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Introduction

1.1 Factor Analysis and Structural Theories

By a structural theory we shall mean a theory that regards a phenomenon as 
an aggregate of elemental components interrelated in a lawful way. An excel-
lent example of a structural theory is the theory of chemical compounds: 
Chemical substances are lawful compositions of the atomic elements, with 
the laws governing the compositions based on the manner in which the 
electron orbits of different atoms interact when the atoms are combined in 
molecules.

Structural theories occur in other sciences as well. In linguistics, for exam-
ple, structural descriptions of language analyze speech into phonemes or 
morphemes. The aim of structural linguistics is to formulate laws govern-
ing the combination of morphemes in a particular language. Biology has a 
structural theory, which takes, as its elemental components, the individual 
cells of the organism and organizes them into a hierarchy of tissues, organs, 
and systems. In the study of the inheritance of characters, modern geneticists 
regard the manifest characteristics of an organism (phenotype) as a function 
of the particular combination of genes (genotype) in the chromosomes of the 
cells of the organism.

Structural theories occur in psychology as well. At the most fundamental 
level a psychologist may regard behaviors as ordered aggregates of cellular 
responses of the organism. However, psychologists still have considerable 
diffi culty in formulating detailed structural theories of behavior because 
many of the physical components necessary for such theories have not been 
identifi ed and understood. But this does not make structural theories impos-
sible in psychology. The history of other sciences shows that scientists can 
understand the abstract features of a structure long before they know the 
physical basis for this structure. For example, the history of chemistry indi-
cates that chemists could formulate principles regarding the effects of mixing 
compounds in certain amounts long before the atomic and molecular aspects 
of matter were understood. Gregor Mendel stated the fundamental laws of 
inheritance before biologists had associated the chromosomes of the cell 
with inheritance. In psychology, Isaac Newton, in 1704, published a simple 
mathematical model of the visual effects of mixing different hues, but nearly 
a hundred years elapsed before Thomas Young postulated the existence of 
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2 Foundations of Factor Analysis

three types of color receptors in the retina to account for the relationships 
described in Newton’s model. And only a half-century later did physiologist 
Helmholtz actually give a physiological basis to Young’s theory. Other physi-
ological theories subsequently followed. Much of psychological theory today 
still operates at the level of stating relationships among stimulus conditions 
and gross behavioral responses.

One of the most diffi cult problems of formulating a structural theory 
involves discovering the rules that govern the composition of the aggregates 
of components. The task is much easier if the scientist can show that the 
physical structure he is concerned with is isomorphic to a known mathe-
matical structure. Then, he can use the many known theorems of the math-
ematical structure to make predictions about the properties of the physical 
structure. In this regard, George Miller (1964) suggests that psychologists 
have used the structure of euclidean space more than any other mathemati-
cal structure to represent structural relationships of psychological processes. 
He cites, for example, how Isaac Newton’s (1704) model for representing the 
effects of mixing different hues involved taking the hues of the spectrum in 
their natural order and arranging them as points appropriately around the 
circumference of a circle. The effects of color mixtures could be determined 
by proportionally weighting the points of the hues in the mixture accord-
ing to their contribution to the mixture and fi nding the center of gravity of 
the resulting points. The closer this center of gravity approached the center 
of the color circle, the more the resulting color would appear gray. In addi-
tion, Miller cites Schlosberg’s (1954) representation of perceived emotional 
similarities among facial expressions by a two-dimensional graph with one 
dimension interpreted as pleasantness versus unpleasantness and the other 
as rejection versus attention, and Osgood’s (1952) analysis of the compo-
nents of meaning of words into three primary components: (1) evaluation, 
(2) power, and (3) activity.

Realizing that spatial representations have great power to suggest the exis-
tence of important psychological mechanisms, psychologists have developed 
techniques, such as metric and nonmetric factor analysis and metric and non-
metric multidimensional scaling, to create, systematically, spatial representa-
tions from empirical measurements. All four of these techniques represent 
objects of interest (e.g., psychological “variables” or stimulus “objects”) as 
points in a multidimensional space. The points are so arranged with respect 
to one another in the space as to refl ect relationships of similarity among the 
corresponding objects (variables) as given by empirical data on these objects.

