depressed mood (MD).

As Cramer and associates (2010) have argued, such multiple pathways from one disorder to
another might exist in such a way that there is no objective or “true” point at which to carve the
symptom network in two, with each part representing a separate disorder. That is, as has been
noted in the past (Kendell 1975, Klein 1978, Spitzer 1973, Spitzer & Endicott 1978), boundaries
between disorders are fuzzy. Importantly, in the network approach these boundaries are fuzzy
not as a result of methodological limitations, but rather as a result of the intrinsic structure
of disorders. Thus, from this point of view, the current lack of separability of disorders is not
a matter of resolution that will be resolved by the advent of future measurement techniques.
Instead, the reason that we have been unable to find true boundaries is simply that there are no
true boundaries. Although, in the network approach, one may still define disorders as sets of more
densely connected symptoms that show synchronized behavior (like a school of fish or a flock of
birds), these disorders are literally intertwined with one another and cannot be neatly separated.
As a result, if one wants to cut nature at its joints in psychopathology research, one had better
accept that the joints themselves are fuzzy.

A final consequence of accepting the premises of the network approach is that, with a shifting
focus of scientific attention, the target of therapeutic interventions may change. Instead of some
ephemeral “latent disorder,” therapeutic interventions target symptoms and the relations between
symptoms. This is a significant shift away from the emphasis of treatment in modern Western
medicine, which generally aims for the identification of a root cause. For instance, if one has a
headache as a result of a tumor, one could suppress that symptom by taking aspirin. However, this
will not make the tumor go away: The tumor causes the headache, not the other way around, so
a causal intervention at the symptom level cannot transmit its effect to cure the tumor. The only
way to treat the condition is to remove the root cause and get rid of the tumor.

In contrast, in psychopathology, the idea that one can literally treat MD is entirely hypothetical,
since there is no evidence that the label MD refers to a root cause or essential property shared by
those who are in fact depressed. That is, if MD does not exist as an entity that exists independently
of its symptoms (like a tumor does), attempting to treat it analogous to the way medical conditions
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are treated (cutting away the tumor) is like trying to saddle a unicorn. Instead, what one can
direct treatment at are the problems that people actually have and that, as a whole, constitute
MD (rather than being caused by it). In other words, in a network approach, interventions are
optimally targeted at the symptoms themselves or at the causal relations that connect them. In
our opinion, this point of view sits well with many, if not all, therapeutic interventions currently
in use (e.g., cognitive behavioral therapy).

CONSTRUCTING AND ANALYZING PSYCHOPATHOLOGY
NETWORKS

In recent decades, the construction and analysis of complex networks, which have their roots in
physics and mathematics (Erdös & Rényi 1959, Ising 1925), has become a thriving enterprise in
many fields that deal with complex organizations of mutually interacting entities. The problem
of finding a way to analyze such systems has culminated in a set of powerful empirical research
methods, generically known as network analysis, that can be applied to many different domains
(Barábasi 2011). One of the first papers to generalize the idea of marrying mathematical descrip-
tions of network structures to diverse sets of data-driven networks was the classic by Watts &
Strogatz (1998), which led to an avalanche of empirical and mathematical research on the struc-
ture and dynamics of complex networks. A good introductory text on the resulting literature is
Newman (2010), while Kolaczyk (2009) and Barrat and associates (2008) yield excellent treatments
of the applications of network modeling in dynamic models. Grimmett (2010) provides a technical
introduction to more complicated probabilistic models, while Boccaletti and associates (2006) give
a reasonably comprehensive and readable treatment of network approaches in different fields.

At its core, a network is simply a set of elements (nodes) that are connected through a set
of relations (edges; see sidebar Practical Guide I: How to Build Networks). Elements as well
as relations between elements can be virtually anything: For example, nodes in a network can be
airports, with the relations being defined as the number of flights between these airports, or neurons
with the relations being the number of times any two neurons fire simultaneously, or symptoms
of MD and GAD that are connected when they belong to the same disorder (see Figure 2a
for a network visualization of this structure and Table 1 for the accompanying legend). Thus,
the construction and analysis of networks are highly accessible in the sense that the application

PRACTICAL GUIDE I: HOW TO BUILD NETWORKS

Networks consist of two building blocks: nodes and edges. Nodes are usually visualized as circles and can represent
any conceivable variable (e.g., symptoms, persons, airports, neurons). Edges are lines that connect these nodes, and
they can represent any conceivable sort of relationship [e.g., (partial) correlations, odds ratios, neuronal connectivity].
To build a network, one first identifies the elements that will function as nodes. As an example, we use MD and
GAD symptoms (see Figure 2 and Table 1 for the accompanying legend). Second, one determines what kind of
relationship is represented by the edges. In Figure 2a, we define the relation as being a symptom of the same
disorder in DSM-IV: Any two symptoms that satisfy this relation are connected. These relations are coded in an
adjacency matrix (see Table 2) with all symptoms as rows (i ) and columns (j). In this example, this matrix contains a
1 at position i,j if symptoms i and j are connected, and a 0 otherwise (see also Figure 2). This matrix is subsequently
used as input for visualizing the network. An alternative is shown in Figure 2b where the edges represent empirical
correlations. In that case, the adjacency matrix equals the empirical correlation matrix.
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Figure 2
Networks for symptoms of major depression (MD) and generalized anxiety disorder (GAD) based on (a) the fourth edition of the
Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) and (b) correlations based on the National Comorbidity Survey
Replication data. (a) The symptoms of MD are placed at the top of the graph, bridge symptoms (i.e., symptoms that feature in both
disorders) are in the middle, and GAD symptoms at the bottom. Symptoms are connected with a gray edge if they are part of the same
disorder. Such a connection is coded in the adjacency matrix as a 1; no connection is coded as a 0. (b) The edges represent correlations.
The higher the correlation, the thicker the edge. The position of the nodes in the network is based on an algorithm, which causes
strongly correlated symptoms to cluster in the middle, whereas symptoms with weaker connections to other symptoms figure more in
the periphery of the figure (Fruchterman & Reingold 1991).

Table 2 Adjacency matrix pertaining to Figure 2

depr inte weig moto repr suic slee conc fati anxi even ctrl irri musc edge
depr 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
inte 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
weig 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
moto 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
repr 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
suic 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
slee 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
conc 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
fati 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
anxi 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
even 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
ctrl 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
irri 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
musc 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
edge 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
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Disorders usually first diagnosed in infancy, childhood, or adolescence
Delirium, dementia, and amnesia and other cognitive disorders
Mental disorders due to a general medical condition
Substance-related disorders
Schizophrenia and other psychotic disorders
Mood disorders
Anxiety disorders
Somatoform disorders
Factitious disorders
Dissociative disorders
Sexual and gender identity disorders
Eating disorders
Sleep disorders
Impulse control disorders not elsewhere classified

Personality disorders
Symptom is featured equally in multiple chapters

Adjustment disorders

Figure 3
The DSM-IV symptom space. Symptoms are represented as nodes and connected by an edge whenever they figure in the same
disorder. The color of nodes represents the DSM-IV chapter in which they occur most often. To view an interactive version of this
figure, please download Figure 3 from the Supplemental    Materials  page: http://www.annualreviews.org/doi/suppl/
10.1146/annurev-clinpsy-050212-185608.

of network models does not require extensive prior knowledge, as many other methodologies do:
All one needs is a set of elements and an idea of how these elements are connected.

