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Introduction 

• Back in the early days, rotation was done by hand (!) using graphical 
methods – hence the name rotation 

 

• Nowadays, analytical methods are employed using computers 

 

• …however, it’s kinda funny to think about early factor analysts turning 
things around by hand on a big board (well, it was probably not them, 
but their assistants) [Most computations were done by “computers” – 
largely women, by the way]  
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Introduction 

• When we formulate a factor analysis model, one of the things we do 
is interpreting the factors – giving them meaning 

• We rely on the structure of loadings to get a sense of what the factor 
might represent 

 

• This endeavor is greatly simplified if most of the loadings 
corresponding to a manifest variable j are zero or close to zero  
(which means that the MV is influenced only by a small number of 
factors) 
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Orthogonal rotations 
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Thurstone’s “simple structure” 



Thurstone’s “simple structure” 

• In general, Thurstone’s criteria suggest that each factor should be 
represented by relatively high loadings for a distinct subset of MVs 
and relatively low loadings for the remaining MVs.  

• In addition, these subsets defining different factors should not 
overlap too much.  

• Furthermore, each MV should only be influenced by some subset of 
the common factors.  

• The criteria do not imply that each MV should only be influenced by a 
single factor, which is a common misconception.  
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Analytic rotation 



Quartimax 



Varimax 



Varimax 

• As simple structure improves, the squared loadings on factors 
become more variable (some loadings high, the rest low). Summing 
the variances of the squared loadings over all m factors provides a 
measure of simplicity.  

• The described criterion is known as raw Varimax because it is applied 
to the raw factor loadings. Kaiser found that it works well, but 
sometimes, in rows with small communalities, it does not. He 
therefore standardized rows of the factor matrix by dividing factor 
loadings by the square roots of communalities before rotation. This is 
usually called normal Varimax or Varimax with Kaiser normalization.  

 



Varimax 

• Varimax tends to work well as an orthogonal rotation.  

 

• However, Varimax almost monopolized the entire enterprise of 
orthogonal rotations in applied research (bluntly – everyone uses 
Varimax all the time) 

 

• Let’s take a look at our example data, before and after a Varimax 
rotation.  

 



Varimax 

• Unrotated factor loadings: 

 

1 2 3 

WrdMean 0.68 0.53 -0.27 

SntComp 0.72 0.38 -0.23 

OddWrds 0.70 0.49 -0.16 

MxdArit 0.90 -0.34 -0.03 

Remndrs 0.84 -0.20 0.03 

MissNum 0.86 -0.13 0.00 

Gloves 0.42 0.09 0.43 

Boots 0.48 0.25 0.54 

Hatchts 0.48 0.30 0.67 



Varimax 

• Rotated factor loadings: 

  

 

 

 

(note the deviations from 

simple structure) 

1 2 3 

WrdMean 0.15 0.87 0.22 

SntComp 0.16 0.75 0.34 

OddWrds 0.24 0.79 0.25 

MxdArit 0.18 0.25 0.91 

Remndrs 0.26 0.29 0.77 

MissNum 0.26 0.36 0.75 

Gloves 0.56 0.09 0.23 

Boots 0.72 0.19 0.17 

Hatchts 0.86 0.17 0.12 



Analytic rotation 

• I suggest you perform rotations for various number of extracted 
factors when exploring the factor structure using EFA. This can also 
help you in determining the number of factors.  

• Under-factoring tends to result in multiple factors collapsed into one, 
which can manifest as a solution that heavily violates simple structure 
or that is not easily interpretable. 

• Over-factoring can result into a solution which has a column(s) of 
loadings with only a single non-zero element, or a column(s) of 
loadings with all elements very small.  

  

 

 



Orthogonal rotation? 

 

• As we know, orthogonal rotations require the rotated factors to 
be orthogonal. In other words, we impose the constraint that the 
transformation matrix T has to be an orthogonal matrix.  

 

• Is this reasonable, though? With exploratory factor analysis, the 
goal is, after all, to explore the number and nature of the major 
common factors. How do we know a priori that the factors are 
uncorrelated?  