Although a discussion of the full range of techniques using spatial repre-
sentations of relationships found in data would be of considerable interest, 
we shall confi ne ourselves, in this book, to an in depth examination of the 
methods of factor analysis. The reason for this is that the methodology of 
factor analysis is historically much more fully developed than, say, that 
of multidimensional scaling; as a consequence, prescriptions for the ways 
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Introduction 3

of doing factor analysis are much more established than they are for these 
other techniques. Furthermore, factor analysis, as a technique, dovetails very 
nicely with such classic topics in statistics as correlation, regression, and 
multivariate analysis, which are also well developed. No doubt, as the gains 
in the development of multidimensional scaling, especially the nonmetric 
versions of it, become consolidated, there will be authors who will write text-
books about this area as well. In the meantime, the interested reader can 
consult Torgerson’s (1958) textbook on metric multidimensional scaling for 
an account of that technique.

1.2 Brief History of Factor Analysis as a Linear Model

The history of factor analysis can be traced back into the latter half of the 
nineteenth century to the efforts of the British scientist Francis Galton (1869, 
1889) and other scientists to discover the principles of the inheritance of 
manifest characters (Mulaik, 1985, 1987). Unlike Gregor Mendel (1866), who 
is today considered the founder of modern genetics, Galton did not try to 
discover these principles chiefl y through breeding experiments using sim-
ple, discrete characters of organisms with short maturation cycles; rather, he 
concerned himself with human traits such as body height, physical strength, 
and intelligence, which today are not believed to be simple in their genetic 
determination. The general question asked by Galton was: To what extent are 
individual differences in these traits inherited and by what mechanism? To 
be able to answer this question, Galton had to have some way of quantifying 
the relationships of traits of parents to traits of offspring. Galton’s solution 
to this problem was the method of regression. Galton noticed that, when 
he took the heights of sons and plotted them against the heights of their 
fathers, he obtained a scatter of points indicating an imperfect relationship. 
Nevertheless, taller fathers tended strongly to have on the average taller sons 
than shorter fathers. Initially, Galton believed that the average height of sons 
of fathers of a given height would be the same as the height of the fathers, but 
instead the average was closer to the average height of the population of sons 
as a whole. In other words, the average height of sons “regressed” toward 
the average height in the population and away from the more extreme height 
of their fathers. Galton believed this implied a principle of inheritance and 
labeled it “regression toward the mean,” although today we regard the 
regression phenomenon as a statistical artifact associated with the linear-
regression model. In addition, Galton discovered that he could fi t a straight 
line, called the regression line, with positive slope very nicely through the 
average heights of sons whose fathers had a specifi ed height. Upon consulta-
tion with the mathematician Karl Pearson, Galton learned that he could use 
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4 Foundations of Factor Analysis

a linear equation to relate the heights of fathers to heights of sons (cf. Pearson 
and Lee, 1903):

 = + +Y a bX E  (1.1)

Here
Y is the height of a son
a the intercept with the Y-axis of the regression line passing through the 

averages of sons with fathers of fi xed height
b the slope of the regression line
X the height of the father
E an error of prediction

As a measure of the strength of relationship, Pearson used the ratio of the 
variance of the predicted variable, Ŷ = a + bX, to the variance of Y.

Pearson, who was an accomplished mathematician and an articulate writer, 
recognized that the mathematics underlying Galton’s regression method had 
already been worked out nearly 70 years earlier by Gauss and other mathema-
ticians in connection with determining the “true” orbits of planets from obser-
vations of these orbits containing error of observation. Subsequently, because 
the residual variate E appeared to be normally distributed in the prediction of 
height, Pearson identifi ed the “error of observation” of Gauss’s theory of least-
squares estimation with the “error of prediction” of Equation 1.1 and treated 
the predicted component Ŷ = a + bX as an estimate of an average value. This ini-
tially amounted to supposing that the average heights of sons would be given 
in terms of their fathers’ heights by the equation Y = a + bX (without the error 
term), if nature and environment did not somehow interfere haphazardly in 
modifying the predicted value. Although Pearson subsequently found the 
fi eld of biometry on such an exploitation of Gauss’s least-squares theory of 
error, modern geneticists now realize that heredity can also contribute to the E 
term in Equation 1.1 and that an uncritical application of least-squares theory 
in the study of the inheritance of characters can be grossly misleading.

Intrigued with the mathematical problems implicit in Galton’s program to 
metricize biology, anthropology, and psychology, Pearson became Galton’s 
junior colleague in this endeavor and contributed enormously as a math-
ematical innovator (Pearson, 1895). After his work on the mathematics of 
regression, Pearson concerned himself with fi nding an index for indicating 
the type and degree of relationship between metric variables (Pearson, 1909). 
This resulted in what we know today as the product-moment correlation 
coeffi cient, given by the formula
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(1.2)

where
E[] is the expected-value operator
X and Y are two random variables
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Introduction 5

This index takes on values between −1 and +1, with 0 indicating no rela-
tionship. A deeper meaning for this coeffi cient will be given later when we 
consider that it represents the cosine of the angle between two vectors, each 
standing for a different variable.