Psychopathology networks can be constructed in several ways, each of which may yield im-
portant information about the structure of disorders. For instance, one can use the information
in diagnostic systems themselves, as these often contain clues about the causal constitution of
disorders. Second, one can use the assessment of (causal) relations between symptoms, as rated by
clinicians or patients. Third, one may use data on symptom endorsement frequencies to extract
empirical patterns of association that can serve as input for network structures; for example, as odds
ratios, (partial) correlations, or pathways detected through causal search algorithms (Spirtes et al.
2000). Below, we illustrate how such networks can be constructed and analyzed with existing data.

Networks Based on Diagnostic Systems

Diagnostic systems like the DSM-IV or ICD-10 can be considered to partly reflect the structure
of psychopathology through patterns of symptom overlap. A straightforward way of studying such
patterns is by representing individual symptoms as nodes in a network and connecting them when-
ever they feature as symptoms of the same disorder (see sidebar Practical Guide I; see Figure 2a
for an example of a DSM-based network structure for MD and GAD and Table 1 for the legend).
This type of network reveals the structure of the diagnostic system itself. For instance, Borsboom
and associates (2011) used exactly the same procedure as in the sidebar Practical Guide I to an-
alyze the full symptom space of the DSM-IV (Am. Psychiatr. Assoc. 1994). Figure 3 shows the
resulting network, which represents patterns of symptom overlap in the DSM-IV. One striking
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PRACTICAL GUIDE II: COMPUTING PATH LENGTHS AND CLUSTERING OF
BINARY NETWORKS

The shortest path length (SPL) between two nodes is the minimum number of edges that have to be traversed
to reach one node from the other; for example, the SPL for anxi–fati in Figure 2a equals 1, whereas it is 2 for
anxi–depr because they are not directly connected. The average shortest path length (ASPL) is the average of SPLs
of all node-node pairs. In Figure 2a, for instance, the ASPL is 1.253. Another measure of network size is the
diameter of a network: the maximum path length between nodes in the graph. For the network in Figure 2a, the
diameter equals 2. The clustering coefficient Ci can be computed as follows. Suppose that a node i has ki neighbors
(the number of nodes with which node i is connected); then the maximum number of connections between these
neighbors (MAX) equals ki(ki–1)/2: e.g., in Figure 2a, irri has eight neighbors, so MAX = 28, whereas slee has 14
neighbors, so MAX = 91. Ci is the proportion of MAX that is actually present in the network. In Figure 2a, Ci

for irri is 1 (28/28) and 0.604 (55/91) for slee.

feature of this network is the emergence of a giant component—a large group of nodes that are all
connected to one another, either directly or via intermediary nodes (Newman 2001a)—in which
symptoms of mood (pink nodes), anxiety (orange nodes), and substance abuse disorders (green
nodes) predominantly feature.

The giant component in Figure 3 has the characteristics of what is known as a small world in
the network analysis literature (Watts & Strogatz 1998); that is, on average, paths from one node
to another are short and there is a large degree of clustering (i.e., the extent to which nodes tend to
form a connected group; see sidebar Practical Guide II: Computing Path Lengths and Clustering
of Binary Networks for how to compute shortest path lengths and clustering coefficients in the
case of binary networks). Most people are familiar with this idea through the work of Milgram
(1967), who was among the first to demonstrate empirically the small world phenomenon. Milgram
(1967) famously instructed people to send letters to other people (i.e., targets) they did not know
by giving the letters to acquaintances they felt might know the target (or to somebody who might
know somebody who . . .). The people who received the letters then did the same. On average, it
took six steps to reach the target, a result that became famous as “six degrees of separation.” Thus,
a small world structure implies that, even though a network may be very large and feature strong
clustering, any node can be reached from any other node in only a few steps. For the DSM-IV
network, the small world property means that comorbidity appears to be, at least partially and
in particular for mood, anxiety, and substance abuse disorders, encoded in the structure of the
diagnostic criteria themselves (Borsboom 2002).

Although the network in Figure 3 directly represents the DSM-IV rather than the structure of
mental disorders, it is not entirely unreasonable to suspect that the network may harbor relevant
causal information. This is because the DSM itself frequently mentions (or even requires) causal
relations between symptoms of the same disorders. For instance, for the diagnosis of PD, it is
required that a person has panic attacks, worries about the implications of these attacks, and
changed his or her behavior as a result of panic attacks. In this case, the latter symptoms clearly
depend causally on the presence of panic attacks themselves, so much so that this dependence
is required for the diagnosis (i.e., worry about something distinct from panic attacks does not
count as a symptom of PD). Similar constructions arise for the diagnosis of SUD, in which it is
required that the person experiences problems as a result of substance abuse; posttraumatic stress
disorder, in which it is required that a person reexperiences traumatic events (in this case, the
traumatic events are among the causes of reexperiencing them); and specific phobia, in which
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all other symptoms (e.g., enduring the phobic situation with intense anxiety) causally depend
on the first symptom of being excessively fearful of a particular object or situation. In addition,
causal links that are not explicated in the system may occasionally be highly likely. For instance,
in obsessive-compulsive disorder, compulsions are considered to be a means of reducing distress
caused by obsessions (Franklin & Foa 2011; e.g., a person washes his or her hands compulsively
to reduce the distress caused by the obsession with cleanliness). Thus, at least for a subset of
psychopathology symptoms, it is possible that their causal connection is in fact the reason that
they figure as symptoms of the same disorder.

As we view it, diagnostic systems like the DSM are thus not theoretically neutral, as has been
claimed to be the case from DSM-III onward (Maser et al. 1991, Wakefield 1997). Rather, this
diagnostic system is replete with clinically relevant causal relations like the ones outlined above.
At the level of causal relations, therefore, the DSM does theorize and, at times, it does so to a
great extent when it comes to the causal order of symptom development. It is important to note
that psychometric analyses of systems like the DSM-IV with latent variable models that simply
ignore such clinically relevant causal relations, which are explicated in the system itself, should be
viewed with caution.

Perceived Causal Relations

A second way of gaining insight into the causal organization of disorders is by asking experts or
patients to report causal relations between symptoms. To our knowledge, the first researchers
to ask experts about perceived causal relations between symptoms were Kim & Ahn (2002). For
disorders such as anorexia nervosa, antisocial personality disorder, and MD, they asked clinicians
to draw a line between two symptoms whenever they thought these two symptoms were somehow
related. The clinicians were specifically told that such relations could mean anything (non)causal,
from “co-occurs with” to “causes.” Whenever clinicians drew a line between symptoms, they were
asked to indicate the strength of this perceived relationship on a three-point scale. We asked 12
Dutch clinicians to do the same for MD, GAD, and mania. The results pertaining to MD are shown
in Figure 4 (see Table 1 for the accompanying legend), in which we have used an algorithm that
positions strongly connected nodes in the middle of the graph and the more weakly connected
nodes in the periphery of the graph (Fruchterman & Reingold 1991): for example, according to
the Dutch clinicians the symptom “depressed mood” is important in the disorder because it has
strong connections with most of the other symptoms in the network. In contrast, the symptom
“weight problems” is perceived to be less important since the clinicians do not think it is strongly
related to any of the other symptoms of MD.