  

 

 



Orthogonal rotation? 

 

• In reality, this restriction is mostly uncalled for. In the domains 
we frequently use FA (mental abilities, attitudes, personality, 
consumer research, public health), we would on the contrary 
expect the factors to be a priori correlated.  

 

• Orthogonal rotations are, however, still used very often in 
practice. Why is that? 

  

 

 



Orthogonal rotation? 

 

• It’s what everyone is doing, so I’ll do it, too.  

• It’s simple.  

• It’s the default setting in the program I use.  

• Lack of understanding of rotation. 

• Desire for the factors to be uncorrelated.  

• “Varimax” sounds cool.  

  

 

 



Orthogonal rotation? 

 

• Does any of that matter? Of course not.  

• Orthogonal rotations were made for times when computers were 
the size of a room and computations were slow.  

• We should be using oblique rotations instead. Imposing the 
constraint of uncorrelated factors is, by large, unjustified.  

• Moreover – if the best solution (in terms of simple structure) is a 
one with uncorrelated factors, oblique rotation will find it as such 
(with oblique rotation, factors are allowed to correlate, not 
required to)  

 

 



Orthogonal rotation? 

 

• With oblique rotations, we can expect the solutions to be more 
easily interpretable with a simpler structure – just because we 
have accounted for the potential systematic relationships 
between the latent variables.  

 

• It’s just more realistic. Keep it real, man.  
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Introduction 

• When the factors are correlated (oblique), the factor loadings can be 
interpreted as factor weights, representing the linear influence a 
factor has a particular MV, but no longer as simple correlation.  

• This sometimes confuses people when they see a rotated solution 
with correlated factors that contains factor loadings greater than +1 
or smaller than -1.  
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Crawford-Ferguson family 



CF-Quartimax 

• Rotated factor loadings: 

  

 

 

• Factor correlations: 

 

1 2 3 

WrdMean -0.05 0.94 -0.03 

SntComp 0.14 0.77 -0.03 

OddWrds 0.00 0.83 0.08 

MxdArit 1.01 -0.05 -0.04 

Remndrs 0.81 0.04 0.06 

MissNum 0.75 0.13 0.06 

Gloves 0.17 -0.07 0.55 

Boots 0.03 0.03 0.73 

Hatchts -0.04 0.00 0.90 

1 2 3 

1 1 

2 0.59 1 

3 0.45 0.43 1 



CF-Quartimax 

 

 

• As can be seen, the pattern of loadings is much simpler and easier to 
interpret.  

• Factors are substantially correlated. 

• Conducting oblique rotation is straightforward in most software.  
Use it!  

  



Target rotation 

• There is one rotation that can be used in a more confirmatory manner 
– the target rotation.  

 

• One can think of the target rotation as standing between exploratory 
and confirmatory factor analysis. It is useful when you already have 
some prior knowledge about the factor loading pattern, but not 
enough to warrant a fully confirmatory model.   

 

• Can be oblique or orthogonal. 



Target rotation 



Target rotation 

• Target matrix, CEFA-style: 

 

 

• 0 = loading expected to be small 

• ? = unspecified, not small 

 

• The sum of squares of loadings 
corresponding to the zeros is 
minimized  

 

 

1 2 3 

WrdMean ? 0 0 

SntComp ? 0 0 

OddWrds ? 0 0 

MxdArit 0 ? 0 

Remndrs 0 ? 0 

MissNum 0 ? 0 

Gloves 0 0 ? 

Boots 0 0 ? 

Hatchts 0 0 ? 



Some final points 

• Use the CF family, and do oblique rotations. I really don’t see a lot of 
sense in performing orthogonal rotations.  

 

• Try out multiple oblique rotations – CF-Quartimax, CF-Varimax… 

 

• If you have a bit of an idea on what you expect, you might want to try 
using (oblique) target rotation. CEFA can do it, and this method is 
pretty under-utilized in applied research.  