In and of itself the product-moment correlation coeffi cient is descriptive 
only in that it shows the existence of a relationship between variables with-
out showing the source of this relationship, which may be causal or coin-
cidental in nature. When the researcher obtains a nonzero value for the 
product-moment correlation coeffi cient, he must supply an explanation for 
the relationship between the related variables. This usually involves fi nding 
that one variable is the cause of the other or that some third variable (and 
maybe others) is a common cause of them both. In any case, interpretations 
of correlations are greatly facilitated if the researcher already has a struc-
tural model on which to base his interpretations concerning the common 
component producing a correlation.

To illustrate, some of the early applications of the correlation coeffi cient 
in genetics led nowhere in terms of furthering the theory of inheritance 
because explanations given to nonzero correlation coeffi cients were fre-
quently tautological, amounting to little more than saying that a relation-
ship existed because such-and-such relationship-causing factor was present 
in the variables exhibiting the relationship. However, when Mendel’s theory 
of inheritance (Mendel, 1865) was rediscovered during the last decade of the 
nineteenth century, researchers of hereditary relationships had available to 
them a structural mechanism for understanding how characters in parents 
were transmitted to offspring. Working with a trait that could be measured 
quantitatively, a geneticist could hypothesize a model of the behavior of the 
genes involved and from this model draw conclusions about, say, the cor-
relation between relatives for the trait in the population of persons. Thus, 
product-moment correlation became not only an exploratory, descriptive 
index but an index useful in hypothesis testing. R. A. Fisher (1918) and Sewell 
Wright (1921) are credited with formulating the methodology for using cor-
relation in testing Mendelian hypotheses.

With the development of the product-moment correlation coeffi cient, other 
related developments followed: In 1897, G. U. Yule published his classic 
paper on multiple and partial correlation. The idea of multiple correlation 
was this: Suppose one has p variables, X1, X2,…, Xp, and wishes to fi nd that 
linear combination

 = β + + β�1 2 2
ˆ

p pX X X  
(1.3)

of the variables X2,…, Xp, which is maximally correlated with X1. The prob-
lem is to fi nd the weights β2,…, βp that make the linear combination X̂1 
maximally correlated with X1. After Yule’s paper was published, multiple 
correlation became quite useful in prediction problems and turned out to 
be systematically related but not exactly equivalent to Gauss’s solution for 
linear least-squares estimation of a variable, using information obtained on 
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6 Foundations of Factor Analysis

several independent variables observed at certain preselected values. In any 
case, with multiple correlation, the researcher can consider several compo-
nents (on which he had direct measurements) as accounting for the variabil-
ity in a given variable.

At this point, the stage was set for the development of factor analysis. By 
the time 1900 had arrived, researchers had obtained product-moment cor-
relations on many variables such as physical measurements of organisms, 
intellectual-performance measures, and physical-performance measures. 
With variables showing relationships with many other variables, the need 
existed to formulate structural models to account for these relationships. In 
1901, Pearson published a paper on lines and planes of closest fi t to systems 
of points in space, which formed the basis for what we now call the prin-
cipal-axes method of factoring. However, the fi rst common-factor-analysis 
model is attributed to Spearman (1904). Spearman intercorrelated the test 
scores of 36 boys on topics such as classics, French, English, mathematics, 
discrimination of tones, and musical talent. Spearman had a theory, primar-
ily attributed by him to Francis Galton and Herbert Spencer, that the abilities 
involved in taking each of these six tests were a general ability, common to 
all the tests, and a specifi c ability, specifi c to each test. Mathematically, this 
amounts to the equation

 = + ψj j jY a G  
(1.4)

where
Yj is the jth manifest variable (e.g., test score in mathematics)
aj is a weight indicating the degree to which the latent general-ability vari-

able G participates in Yj

ψj is an ability variable uncorrelated with G and specifi c to Yj

Without loss of generality, one can assume that E(Yj) = E(ψj) = E(G) = 0, for all j, 
implying that all variables have zero means. Then saying that ψj is specifi c to 
Yj amounts to saying that ψj does not covary with another manifest variable 
Yk, so that E(Yk ψj) = 0, with the consequence that E(ψj ψk) = 0 (implying that 
different specifi c variables do not covary). Thus the covariances between dif-
ferent variables are due only to the general-ability variable, that is,
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(1.5)

From covariance to correlation is a simple step. Assuming in Equation 1.5 
that E(G2) = 1 (the variance of G is equal to 1), we then can derive the correla-
tion between Yj and Yk:

 ρ =jk j ka a  
(1.6)
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Introduction 7

Spearman noticed that the pattern of correlation coeffi cients obtained among 
the six intellectual-test variables in his study was consistent with the model 
of a single common variable and several specifi c variables.