Recently, Frewen and associates (2011) have developed a systematic approach to the investiga-
tion of causal relations between symptoms by means of questionnaires that may be administered
to clients. They call this methodology perceived causal relations scaling. In this method, a person
first indicates which of a set of symptoms is present. Secondly, each combination of presented
symptoms (i,j) is combined in a question that assesses whether i caused j (reciprocal causal rela-
tions are typically allowed). In this way, one essentially builds a self-reported adjacency matrix for
all symptom-symptom relations. That matrix defines a network that represents the cognitive rep-
resentation of the causal structure of disorders. One could also see the network as a self-generated
hypothesis on the network structure of a patient’s disorder. The extent to which such hypothe-
ses are in fact accurate is an important question for further research. If they are, then perceived
causal relations scaling may offer a cheap and quick way to a rough assessment of psychopathology
networks that could be used to construct informed treatment interventions.
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Figure 4
A network for MD based on the ratings of 12 Dutch clinicians. The nodes in the network represent the nine
symptoms of MD; the edges between these nodes represent the mean connection strength between these
symptoms as rated by the 12 Dutch clinicians (range: 0 = no connection; 3 = strong connection): The
higher the mean rating, the thicker the edge. The position of the nodes in the network is based on an
algorithm, which causes strongly correlated symptoms to cluster in the middle, whereas symptoms with
weaker connections to other symptoms figure more in the periphery of the figure (Fruchterman & Reingold
1991).

Extended Psychopathology Networks

Networks for psychopathology feature relations between symptoms. Typically, we see these symp-
toms as interacting with one another at the level of the individual person. However, in some cases,
one person’s symptom may infect another person. Perhaps the most famous example of such a
situation is the shared psychotic disorder or folie à deux. This disorder may involve the develop-
ment of a delusion in one person, who then infects another through social communication. For
instance, suppose that Bob becomes convinced that a government agency is spying on him. As a
result of this symptom, Bob may keep the curtains closed, refuse to open the door, etc. Thus, Bob’s
primary symptom causes other symptoms, resulting in a network structure of psychopathology.
Now imagine that Bob succeeds in convincing his spouse, Alice, of the veracity of his suspicions.
As a result, Alice may also start withdrawing from social life and may develop symptoms similar
to Bob’s. Thus, the activation of Bob’s symptom not only has produced other symptoms within
his own system, but has also produced symptoms in another person. We propose to call such
symptom networks extended psychopathology networks.

Extended psychopathology networks may be studied in more or less the same way as ordinary
psychopathology networks, but are especially useful when time information is present, so that
one can estimate person-specific networks (see section The Many Roads to Disorder: Individual
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Networks) as well as the way they interact. Such methodology could be used to chart the interaction
between symptoms of different people in various social situations. This would be relevant for
childhood psychopathology, for instance, because it would allow one to study the interaction
between parents and children as problems develop over time. To give one example, in the study
of developmental psychopathology, reciprocal interactions may exist between sleep problems and
behavioral problems (Patzold et al. 1998). Sleep problems of a child invariably lead to sleep
problems of the parents; in turn, prolonged periods of poor sleep and behavioral problems in a
child may lead to parental stress (Hoffman et al. 2008), which may result in less adequate handling
of the child at bedtime, and hence leading back to sleep problems. Thus, in this case we have a
feedback cycle that runs over symptoms that belong to various members of a family, and we see
that the problems of neighboring individuals become intertwined.

Extending this idea further, one quickly reaches the conclusion that, in almost any mental
disorder, significant social effects of this kind exist; in general, prolonged severe problems lead to a
greater degree of social isolation. This means that the way in which one person’s symptom network
interacts with other people’s networks leads to the alteration of that person’s social network. Thus,
carrying the idea of extended networks a little further, one sees a Russian doll of networks that
are nested within other networks. Note that, even at this level, reciprocal influence is likely to be
the norm rather than the exception, for the development of social isolation due to a network of
personal problems may itself induce a further burden, thereby further enhancing the very problems
that caused the isolated state in the first place. Thus, the complexity of psychopathology not only
involves complex reciprocal relations between symptoms but also between networks of symptoms
and social networks.

In this view, one follows the ladder upward, from symptom networks to social networks. Nat-
urally, one can also extend networks in a downward fashion. For instance, one may unpack MD
into a network of symptoms such as depressed mood and sleep problems. However, if one unpacks
the concept of a sleep problem itself, one concludes that the symptoms themselves are complexly
structured, with feedback cycles between hormones, external cues, and behaviors that give rise to
the circadian rhythm. Thus, the reality of psychopathology involves a Russian doll of networks
nested within networks in several layers of complexity. The exploration of such layered network
structures is within reach given current data-gathering possibilities, and we think that the si-
multaneous analysis of social, symptom, and physiological networks is one of the main research
challenges for the near future.

Association and Concentration Networks

Another way of exploring the causal organization of mental disorders is by studying empirical
associations between symptom reports in patient or community samples. For instance, the matrix
of correlations between symptoms is a symmetric symptom x symptom matrix, and as such, it can
be treated as a weighted adjacency matrix (see sidebar Practical Guide I). Figure 2b shows such
a network for symptoms of MD and GAD, in which the edges represent empirical correlations
based on the NCS-R data (see Table 1 for the accompanying legend). We interpreted missing
values that arose from the skip structure of the questionnaire as absent symptoms and replaced
these by zeros, which seems a reasonable course of action given the way the DSM-IV is set up.
Naturally, other courses of action are possible, but these fall outside the scope of this review. What
one immediately sees in this figure, for instance, is that MD and GAD are separated somewhat
from each other in the graph; that is, the correlations within the MD network and within the
GAD network appear to be stronger than correlations between MD symptoms on the one hand
and GAD symptoms on the other hand.
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Such association networks are very useful for seeing at first glance which clusters of symptoms
tend to be strongly connected or not. However, if one is interested in knowing which of these
symptoms are truly related (i.e., discovering the causal skeleton that gives rise to a particular
correlational structure), then correlations may not provide optimal information. That is because
a high correlation between any two symptoms might be the result of (a) a true direct (possibly
reciprocal) relation between these two symptoms, or (b) a third variable that causes both symptoms,
or (c) selection on a common effect of the symptoms (Pearl 2000). An example of the first possibility
is a high correlation between decreased appetite and losing weight: Not only are we quite sure
that a direct relation exists between these symptoms of MD, we can also be confident about
the directionality of this relationship: decreased appetite → losing weight. This and other direct
causal relations between symptoms (e.g., insomnia → fatigue; self-reproach → suicidal ideation)
are likely to form the causal skeleton of MD. On the other hand, in the second case, for instance, we
might find a high correlation between avoiding a phobic situation/object and feeling distress over
having a specific phobia. Then it is possible (and perhaps likely) that these two symptoms are not
directly related (neither avoidance → distress nor distress → avoidance) but that their association
is caused by a third symptom of specific phobia: exposure to the phobic situation/object provokes
intense fear, as a result of which a patient (a) avoids the phobic situation/object and (b) feels
distressed about the whole situation (thus exposure → avoidance and exposure → distress). As
such, in this example, a direct relation between avoidance and distress might not be part of the
causal skeleton of specific phobia. Compare this situation with smoking: Having yellow-stained
fingers and a nasty cough are—when sampled in a normal population—probably highly correlated
but not because they are directly related. Their association instead arises because they are caused
by the same phenomenon, namely, smoking.

How can one figure out which correlations are indicative of direct causal relations and which
are not? In a first step, one may obtain the matrix of partial correlations—that is, the correlations
between pairs of symptoms that remain when all other symptoms are controlled for—which may
be considered to provide clues about the causal skeleton of a network (an undirected pattern of
direct relations between variables). For example, one computes the correlation between X (e.g.,
yellow-stained fingers) and Y (e.g., having a nasty cough) given Z (e.g., smoking): If the resulting
correlation approaches zero, then one has a good indication that X and Y are not directly related.
Figure 5 shows such a partial correlation network (only partial correlations >0.10 are depicted
as edges in the figure) for the five symptoms of specific phobia, in which each correlation was
computed when all other variables in the network were controlled for.