For the remainder of his life Spearman championed the doctrine of one 
general ability and many specifi c abilities, although evidence increasingly 
accumulated which disconfi rmed such a simple model for all intellectual-
performance variables. Other British psychologists contemporary with 
Spearman either disagreed with his interpretation of general ability or modi-
fi ed his “two-factor” (general and specifi c factors) theory to include “group 
factors,” corresponding to ability variables not general to all intellectual 
variables but general to subgroups of them. The former case was exemplifi ed 
by Godfrey H. Thomson (cf. Thomson, 1956), who asserted that the mind 
does not consist of a part which participates in all mental performance and a 
large number of particular parts which are specifi c to each performance. 
Rather, the mind is a relatively undifferentiated collection of many tiny parts. 
Any intellectual performance that we may consider involves only a “sample” 
of all these many tiny parts. Two performance measures are intercorrelated 
because they sample overlapping sets of these tiny parts. And Thomson was 
able to show how data consistent with Spearman’s model were consistent 
with his sampling-theory model also.

Another problem with G is that one tends to defi ne it mathematically as 
“the common factor common to all the variables in the set” rather than in 
terms of something external to the mathematics, for example “rule inferring 
ability.” This is further exacerbated by the fact that to know what something 
is, you need to know what it is not. If all variables in a set have G in com-
mon, you have no instance for which it does not apply, and G easily becomes 
mathematical G by default. If there were other variables that were not due to 
G in the set, this would narrow the possibilities as to what G is in the world 
by indicating what it is not pertinent to. This problem has subtly bedeviled 
the theory of G throughout its history.

On the other hand, psychologists such as Cyril Burt and Philip E. Vernon 
took the view that in addition to a general ability (general intelligence), there 
were less general abilities such as verbal–numerical–educational ability and 
practical–mechanical–spatial–physical ability, and even less general abilities 
such as verbal comprehension, reading, spelling, vocabulary, drawing, hand-
writing, and mastery of various subjects (cf. Vernon, 1961). In other words, 
the mind was organized into a hierarchy of abilities running from the most 
general to the most specifi c. Their model of test scores can be represented 
mathematically much like the equation for multiple correlation as

 Yj = ajG + bj1G1 + … + bjsGs + cj1H1 + … + cjtHt + ψj

where
Yj is a manifest intellectual-performance variable
aj, bj1,…, bjs, cj1,…, cjt are the weights
G is the latent general-ability variable
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8 Foundations of Factor Analysis

G1,…, Gs are the major group factors
H1,…, Ht are the minor group factors
ψj is a specifi c-ability variable for the jth variable

Correlations between two observed variables, Yj and Yk, would depend upon 
having not only the general-ability variable in common but group-factor 
variables in common as well.

By the time all these developments in the theory of intellectual abilities 
had occurred, the 1930s had arrived, and the center of new developments in 
this theory (and indirectly of new developments in the methodology of com-
mon-factor analysis) had shifted to the United States where L. L. Thurstone 
at the University of Chicago developed his theory and method of multiple-
factor analysis. By this time, the latent-ability variables had come to be called 
“factors” owing to a usage of Spearman (1927).

Thurstone differed from the British psychologists over the idea that there 
was a general-ability factor and that the mind was hierarchically organized. 
For him, there were major group factors but no general factor. These major 
group factors he termed the primary mental abilities. That he did not cater 
to the idea of a hierarchical organization for the primary mental abilities 
was most likely because of his commitment to a principle of parsimony; this 
caused him to search for factors which related to the observed variables in 
such a way that each factor pertained as much as possible to one nonover-
lapping subset of the observed variables. Sets of common factors displaying 
this property, Thurstone said, had a “simple structure.” To obtain an opti-
mal simple structure, Thurstone had to consider common-factor variables 
that were intercorrelated. And in the case of factor analyses of intellectual-
performance tests, Thurstone discovered that usually his common factors 
were all positively intercorrelated with one another. This fact was consid-
erably reassuring to the British psychologists who believed that by relying 
on his simple-structure concept Thurstone had only hidden the existence of 
a general-ability factor, which they felt was evidenced by the correlations 
among his factors.