One sees, for example, that no substantial partial correlations remain between avoidance and
distress, whereas a rather large correlation remains between exposure and avoidance. Such a partial
correlation network is called a concentration graph (Cox & Wermuth 1993). Note that partial
correlations computed between dichotomous variables are not statistically optimal and should
be interpreted with some care; on the other hand, in our experience, more elaborate statisti-
cal methods tend to paint a qualitatively similar picture—just like Pearson correlations between
dichotomous variables (point biserials) lead to roughly similar structures as more elaborate coeffi-
cients such as log odds ratios or tetrachoric correlations (see also Cramer et al. 2010). To the extent
that this generalizes, network structures may be reasonably recovered from such approximations
even though point estimates and standard errors for the relevant association coefficients may be
inaccurate. Further methodological investigations are needed to determine to what extent this is
true. Note that it is straightforward to lift this limitation by applying nonparametric conditional
independence tests.

In the traditional disease model, the most interesting individual differences are to be found at
the level of risk factors/dysfunctions that cause a particular disease, although, naturally, individual
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Figure 5
A network for specific phobia based on NCS-R data. The nodes in the network represent the symptoms of
specific phobia; the edges between these nodes represent partial correlations >0.10: The thicker the edge,
the higher the partial correlation. The value of each partial correlation is placed on top of its corresponding
edge. The position of the nodes in the network is based on an algorithm that causes strongly correlated
symptoms to cluster in the middle while symptoms with weaker connections to other symptoms figure more
in the periphery of the figure (Fruchterman & Reingold 1991). Abbreviations: avoi, the phobic situation is
avoided or endured with intense anxiety or distress; dist, marked distress about having the phobia or
avoidance/anxious anticipation/distress in the feared situation interferes significantly with the person’s life;
expo, exposure to the feared situation almost invariably provokes anxiety, which may take the form of a
situationally bound or predisposed panic attack; fear, marked and persistent fear that is excessive and
unreasonable, cued by the presence or anticipation of a specific object or situation; recg, the person
recognizes that this fear is excessive or unreasonable.

differences also exist at the level of the symptoms. That is, for instance, cancer research is dedicated
to elucidate (a) which risk factors predispose someone for developing, say, lung cancer (e.g.,
smoking, working with asbestos) and (b) why when two people smoke, one does develop lung
cancer and the other does not (e.g., a genetic mutation). Such research is not aimed at elucidating
why one person with lung cancer does complain of chest pains while another patient with the same
disease does not.

From a network perspective, these assumptions about individual differences change radically,
because a network perspective predicts that relevant differences arise at the level of the symptoms
and the relations between them rather than at the level of the disorder. Concentration graphs
in particular are useful for an assessment of which pathways between symptoms appear to be
common (see sidebar Practical Guide III: Computing Path Lengths and Clustering of Weighted
Networks). That is, strong partial correlations in a between-subjects weighted network (like the
one in Figure 5) may indicate that these pathways reflect real causal relations that are relatively

106 Borsboom · Cramer

A
nn

u.
 R

ev
. C

lin
. P

sy
ch

ol
. 2

01
3.

9:
91

-1
21

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 S
ta

nf
or

d 
U

ni
ve

rs
ity

 -
 M

ai
n 

C
am

pu
s 

- 
L

an
e 

M
ed

ic
al

 L
ib

ra
ry

 o
n 

04
/3

0/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



CP09CH04-Borsboom ARI 24 February 2013 10:32

PRACTICAL GUIDE III: COMPUTING PATH LENGTHS AND CLUSTERING OF
WEIGHTED NETWORKS

For computing SPLs, Dijkstra’s algorithm minimizes the inverse of the distance between nodes i and j measured
with weights w (Brandes 2001, Dijkstra 1959, Newman 2001b). In Figure 5, the shortest path from fear to recg is
not the direct path (1/0.14 = 7.142) but rather the path via avoi: 1/0.26 + 1/0.31 = 7.071. One can also include
both the number and weights of edges in computing SPLs (Opsahl et al. 2010): A tuning parameter α is added such
that 1/wij becomes 1/(wij)α . If α = 1, only the edge weights are considered; if α = 0, only the number of edges is
considered. If 0 < α < 1, both the number and weights of edges are considered; e.g., when α = 0.20, the shortest
path from fear to recg is the direct path (1/(0.14)ˆ0.2 = 1.482). The clustering coefficient Cw

i is a generalization of
Ci in the sidebar Practical Guide II (Barrat et al. 2004): 1/si(ki−1)∗�j,h(wij + wih)/2∗aijaihajh, with si = total weights
of edges incident in node i, ki = number of edges incident in node i, wij = weight of the edge between nodes i
and j, and aij = binary operator indicating whether an edge exists between nodes i and j; e.g., in Figure 5, C3 =
1/0.85∗2∗�[(0.31 + 0.14/2) + (0.31 + 0.14/2)] = 0.264.

common in the sample on which the network representation is based. For MD, for instance, one
may find that a common trajectory runs via depressed mood, loss of interest, and fatigue (see
Figure 4 and Table 1 for the accompanying legend). This formulation of common trajectories in
terms of symptoms and relations between them deviates markedly from existing perspectives on
pathways to disorder. Naturally, such identified pathways would need to be validated in another
independent sample.

Directed Networks

Association and concentration graphs provide clues about possible causal relations between vari-
ables, but they do not provide information about the direction of causal relations (if these relations
are unidirectional in the first place). The use of directed causal networks in statistical analysis has
seen great developments in the past decades, especially in the work of Pearl (2000) and Spirtes
et al. (2000). Unidirectional causal relations between nodes are typically represented by arrows.
Causal analysis is easiest when the pattern of causal relations among variables creates a directed
acyclic graph. In such a graph, all connections between nodes are directed, and it is not possible to
visit any node more than once when traversing the edges along the direction of the arrows in the
graph (this means that there are no feedback loops). Under a (strict) set of statistical assumptions,
the causal network structure can be deduced from a set of observational data by exploiting the
connection between causal relations and certain patterns of conditional independence (see sidebar
Practical Guide IV: Conditional Independence Patterns for an elaboration on these patterns and
Figure 6 for a graphical example).

These relations have historically been used most often in structural equation modeling, where
they serve to confirmatively test causal theories against the data. However, by cleverly using
combinations of these relations, Spirtes et al. (2000) also developed inference algorithms that can
be used exploratively. These algorithms effectively attempt to find candidate causal structures
that could have generated the observed patterns of conditional independence relations. Danks
et al. (2010) have suggested that such explorative approaches could be profitably used to build
causal psychopathology networks. Figure 7 (see Table 1 for the accompanying legend) provides
a graphical representation of the result of applying the PC algorithm (Spirtes & Glymour 1991)
to the NCS-R depression data using the R-package PcAlg (Kalisch et al. 2012). The resulting
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PRACTICAL GUIDE IV: CONDITIONAL INDEPENDENCE PATTERNS

The package PcAlg for R can be used to deduce the causal network structure from observational data. Three
conditional independence patterns are particularly important in determining such a causal structure. First, a chain
of three variables occurs when variable Y mediates the relation between two other variables X and Z (see panel a of
Figure 6). In this case, X and Z are independent given Y. Second, a common cause structure or fork occurs when
variable X is the common cause of X and Z (see panel b of Figure 6). In this case, Y and Z are independent given
X. Third, a common effect structure or collider occurs when X and Y jointly cause Z (see panel c of Figure 6). In
this case, X and Y will become conditionally dependent given Z, if they were unconditionally independent.

network accords well with the idea that the covariance between MD and GAD is mainly a result
of the bridge symptoms they share (Cramer et al. 2010), as the PC algorithm does not detect any
paths between MD and GAD symptoms that are not mediated through their common symptoms.
Also, the MD network bears some resemblance to the clinicians’ network in Figure 4 (see Table 1
for the accompanying legend). For example, in both networks, depressed mood only has outgoing
arrows, suggesting that this symptom might come early on the road to developing MD by triggering
the development of other symptoms (although some caution is in order here, since in the NCS-R
data, people are interviewed about other MD symptoms only if either depressed mood or loss of
interest is present).

THE MANY ROADS TO DISORDER: INDIVIDUAL NETWORKS

Between-subjects psychopathology networks are useful in, for instance, investigating the general
structure of psychiatric disorders as they can generate testable hypotheses about trajectories to-
ward developing a psychiatric disorder that are shared by individuals. However, such patterns of
individual differences yield little insight when it comes to the question of how and why individual
people develop disorders; for example, why Bob developed an episode of MD while Susan devel-
oped a phobic fear of spiders. In order to generate statements about the initiation, maintenance,
and treatment of disorders of individuals, one needs to study the networks of individuals.

From a network perspective, each individual may have his or her own network, which comes
with specific vulnerabilities or risk factors. Figure 8 (see Table 1 for the accompanying legend)
shows two MD-GAD networks for two fictitious persons, Alice and Bob. The figure shows that
Alice and Bob differ quite markedly in terms of how they can potentially develop MD and GAD.

X Y Z 

X 

Y Z 

X Y 

Z 

a b c 

Figure 6
An illustration of the three most important causal relations that can be discovered through tracking conditional independence relations.
Panel a shows a chain structure: Y functions as a mediator between X and Z. Panel b shows a common cause structure: X acts as the
common cause of both Y and Z. Panel c shows a collider structure: Z is the common effect of both X and Y.
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MD network GAD network

Bridge
symptoms

GAD
skip questions

moto
mCon

mFat

mSle

depr
suic

inte

repr

weig

gCon

gFat

irri

edge

gSle

musc

ctrl

even

anxi

Figure 7
The directed MD-GAD network, based on the NCS-R data. Each edge represents a putative causal relation that remained after a
search algorithm (PcAlg) tracked all the possible conditional independence relations present in the data. If two symptoms are not
directly connected, this implies that they are independent conditional on a subset of other symptoms. Double-headed arrows represent
connections for which the algorithm cannot settle on a direction.

For example, in Bob’s case, the strongest pathway from MD to GAD runs via weig (weight
problems), fati (fatigue), and edge (feeling on edge); in Alice’s network, the progression of MD to
GAD runs via depr (depressed mood), suic (thoughts of suicide), and irri (irritability). Since these
are mere hypothetical examples of the many ways in which people can develop an episode of MD,
what kind of data would we need to study these individual networks? And what can we infer from
these networks in terms of individual risk of developing a certain disorder?

Time Series, Time Series, and Time Series

When the aim of network analysis is to construct disorder networks for individuals, cross-sectional
data will be of little use. That is, in the networks of individuals, an arrow between any two
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Bob Alice 
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GAD

depr
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weig
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repr
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Figure 8
Hypothetical major depression (MD) networks for two fictitious people, Bob and Alice. Thicker green edges represent stronger causal
relations between the symptoms of MD. These networks show that there are many ways to develop both MD and GAD

symptoms—say, insomnia → fatigue—is indicative of a process that takes place over time (e.g.,
insomnia develops at time t whereas the fatigue is caused by this insomnia at a later point in time,
say, at time t + 1). As such, querying a person about his or her symptomatology at one point in
time is simply not enough to extract the causal information necessary to build a network of this
person’s symptom space. As mentioned in the previous section, it is possible to ask people to draw
their own causal scheme, but of course the success of such a method relies on the ability of people
to accurately report on their symptom development retrospectively, which may not be equally
accurate in all circumstances (Henry et al. 1994).

A viable alternative is to collect time-series data (Hamaker et al. 2005). That is, one asks
individuals to report on various aspects of their physiological and psychological well-being at
least once a day for many consecutive days. In one such recent research protocol, the experience
sampling method (see Aan het Rot et al. 2012, Myin-Germeys et al. 2009), people are asked to
report, during their normal daily life, their thoughts, feelings, and symptoms as well as the context
in which these thoughts/feelings/symptoms take place and the appraisal of the context. One of the
major advances of using such a method is that one is able to collect not only time-intensive data
but also (a) data on the relation between events happening in a person’s life and the subsequent
ripple effects of that event in the symptomatology of this person, and (b) data from people without
psychopathology who might be progressing toward developing a mental disorder. That is, in the
latter case, one has excellent data to study why some people develop mental disorders while others
do not, which in our opinion is the most pressing question in the entire realm of psychopathology.

Another possibility to learn about the intraindividual behavior displayed by a given network
structure is by simulating time-intensive intraindividual data. With such simulated data, many of
the interesting questions in psychopathology can be studied. For example, based on simulated
data, Borsboom and associates (2011) showed that the percentage of “diagnoses” in simulated
individual MD-GAD networks (in which comorbidity could only arise via bridge symptoms; see
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PRACTICAL GUIDE V: SIMULATING NETWORKS IN NETLOGO

Our team developed a simulation model of MD that can be found at http://ccl.northwestern.edu/netlogo/
models/community/Symptom%20Spread%20Model (van Borkulo et al. 2011). In this model, virtually
anything—from symptom development to stressors—can be manipulated by the user. It works as follows. At each
time point, the model computes the probability of each symptom i to become activated at the next time point with
the logistic function e�ax−b/1 + e�ax−b. Here, �ax is the activation sum of all symptoms at the previous time point
(coded in a vector x) times the weight of the relevant connections (collected in a vector a) and could be seen as the
total incoming effect for symptom i at that time point; b is a vector of symptom-specific thresholds derived from
the item difficulties of empirical data (Aggen et al. 2005). Two of the parameters that directly affect the probability
functions in this basic setup and that can be altered by the user in real time are (a) number of connections (e.g.,
if all nine symptoms of MD are connected, then each symptom has eight neighbors) and (b) connection strength:
The stronger the connections, the more influence the activation of symptoms has on other symptoms (thus directly
affecting the a parameter vector in the model).

Figure 2a and Table 1 for the accompanying legend) could account for prevalence rates for MD
and GAD, comorbidity, and basic psychometric characteristics of the data at the same time. Also,
based on a method to simulate data freely available online in the modeling environment NetLogo
(Wilensky 1999), one can study the known impact of stressors (e.g., negative life events such as
the loss of a loved one) on individual symptoms of MD and relations between them (Cramer
et al. 2012, Keller et al. 2007; see sidebar Practical Guide V: Simulating Networks in NetLogo
for the specifics of simulating data in NetLogo and Figure 9 for a screenshot of the NetLogo
simulation environment). Of course, through such exercises one primarily learns something about
what behavior is actually implied by one’s theory, but in the case of network models this way of
working can be quite revealing.