Perhaps one reason why Thurstone’s simple-structure approach to factor 
analysis became so popular—not just in the United States but in recent years 
in England and other countries as well—was because simple-structure solu-
tions could be defi ned in terms of more-or-less objective properties which 
computers could readily identify and the factors so obtained were easy to 
interpret. It seemed by the late 1950s when the fi rst large-scale electronic 
computers were entering universities that all the drudgery could be taken 
out of factor-analytic computations and that the researcher could let the com-
puter do most of his work for him. Little wonder, then, that not much thought 
was given to whether theoretically hierarchical solutions were preferable 
to simple-structure solutions, especially when hierarchical solutions did 
not seem to be blindly obtainable. And believing that factor analysis could 
automatically and blindly fi nd the key latent variables in a domain, what 
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researchers would want hierarchical solutions which might be more diffi cult 
to interpret than simple-structure solutions?

The 1950s and early 1960s might be described as the era of blind factor 
analysis. In this period, factor analysis was frequently applied agnostically, 
as regards structural theory, to all sorts of data, from personality-rating vari-
ables, Rorschach-test-scoring variables, physiological variables, semantic 
differential variables, and biographical-information variables (in psychol-
ogy), to characteristics of mining districts (in mineralogy), characteristics 
of cities (in city planning), characteristics of arrowheads (in anthropology), 
characteristics of wasps (in zoology), variables in the stock market (in eco-
nomics), and aromatic-activity variables (in chemistry), to name just a few 
applications. In all these applications the hope was that factor analysis could 
bring order and meaning to the many relationships between variables.

Whether blind factor analyses often succeeded in providing meaningful 
explanations for the relationships among variables is a debatable question. 
In the case of Rorschach-test-score variables (Cooley and Lohnes, 1962) there 
is little question that blind factor analysis failed to provide a manifestly 
meaningful account of the structure underlying the score variables. Again, 
factor analyses of personality trait-rating variables have not yielded factors 
universally regarded by psychologists as explanatory constructs of human 
behavior (cf. Mulaik, 1964; Mischel, 1968). Rather, the factors obtained in 
personality trait-rating studies represent confoundings of intrarater pro-
cesses (semantic relationships among trait words) with intraratee processes 
(psychological and physiological relationships within the persons rated). In 
the case of factor-analytic studies of biographical inventory items, the chief 
benefi t has been in terms of classifying inventory items into clusters of 
similar content, but as yet no theory as to life histories has emerged from 
such studies. Still, blind factor analyses have served classifi cation purposes 
quite well in psychology and other fi elds, but these successes should not be 
interpreted as generally providing advances in structural theories as well.

In the fi rst 60 years of the history of factor analysis, factor-analytic meth-
odologists developed heuristic algebraic solutions and corresponding algo-
rithms for performing factor analyses. Many of these methods were designed 
to facilitate the fi nding of approximate solutions using mechanical hand 
calculators. Harman (1960) credits Cyril Burt with formulating the centroid 
method, but Thurstone (1947) gave it its name and developed it more fully as 
an approximation to the computationally more challenging principal axes, 
the eigenvector–eigenvalue solution put forth by Hotelling (1933). Until the 
development of electronic computers, the centroid method was a simple and 
straightforward solution that highly approximated the principal axes solu-
tion. But in the 1960s, computers came on line as the government poured 
billions into the development of computers for decryption work and into the 
mathematics of nuclear physics in developing nuclear weapons. Out of the lat-
ter came fast computer algorithms for fi nding eigenvectors and eigenvalues. 
Subsequently, factor analysts discovered the computer, and the eigenvector 
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10 Foundations of Factor Analysis

and eigenvalue routines and began programming them to obtain principal 
axes solutions, which rapidly became the standard approach. Nevertheless 
most of the procedures initially used were still based on least-squares 
methods, for the statistically more sophisticated method of maximum-
likelihood estimation was still both mathematically and computationally 
challenging.

Throughout the history of factor analysis there were statisticians who 
sought to develop a more rigorous statistical theory for factor analysis. 
In 1940, Lawley (1940) made a major breakthrough with the development 
of equations for the maximum-likelihood estimation of factor loadings 
(assuming multivariate normality for the variables), and he followed up 
this work with other papers (1942, 1943, 1949) that sketched a framework 
for statistical testing in factor analysis. The problem was, to use these 
methods you needed maximum-likelihood estimates of the factor load-
ings. Lawley’s computational recommendations for fi nding solutions were 
not practical for more than a few variables. So, factor analysts continued to 
use the centroid method and to regard any factor loading less than .30 as 
“nonsignifi cant.”

In the 1950s, Rao (1955) developed an iterative computer program for 
obtaining maximum-likelihood estimates, but this was later shown not to 
converge. Howe (1955) showed that the maximum-likelihood estimates of 
Lawley (1949) could be derived mathematically without making any distri-
butional assumptions at all by simply seeking to minimize the determinant 
of the matrix of partial correlations among residual variables after partial-
ling out common factors from the original variables. Brown (1961) noted that 
the same idea was put forth on intuitive grounds by Thurstone in 1953. Howe 
also provided a far more effi cient Gauss–Seidel algorithm for computing the 
solution. Unfortunately, this was ignored or unknown. In the meantime, 
Harman and Jones (1966) presented their Gauss–Seidel minres method of 
least-squares estimation, which rapidly converged and yielded close approx-
imations to the maximum-likelihood estimates.

The major breakthrough mathematically, statistically, and computa-
tionally in maximum-likelihood exploratory factor analysis, was made 
by Karl Jöreskog (1967), then a new PhD in mathematical statistics from 
the University of Uppsala in Sweden. He applied a then recently devel-
oped numerical algorithm of Fletcher and Powell (1963) to the maximum-
likelihood estimation of the full set of parameters of the common-factor 
model. The algorithm was quite rapid in convergence. Jöreskog’s algorithm 
has been the basis for maximum-likelihood estimation in most commer-
cial computer programs ever since. However, the program was not always 
well integrated with other computing methods in some major commercial 
programs, so that the program reports principal components eigenvalues 
rather than those of the weighted reduced correlation matrix of the common-
factor model provided by Jöreskog’s method, which Jöreskog used in 
initially determining the number of factors to retain.
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Recognizing that more emphasis should be placed on the testing of hypoth-
eses in factor-analytic studies, factor analysts in the latter half of the 1960s 
began increasingly to concern themselves with the methodology of hypoth-
esis testing in factor analysis. The fi rst efforts in this regard, using what are 
known as procrustean transformations, trace their beginnings to a paper by 
Mosier (1939) that appeared in Psychometrika nearly two decades earlier. The 
techniques of procrustean transformations seek to transform (by a linear 
transformation) the obtained factor-pattern matrix (containing regression 
coeffi cients for the observed variables regressed onto the latent, underlying 
factors) to be as much as possible like a hypothetical factor-pattern matrix 
constructed according to some structural hypothesis pertaining to the vari-
ables studied. When the transformed factor-pattern matrix is obtained it is 
tested for its degree of fi t to the hypothetical factor-pattern matrix. For exam-
ple, Guilford (1967) used procrustean techniques to isolate factors predicted 
by his three-faceted model of the intellect. However, hypothesis testing with 
procrustean transformations have been displaced in favor of confi rmatory 
factor analysis since the 1970s, because the latter is able to assess how well 
the model reproduces the sample covariance matrix.

Toward the end of the 1960s, Bock and Bargmann (1966) and Jöreskog 
(1969a) considered hypothesis testing from the point of view of fi tting a 
hypothetical model to the data. In these approaches the researcher speci-
fi es, ahead of time, various parameters of the common-factor-analysis model 
relating manifest variables to hypothetical latent variables according to a 
structural theory pertaining to the manifest variables. The resulting model 
is then used to generate a hypothetical covariance matrix for the manifest 
variables that is tested for goodness of fi t to a corresponding empirical cova-
riance matrix (with unspecifi ed parameters of the factor-analysis model 
adjusted to make the fi t to the empirical covariance matrix as good as pos-
sible). These approaches to factor analysis have had the effect of encourag-
ing researchers to have greater concern with substantive, structural theories 
before assembling collections of variables and implementing the factor-
analytic methods.

We will treat confi rmatory factor analysis in Chapter 15, although it is 
 better treated as a special case of structural equation modeling, which would 
be best dealt in a separate book. The factor analysis we primarily treat in this 
book is exploratory factor analysis, which may be regarded as an “ abductive,” 
“hypothesis-generating” methodology rather than a “hypothesis-testing” 
methodology. With the development of structural equation, modeling 
researchers have come to see traditional factor analysis as a methodology 
to be used, among other methods, at the outset of a research program, to 
formulate hypotheses about latent variables and their relation to observed 
variables. Furthermore it is now regarded as just one of several approaches 
to formulating such hypotheses, although it has general applications any 
time one believes that a set of observed variables are dependent upon a set 
of latent common factors.
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12 Foundations of Factor Analysis