The Analysis of Time Series

One can analyze time-intensive intraindividual data in a number of ways. The most straightforward
way is to define connections in the network of an individual as representing the lag-1 correlations.
That is, for example, if the network of Alice in Figure 8 (see Table 1 for the accompanying
legend) would be a lag-1 correlation network based on empirical data, then the arrow from conc
(concentration problems) to irri (irritability) means that concentration problems at time t predict
irritability at time t + 1. Likewise, in Bob’s network, the arrow from weig (weight issues) to repr
(self-reproach) would mean that weight issues at time t predict self-reproach at time t + 1. If t
would be measured in days, then a lag-1 correlation between feeling blue and eating more would
probably be an appropriate time window; that is, it is plausible that feeling blue one day can
make one eat more the next day. However, lag-1 correlations are probably not appropriate for
other hypothesized relations between symptoms. For example, not sleeping for one night may not
trigger fatigue immediately. Rather, one would expect a gradual build-up of sleepless nights, say,
five, before true fatigue sets in. Thus, in this particular example, one would need to model this
relationship in terms of a process that builds up over time.

Another option is to look at the entire available time window and define the connections
between symptoms not in terms of (lag-1) correlations but rather in terms of the beta coefficients
that result from a regression analysis through vector autoregressive modeling (Hamaker et al.
2007). For example, one could follow Bob for a prolonged period of time, assessing his depressive
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Video

Figure 9
A screenshot of the Symptom Spread Model that can be used to simulate intraindividual dynamics for major depression. This model
can be run online in the modeling environment NetLogo. To run the model directly in a browser, go to
http://ccl.northwestern.edu/netlogo/models/community/Symptom%20Spread%20Model

symptomatology every day on seven-point scales. Then, one could compute partial correlations
in order to get a rough idea of the causal skeleton of Bob’s network. With this information,
one subsequently determines the neighbors of each symptom: All connections that represent a
partial correlation of 0.10 or less (or some other optimum at which all nodes are connected with a
minimum number of edges) are deleted. In Figure 5, for example, this procedure resulted in fear
having two neighbors; that is, fear is connected with two other nodes in the network, not with
all four. Next, one regresses each symptom at time t on its neighbors on t – 1 and calculates the
regression weights. These weights would then represent the strength of the connections in Bob’s
network. In a next step, one could attempt to determine directed acyclic graph structures for this
type of data (Eichler 2007, Wild et al. 2007).

Thus, the analysis of time series could be executed in ways roughly similar to the previously
discussed between-subjects data, but in this case to determine the network structure of the indi-
vidual person. In general, a significant variety of models previously developed in econometrics and
biometrics is available to construct network models (Kolaczyk 2009). This may offer genuinely
new ways of charting intraindividual network structures. Further developing methodology to do
this in psychological applications would greatly facilitate research in this area. In addition, intrain-
dividual network structure could offer novel ways of planning treatment, for instance by targeting
the most important symptoms in a person’s network structure.

Risk in Individual Networks

Regardless of how one defines the connections in the networks of individuals, what can we say
about risk in terms of these networks? As mentioned previously, in disease, risk is defined at the
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X1

X2 X3

X4

X1 X2 X3 X4 X1 X2 X3 X4 

X1

X2 X3

X4

Figure 10
Two hypothetical networks of symptoms X1–X4 (analogous to the domino tiles under the networks) that stand in certain relations
toward one another (analogous to the distances between the domino tiles). In the left panel, the symptoms X1–X4 are weakly
connected, so in terms of the analogy, the distances between the domino tiles are relatively large. In the right panel, the symptoms
X1–X4 are strongly connected, so in terms of the analogy, the distances between the domino tiles are relatively short.

level of the disease entity, which is not present in a network, at least not as an entity that is separable
from its symptoms. From a network perspective, there are at (at least) two ways in which a network
can harbor risk of developing a certain mental disorder.

First, the structure of a particular network might be risky. To illustrate this concept, one may
consider the symptoms of a disorder network to be domino tiles and view the connections between
the symptoms as the distances between the domino tiles. Then relatively weak connections are
analogous to domino tiles spaced rather widely apart (see left panel of Figure 10). As such, if, for
instance, the symptom X1 in Figure 10 were to arise, then the probability of that symptom causing
the development of other symptoms is relatively slim. In this case, the toppling of one domino
tile will not likely result in the toppling of others, because they have relatively large distances
between them. On the other hand, strong connections are analogous to domino tiles with short
distances between them (see right panel of Figure 10). In that case, if symptom X1 were to be
developed, then its activation would likely spread through the network like a virus spreads through
a population: The toppling of that one domino tile will likely topple the other dominoes as well
because of the short distances between tiles. Thus, suppose that Alex has had a drinking problem
in the past, which has caused all sorts of problems (e.g., financial problems, divorce from his wife),
but at the moment he is sober after a successful intervention (see also Cramer et al. 2010). In
that case, the structure of Alex’s substance use network may still be risky, as there are only short
distances between the domino tiles. Then, if Alex, for whatever reason, would have one drink, this
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X1

X2 X3

X4

Central

Peripheral

Figure 11
A hypothetical network of symptoms X1–X4. Symptom X1 only has strong connections with the other
symptoms in the network; this is a central symptom in this network. On the other hand, symptoms X2–X4 all
have one strong connection and two weak connections. These symptoms are thus peripheral in this network.

would quickly culminate in other symptoms, such as financial consequences and problems with
the important people in Alex’s life.

Second, there might be symptoms that, when developed in a particular person, have a stronger
causal influence on the rest of the network compared to other symptoms. That is, in reality,
different symptom pairs will have different connection strengths, which determine the extent
to which symptoms causally influence one another (as opposed to the networks in Figure 10,
in which all connections within one network were equally strong). Consider, for example, the
network depicted in Figure 11. In this network, X1 only has strong connections with the other
symptoms in the networks; that is, X1 is a central symptom in this network. On the other hand,
the other symptoms, for example X3, have one strong connection but two weak connections; that
is, X3 is a peripheral symptom (as are X2 and X4). Now, in terms of risk, the central nodes in
someone’s network are the most dangerous: If a central symptom is developed in someone, then
the probability of that symptom causing the development of other symptoms is high (because the
central symptoms are strongly connected to the other symptoms in the network); higher than
when a peripheral symptom is developed (see sidebar Practical Guide VI: Centrality Measures for
Weighted Networks).

Now, instead of defining risk or liability at the level of the disease, with largely untested or
unconfirmed genes or other neurobiological pathological mechanisms as the culprit, the network
perspective offers two concrete—and with good time-series data, testable—explanations of why
certain people are at risk while others are not. Risk in terms of a network perspective is concrete
in that it potentially gives therapists specific targets of where to intervene either to prevent the
development of a full-blown disorder or to treat a person who already has developed a disorder.
For example, the network perspective predicts that people who have developed a symptom that
is central to, say, their MD network, are at risk of developing a full-blown episode. As such,
targeting the central symptom with some kind of intervention, as soon as possible, should protect
these people from progressing into disorder. Likewise, when treating patients who already have
the disorder, it might benefit treatment if therapists knew where the strong and weak links are in
the network; the strong links are pitfalls a patient could easily walk into (e.g., every time Susan feels
somewhat blue, she starts thinking about ending her life), whereas the weak links are potentially
easy to break.
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PRACTICAL GUIDE VI: CENTRALITY MEASURES FOR WEIGHTED NETWORKS

One way to assess centrality is by computing the closeness (Opsahl et al. 2010) of node i, which is defined as the
inverse of the total length of all SPLs between node i and all other nodes in the network. As explicated in the
sidebar Practical Guide III, the shortest path calculation can take into account both number and weight of edges,
depending on the tuning parameter α. For example, when one only considers the weights (i.e., α = 1) in Figure 5,
the closeness of avoi =(

1/0.68︸ ︷︷ ︸ + 1/0.26︸ ︷︷ ︸ + 1/0.31︸ ︷︷ ︸ + 1/0.31 + 1/0.40︸ ︷︷ ︸
)−1

= 0.07

SPL[4,1] SPL[4,2] SPL[4,3] SPL[4,5] (e.g., SPL[4,2] = shortest path from node 4 to node 2).

A downside of closeness centrality is that one cannot compute it when one or more nodes are not connected (e.g.,
in Figure 3, nodes that are not part of the giant component) because then the SPL between two nodes becomes
infinitely large. A measure without this problem is betweenness (Bi) = gjk(i )/gjk; gjk: number of shortest paths
between two nodes (if bidirectional then both path i–j and j–i ); gjk(i ): number of those paths that go through node
i. For example, in Figure 5, the betweenness of fear is 0, and it is 8 for avoi.

CONCLUSION

The idea that mental disorders are network structures provides a new answer to the old question
of whether mental disorders are real, and if so, in what sense. Quite a few scholars are essentialists
in that they regard mental disorders as having some sort of essence, a key defining feature that
separates one disorder from another or from mental health. In medical diseases, this often holds
true; for example, the essence of Down’s syndrome is a third copy of chromosome 21. But, as
we have argued here, in the case of mental disorders, there is little evidence to suggest that
essentialism is appropriate. In our view, it may very well be misguided. However, we do not resort
to conventionalism to claim that mental disorders are constructed, like the concept of a yuppy is
constructed out of the properties of being young, urban, and financially well off. There is definitely
something real about mental disorders, but what? The network perspective gives that something
a new face: causal networks of thoughts, feelings, behaviors, and physiological phenomena that,
during someone’s life, interact with one another and may, in some, rise to the level of mental
disorder. To the extent that these causally active symptoms have been charted adequately, we thus
already have a quite good idea of what constitutes mental disorders.

A development closely related to the network perspective is that of conceptualizing mental
disorders as clusters of mechanistically connected properties (Kendler et al. 2011). This theory
is analogous to the notion of homeostatic property cluster in biology, which gives a plausible
account of how the concept of species may be real, but not in an essentialist way. In this theory,
certain properties cluster because they produce a stable outcome. For example, that is why, in the
animal world, the properties “weighing 4,000 kilos” and “having feet” cluster together (i.e., in
an elephant, which represents a stable property cluster), whereas the properties “weighing 4,000
kilos” and “having wings” do not (i.e., a bird that heavy is not evolutionarily stable). Kendler
et al. (2011) have argued that a similar account may offer a nonessentialist yet realist perspec-
tive on what constitutes mental disorders. In our view, this theory is quite plausible and rings
well with the network perspective, in which causal clusters of symptoms correspond to mental
disorders.
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From both perspectives, it is a waste of time to search for the essence of MD or PD. The
researcher who ignores the study of symptom dynamics to look for the essence of disorders could
be likened to Ryle’s (1949, p. 16) visitor to Cambridge who, after being shown the colleges, li-
braries, scientific departments, and administrative offices, asked “But where is the University? I
have seen where the members of the Colleges live, where the Registrar works, where the scientists
experiment, and the rest. But I have not yet seen the University. . ..” However, this does not mean
that research, originally aimed at uncovering essences of disorders (e.g., genomewide association
studies, serotonin dysfunction research in MD), is unimportant and unnecessary. To the contrary,
from a network perspective, such research endeavors are highly important. Rather, the key ques-
tions of such endeavors should be rephrased. Thus, instead of searching for “genes that cause MD”
we are searching for “genes that cause certain risky network structures in individuals” (Cramer
et al. 2011). Similar setups could be imagined for the study of group differences (would we find
differences in the network structures of males and females for internalizing versus externalizing
networks?), development (can we detect the formation of risky network structures in the devel-
oping child or adolescent?), and culture (do different cultural backgrounds foster different types
of network structures?).

The study of network structures thus yields several new possibilities to go beyond the con-
ventional classification of psychiatric disorders (Morris & Cuthbert 2012). This may be especially
helpful for the study of the interaction of phenotype, neural development, environmental input,
and behavior. Of particular interest is the analysis of endophenotypes (Cannon & Keller 2006,
Gottesman & Gould 2003). In psychiatry, endophenotypes have been defined as (parts of) heritable
phenotypes that are internal to the organism and that promote the development of psychiatric syn-
dromes (Gottesman & Gould 2003). Typically, such endophenotypes have been taken to include
cognitive dysfunctions and neural system dysfunctions, but also symptoms themselves (Cannon
& Keller 2006). The network perspective adds the strength of interactions between symptoms as
an important new possible endophenotype (e.g., individual differences in the strength of the link
between insomnia and fatigue).

Following this line of reasoning, researchers might use time-series data to obtain a network
model that describes the dynamic structure of individuals and use the parameters of that model,
which differ over individuals, as endophenotypes. Such investigations are becoming realistic pos-
sibilities with the advent of experience sampling data-gathering techniques, models for interindi-
vidual differences in the intraindividual parameters of dynamics (Wang et al. 2012), and advanced
statistical modeling techniques in behavior genetics (Boomsma et al. 2002, Franić et al. 2012). In
an illustrative investigation along these lines, Wichers et al. (2007), for example, used experience
sampling data to show that lifetime depression was positively associated with a bias to develop
negative affect states in reaction to daily life stressors. A strong connection between symptomatic
instances of negative affect (e.g., worry) and daily hassles may be viewed as a risky part of a person’s
network structure: It puts the person at greater risk for developing MD. It stands to reason that
networks that contain more of these risky, negative connections and/or fewer positive ones (e.g.,
feeling happy and relaxed after the occurrence of a positive life event) have a riskier structure
and elevate the chance that an individual will develop a disorder. Such an approach also resonates
strongly with current conceptualizations in affective neuroscience, which view reciprocal causal
links among cognitive, behavioral, and somatic mechanisms as crucial components in the genesis
of affective disorders (Garland et al. 2010).

Networks may not only deliver a rich trove of alternative dependent variables that can be
used in traditional experimental and quasi-experimental research setups, but may also alter our
understanding of the relation between genes, brain, and behavior fundamentally. Traditionally,
researchers tend to think of these levels as being intrinsically ordered, in the sense that genes
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cause brains and brains cause behaviors. However, in our view it is extremely likely that once
researchers start taking the dynamics of symptomatology seriously, they will find feedback loops
that cross the borders of traditional thinking. Naturally, genetic differences may predispose to the
development of disorders, but persistent symptomatology (e.g., insomnia or loss of appetite) may
cause differential gene expression just as well; in turn, such changes may affect a person’s brain
state and ultimately feed back into the environment, as in the extended feedback loops discussed
previously in this review (see also Borsboom et al. 2011). In our view, it is highly unlikely that
one particular level of analysis will, in the end, be able to claim causal priority (see also Kendler
2012).