1.3 Example of Factor Analysis

At this point, to help the reader gain a more concrete appreciation of what is 
obtained in a factor analysis, it may help to consider a small factor-analytic 
study conducted by the author in connection with a research project designed 
to predict the reactions of soldiers to combat stress. The researchers had the 
theory that an individual soldier’s reaction to combat stress would be a func-
tion of the degree to which he responded emotionally to the potential dan-
ger of a combat situation and the degree to which he nevertheless felt he 
could successfully cope with the situation. It was felt that, realistically, com-
bat situations should arouse strong feelings of anxiety for the possible dan-
gers involved. But ideally these feelings of anxiety should serve as internal 
stimuli for coping behaviors which would in turn provide the soldier with 
a sense of optimism in being able to deal with the situation. Soldiers who 
respond pessimistically to strong feelings of fear or anxiety were expected 
to have the greatest diffi culties in managing the stress of combat. Soldiers 
who showed little appreciation of the dangers of combat were also expected 
to be unprepared for the strong anxiety they would likely feel in a real com-
bat situation. They would have diffi culties in managing the stress of combat, 
especially if they had past histories devoid of successful encounters with 
stressful situations.

To implement research on this theory, it was necessary to obtain measures 
of a soldier’s emotional concern for the danger of a combat situation and of 
his degree of optimism in being able to cope with the situation. To obtain 
these measures, 14 seven-point adjectival rating scales were constructed, half 
of which were selected to measure the degree of emotional concern for threat, 
and half of which were selected to measure the degree of optimism in coping 
with the situation. However, when these adjectival scales were selected, the 
researchers were not completely certain to what extent these scales actually 
measured two distinct dimensions of the kind intended.

Thus, the researchers decided to conduct an experiment to isolate the 
common-meaning dimensions among these 14 scales. Two hundred and 
twenty-fi ve soldiers in basic training were asked to rate the meaning of “fi ring 
my rifl e in combat” using the 14 adjectival scales, with ratings being obtained 
from each soldier on fi ve separate occasions over a period of 2 months. 
Intercorrelations among the 14 scales were then obtained by summing the 
cross products over the 225 soldiers and fi ve occasions. (Intercorrelations 
were obtained in this way because the researchers felt that, although on any 
one occasion various soldiers might differ in their conceptions of “fi ring 
my rifl e in combat” and on different occasions an individual soldier might 
have different conceptions, the major determinants of covariation among the 
adjectival scales would still be conventional-meaning dimensions common 
to the scales.) The matrix of intercorrelations, illustrated in Table 1.1, was then 
subjected to image factor analysis (cf. Jöreskog, 1962), which is a relatively 
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TABLE 1.1

Intercorrelations among 14 Scales

1  1.00 Frightening

2   .20  1.00 Useful

3   .65 −.26  1.0 Nerve-shaking

4 −.26   .74 −.32  1.00 Hopeful

5  .71 −.27   .70 −.32  1.00 Terrifying

6 −.25   .64 −.30   .68 −.31  1.00 Controllable

7   .64 −.30   .73 −.34   .74 −.34  1.00 Upsetting

8 −.40   .39 −.44   .40 −.47   .39 −.53  1.00 Painless

9 −.13   .24 −.11   .24 −.16   .26 −.17   .27  1.00 Exciting

10 −.45   .36 −.49   .42 −.53   .39 −.53   .58   .32  1.00 Nondepressing

11   .59 −.26   .63 −.31   .32 −.32   .69 −.45 −.15 −.51  1.00 Disturbing

12 −.30   .69 −.35   .75 −.36   .68 −.39   .44   .28   .48 −.38 1.00 Successful

13 −.36   .35 −.50   .43 −.42   .38 −.52   .45   .20   .49 −.45  .46 1.00 Settling (vs. unsettling)

14 −.35   .62 −.36   .65 −.38   .62 −.46   .50   .36   .51 −.45  .67  .49 1.00 Bearable

accurate but simple-to-compute approximation of common-factor analysis. 
Four orthogonal factors were retained, and the matrix of “loadings” associ-
ated with the “unrotated factors” is given in Table 1.2. The coeffi cients in this 
matrix are correlations of the observed variables with the common factors. 
However, the unrotated factors of Table 1.2 are not readily interpretable, and 
they do not in this form appear to correspond to the two expected-meaning 
dimensions used in selecting the 14 scales. At this point it was decided, after 