Finally, network analyses invite applications of techniques that are specific to complex network
modeling. One such technique, which we think is especially apt to the study of psychopathology,
comes from the study of sudden transitions in ecosystems (e.g., from tropical forest to savanna;
Hirota et al. 2011). In dynamical systems, such transitions often occur when a parameter of the
system crosses a so-called tipping point. It would be interesting to investigate whether tipping
points can also be identified in network models for mental disorders. In addition, it is known
that a wide variety of dynamical systems display characteristic behavior in the neighborhood of a
tipping point (e.g., phenomena such as critical slowing down and increased variance; Scheffer et al.
2009), which possibly could be used to determine whether a person’s network is on the brink of
collapse.

As we have outlined in this review, a number of ways of charting the organization of mental
disorders in terms of symptom interplay are already available. Several can be applied directly to
existing data, as we have shown here. In our view, however, the most important progress in studying
networks will be made with the analysis of data that represent the coevolution of symptoms over
time. With current technology, there are few obstacles to gathering this type of data. Once such
data become available, one can build person-specific networks, analyze their properties with the
tools we outlined in this review, and then apply dynamical systems tools to chart and predict the
course of such networks. Also, it becomes possible to target interventions at particular parts of a
person-specific network (e.g., extinguish a central symptom such as insomnia) as well as monitor
the impact of such person-specific interventions (e.g., how long does it take for the effect of treating
insomnia to spill over to the other symptoms?).

Whichever theory of mental disorders one adheres to, they all share a deep desire to understand
the inner workings of mental disorders. We all agree that finding out why some people are more
vulnerable to developing mental disorders than others, how we can protect vulnerable people
from harm, and how we can effectively treat people who have already fallen into the abyss of
mental dysfunction are among the most pressing questions in the fields of clinical psychology
and psychiatry. A disease model of mental disorders likely will not bring us any closer to finding
answers to these questions. The network perspective very well might.

FUTURE ISSUES

1. How do people develop comorbid mental disorders? Answering this question calls for
the construction of an empirical DSM graph in which symptom-symptom relations are
constructed on the basis of empirical data, for example in the form of partial correlations
or perceived causal relations.

2. What do the many roads to developing mental disorders look like? We need to collect
time-intensive intraindividual data with which we can construct and analyze the networks
of individual people. Can we then, for instance, observe that people with MD, for example,
have a riskier network structure than people who do not have MD?
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3. What sort of genetic/biological, psychological, and environmental factors govern in-
dividual differences in the strength of connections between symptoms? For example,
what kind of processes are involved in a strong relation between feeling blue and con-
templating suicide? And how do these processes differ from the ones that govern the
relation between insomnia and fatigue? Answering these and related questions calls for
the further development of methods suited to test causal relations between putative de-
terminants of network structure (e.g., genes, endophenotypes, life events), symptoms,
and symptom-symptom relations.

4. Are there tipping points in the networks of individuals for various mental disorders at
which a person is at the brink of tipping into a disordered state or returning to men-
tal health? Finding these tipping points might be important in directing the timing of
therapeutic interventions.

5. How can the network approach help in targeting and evaluating therapeutic interven-
tions? One may, for instance, investigate whether it is most effective to treat a central
symptom in a client’s network. Also, with the methods we outlined to collect time-
intensive intraindividual data, it becomes possible to study how long it takes for an
intervention to have an effect on symptoms and relations between them.
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Sara E. Trace, Jessica H. Baker, Eva Peñas-Lledó, and Cynthia M. Bulik � � � � � � � � � � � � � 589

Neuroimaging and Other Biomarkers for Alzheimer’s Disease:
The Changing Landscape of Early Detection
Shannon L. Risacher and Andrew J. Saykin � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 621

How Can We Use Our Knowledge of Alcohol-Tobacco Interactions
to Reduce Alcohol Use?
Sherry A. McKee and Andrea H. Weinberger � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 649

Interventions for Tobacco Smoking
Tanya R. Schlam and Timothy B. Baker � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 675

Neurotoxic Effects of Alcohol in Adolescence
Joanna Jacobus and Susan F. Tapert � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 703

Socioeconomic Status and Health: Mediating and Moderating Factors
Edith Chen and Gregory E. Miller � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 723

Contents ix

A
nn

u.
 R

ev
. C

lin
. P

sy
ch

ol
. 2

01
3.

9:
91

-1
21

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 S
ta

nf
or

d 
U

ni
ve

rs
ity

 -
 M

ai
n 

C
am

pu
s 

- 
L

an
e 

M
ed

ic
al

 L
ib

ra
ry

 o
n 

04
/3

0/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



CP09-FrontMatter ARI 9 March 2013 1:0

School Bullying: Development and Some Important Challenges
Dan Olweus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 751

The Manufacture of Recovery
Joel Tupper Braslow � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 781

Indexes

Cumulative Index of Contributing Authors, Volumes 1–9 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 811

Cumulative Index of Articles Titles, Volumes 1–9 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 815

Errata

An online log of corrections to Annual Review of Clinical Psychology articles may be
found at http://clinpsy.annualreviews.org

x Contents

A
nn

u.
 R

ev
. C

lin
. P

sy
ch

ol
. 2

01
3.

9:
91

-1
21

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 S
ta

nf
or

d 
U

ni
ve

rs
ity

 -
 M

ai
n 

C
am

pu
s 

- 
L

an
e 

M
ed

ic
al

 L
ib

ra
ry

 o
n 

04
/3

0/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.


	Annual Reviews Online
	Search Annual Reviews
	Annual Review of Clinical Psychology
Online
	Most Downloaded Clinical Psychology
Reviews 
	Most Cited Clinical Psychology
Reviews 
	Annual Review of Clinical Psychology
Errata 
	View Current Editorial Committee

	All Articles in the Annual Review of Clinical Psychology, Vol. 9
 
	Evidence-Based Psychological Treatments: An Updateand a Way Forward
	Quitting Drugs: Quantitative and Qualitative Features
	Integrative Data Analysis in Clinical Psychology Research
	Network Analysis: An Integrative Approach to the Structure of Psychopathology
	Principles Underlying the Use of Multiple Informants’ Reports
	Ambulatory Assessment
	Endophenotypes in Psychopathology Research: Where Do We Stand?
	Fear Extinction and Relapse: State of the Art
	Social Anxiety and Social Anxiety Disorder
	Worry and Generalized Anxiety Disorder: A Review and Theoretical Synthesis of Evidence on Nature, Etiology, Mechanisms, and Treatment
	Dissociative Disorders in DSM-5
	Depression and Cardiovascular Disorders
	Interpersonal Processes in Depression
	Postpartum Depression: Current Status and Future Directions
	Emotion Deficits in People with Schizophrenia
	Cognitive Interventions Targeting Brain Plasticity in the Prodromal and Early Phases of Schizophrenia
	Psychosocial Treatments for Schizophrenia
	Stability and Change in Personality Disorders
	The Relationship Between Personality Disorders and Axis I Psychopathology: Deconstructing Comorbidity
	Revisiting the Relationship Between Autism and Schizophrenia:Toward an Integrated Neurobiology
	The Genetics of Eating Disorders
	Neuroimaging and Other Biomarkers for Alzheimer’s Disease:The Changing Landscape of Early Detection
	How Can We Use Our Knowledge of Alcohol-Tobacco Interactions to Reduce Alcohol Use?
	Interventions for Tobacco Smoking
	Neurotoxic Effects of Alcohol in Adolescence
	Socioeconomic Status and Health: Mediating and Moderating Factors
	School Bullying: Development and Some Important Challenges
	The Manufacture of Recovery