TABLE 1.2

Unrotated Factors

1 2 3 4

1 Frightening   .73 .35   .01 −.15

2 Useful −.56 .60 −.10   .12

3 Nerve-shaking   .78 .31 −.05 −.12

4 Hopeful −.62 .60 −.09   .13

5 Terrifying   .78 .34   .43   .00

6 Controllable −.59 .52 −.06   .08

7 Upsetting   .84 .29 −.08   .00

8 Painless −.65 .07   .03 −.33

9 Exciting −.29 .21 −.02 −.35

10 Nondepressing −.70 .04   .03 −.36

11 Disturbing   .70 .13 −.59 −.05

12 Successful −.67 .54 −.04   .05

13 Settling −.63 .09   .08 −.16

14 Bearable −.69 .43   .04 −.12
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14 Foundations of Factor Analysis

some experimentation, to rotate only the fi rst two factors and to retain the 
latter two unrotated factors as “diffi cult to interpret” factors. Rotation of 
the fi rst two factors was done using Kaiser’s normalized Varimax method 
(cf. Kaiser, 1958). The resulting rotated matrix is given in Table 1.3.

The meaning of “rotation” may not be clear to the reader. Therefore let us 
consider the plot in Figure 1.1 of the 14 variables, using for their coordinates 
the loadings on the variables on the fi rst two unrotated factors. Here we see 
that the coordinate axes do not correspond to variables that would be clearly 
defi nable by their association with the variables. On the other hand, note the 
cluster of points in the upper right-hand quadrant (variables 1, 3, 5, and 7) 
and the cluster of points in the upper left-hand quadrant (variables 2, 4, 6, 
12, and 14). It would seem that one could rotate the coordinate axes so as to 
have them pass near these clusters. As a matter of fact, this is what has been 
done to obtain the rotated coordinates in Table 1.3, which are plotted in 
Figure 1.2.

Rotated factor 1 appears almost exclusively associated with variables 1, 3, 5, 
7, and 11, which were picked as measures of a fear response, whereas rotated 
factor 2 appears most closely associated with variables 2, 4, 6, 12, and 14, 
which were picked as measures of optimism regarding outcome. Although 
variables 8, 10, and 13 appear now to be consistent in their relationships to 
these two dimensions, they are not unambiguous measures of either factor. 
Variable 9 appears to be a poor measure of these two dimensions.

Some factor analysts at this point might prefer to relax the requirement 
that the obtained factors be orthogonal to one another. They would, in this 
case, most likely construct a unit-length vector collinear with variable 7 to 

TABLE 1.3

Rotated Factors

1 2

1 Frightening   .83 −.10

2 Useful −.11   .85

3 Nerve-shaking   .84 −.16

4 Hopeful −.17   .87

5 Terrifying   .86 −.14

6 Controllable −.18   .80

7 Upsetting   .89 −.22

8 Painless −.50   .44

9 Exciting −.12   .34

10 Nondepressing −.57   .43

11 Disturbing   .67 −.29

12 Successful −.24   .85

13 Settling −.48   .43

14 Bearable −.33   .76 
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FIGURE 1.1
Plot of 14 variables on unrotated factors 1 and 2.

represent an “oblique” factor 1 and another unit-length vector collinear with 
variable 12 to represent an “oblique” factor 2. The resulting oblique factors 
would be negatively correlated with one another and would be interpreted 
as dimensions that are slightly negatively correlated. Such “oblique” factors 
are drawn in Figure 1.2 as arrows from the origin.

In conclusion, factor analysis has isolated two dimensions among the 14 
scales which appear to correspond to dimensions expected to be present 
when the 14 scales were chosen for study. Factor analysis has also shown 
that some of the 14 scales (variables 8, 9, 10, and 13) are not unambiguous 
measures of the intended dimensions. These scales can be discarded in con-
structing a fi nal set of scales for measuring the intended dimensions. Factor 
analysis has also revealed the presence of additional, unexpected dimen-
sions among the scales. Although it is possible to hazard guesses as to the 
meaning of these additional dimensions (represented by factors 3 and 4), 
such guessing is not strongly recommended. There is considerable likeli-
hood that the interpretation of these dimensions will be spurious. This is not 
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16 Foundations of Factor Analysis

to say that factor analysis cannot, at times, discover something unexpected 
but interpretable. It is just that in the present data the two additional dimen-
sions are so poorly determined from the variables as to be interpretable only 
with a considerable risk of error.

This example of factor analysis represents the traditional, exploratory use of 
factor analysis where the researcher has some idea of what he will encounter 
but nevertheless allows the method freedom to fi nd unexpected dimensions 
(or factors).
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FIGURE 1.2
Plot of 14 variables on rotated factors 1 and 2.
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