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Abstract

Exploratory graph analysis (EGA) is a new technique that was recently proposed within the 

framework of network psychometrics to estimate the number of factors underlying multivariate 

data. Unlike other methods, EGA produces a visual guide––network plot––that not only indicates 

the number of dimensions to retain, but also which items cluster together and their level of 

association. Although previous studies have found EGA to be superior to traditional methods, they 

are limited in the conditions considered. These issues are here addressed through an extensive 

simulation study that incorporates a wide range of plausible structures that may be found in 

practice, including continuous and dichotomous data, and unidimensional and multidimensional 

structures. Additionally, two new EGA techniques are presented, one that extends EGA to also 

deal with unidimensional structures, and the other based on the triangulated maximally filtered 

graph approach (EGAtmfg). Both EGA techniques are compared with five widely used factor 

analytic techniques. Overall, EGA and EGAtmfg are found to perform as well as the most accurate 

traditional method, parallel analysis, and to produce the best large-sample properties of all the 

methods evaluated. To facilitate the use and application of EGA, we present a straightforward R 

tutorial on how to apply and interpret EGA, using scores from a well-known psychological 

instrument: the Marlowe-Crowne Social Desirability Scale.
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Investigating the number of latent factors or dimensions that underlie multivariate data is an 

important aspect in the construction and validation of instruments in psychology 

(Timmerman & Lorenzo-Seva, 2011). It is also one of the first steps in the analysis of 

psychological data, since it can play a crucial role in the implementation of further analyses 

and conclusions drawn from the data (Lubbe, 2019). Determining the number of factors is 

also relevant in the construction of psychological theories, since some areas (e.g., 

personality and intelligence) rely heavily on the identification of latent structures to 

understand the organization of human traits (Garcia-Garzon, Abad, & Garrido, 2019b).

Since the 1960’s, several techniques were developed to estimate the number of underlying 

dimensions in psychological data, such as parallel analysis (PA; Horn, 1965), the K1 rule 

(Kaiser, 1960), and the scree test (Cattell, 1966). Simulation studies, however, have 

consistently shown that each technique has its own limitations (e.g. see Garrido, Abad, & 

Ponsoda, 2013; Lubbe, 2019), indicating a need for new dimensionality assessment methods 

that can provide more accurate estimates. Furthermore, the factor-analytic techniques also 

present challenges beyond the estimation of the number of dimensions such as the rotation 

of the loadings matrix and the subjective interpretation of the factor loadings (Sass & 

Schmitt, 2010).

Recently, Golino and Epskamp (2017) proposed an alternative approach, Exploratory Graph 
Analysis (EGA), to identify the dimensions of psychological constructs from the network 

psychometrics perspective. Network psychometrics is a recent addition to the field of 

quantitative psychology, which applies the network modeling framework to study 

psychological constructs (Epskamp, Rhemtulla, & Borsboom, 2017). The network 

psychometric perspective is provided by the Gaussian graphical model (GGM: Lauritzen, 

1996), which estimates the joint distribution of random variables (i.e., nodes in the network) 

by modeling the inverse of the variance-covariance matrix (Epskamp et al., 2017). Nodes 

(e.g., test items) are connected by edges or links, which indicate the strength of the 

association between the variables (Epskamp & Fried, 2018). Edges are typically partial 

correlation coefficients (Epskamp & Fried, 2018). Absent edges represent zero partial 

correlations (conditionally independent variables) while non-absent edges represent the 

remaining association between two variables after controlling for all other variables 

(Epskamp & Fried, 2018; Epskamp et al., 2017). Importantly, absent edges in the model will 

only correspond to conditional independence if the data is multivariate normal. EGA 

combines the GGM model with a clustering algorithm for weighted networks (walktrap; 

Pons & Latapy, 2006) to assess the dimensionality of the items in psychological constructs. 

Preliminary investigations of EGA via simulation studies have shown that it’s a promising 

alternative technique to assess the dimensionality of constructs (Golino & Epskamp, 2017).

Despite the promising initial evidence, the original EGA technique (Golino & Epskamp, 

2017) is not expected to work well with unidimensional structures, because of limitations 

related to the walktrap algorithm (Pons & Latapy, 2006). Specifically, the modularity 

measure (used to quantify the quality of dimensions in the algorithm) penalizes network 

structures that have only one dimension (Newman, 2004). As a consequence, the original 

EGA algorithm would almost always identify more than one factor, even if the data is 
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generated from a unidimensional structure. To overcome this limitation, the current paper 

will present a new EGA algorithm that leverages the walktrap’s tendency to find multiple 

clusters in weighted networks. This new EGA algorithm is expected to work well in both 

unidimensional and multidimensional structures (i.e., when the underlying dimensionality is 

comprised of one or more factors). An in-depth analysis, however, is necessary to check the 

suitability of this new EGA algorithm to estimate the number of simulated factors across 

different conditions and compared to traditional factor-analytic techniques.

Present Research

The aims of the current paper is threefold. First, it aims to systematically investigate, via a 

Monte-Carlo simulation study, the performance of the new EGA algorithm in recovering the 

number of simulated factors under different conditions. Previous studies have shown that the 

interfactor correlations, number of items per factor, and sample size each have an impact on 

the original EGA’s performance (Golino & Epskamp, 2017), but little is known about the 

impact of factor loadings in the accuracy of EGA. It is well established in the literature that 

factor loadings are one of the most important elements that affect the accuracy of traditional 

dimensionality assessment methods (Garrido et al., 2013). Skewness has also not been 

considered in previous simulations involving EGA, which has only used unskewed 

dichotomous data (Golino & Epskamp, 2017). To better resemble practical settings in 

psychological data, we examined continuous (i.e., multivariate normal) and dichotomous 

data with skew.

Second, this study also investigates an alternative network estimation method for EGA, the 

Triangulated Maximally Filtered Graph approach (TMFG; Massara, Di Matteo, & Aste, 

2016), hereafter named EGAtmfg. By replacing the GGM model with the TMFG algorithm, 

the EGAtmfg method can potentially overcome some of the limitations of the former 

method. One of the advantages of the TMFG is that it is not restricted to multivariate normal 

distributions and partial correlation measures (i.e., any association measure can be used), 

and it can potentially make stable comparisons across sample sizes (Christensen, Kenett, 

Aste, Silvia, & Kwapil, 2018). We investigated the performance of the EGAtmfg method in 

this study, and compared it to the new EGA algorithm, which uses the GGM model. We 

discuss the performance of both approaches and suggest practical recommendations for 

them. Also, while preliminary studies have compared traditional factor analytic methods 

with EGA (Golino & Epskamp, 2017; Golino & Demetriou, 2017), there is a need to 

compare the performance of EGA with different types of parallel analysis as well as 

techniques based on the scree test (Cattell, 1966), which are among the most widely known 

methods historically applied in psychology.

Lastly, this article provides a tutorial on how to implement the EGA techniques using R. 

With this tutorial, researchers from different fields interested in estimating the 

dimensionality of their tests, questionnaires, and other types of instruments can readily apply 

EGA. EGA may be especially relevant for those working on the area of aging research, that 

needs to use dimensionality assessment/reduction techniques to investigate the structure of 

multiple scales, questionnaires and tests.1
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The tutorial uses data from the Virginia Cognitive Aging Project (VCAP; Salthouse, 2018) 

and verifies the dimensionality of the Social Desirability Scale (SDS; Crowne & Marlowe, 

1960). A key part of our tutorial will showcase the new EGA algorithm by demonstrating 

how it can be used to first estimate dimensionality and then verify the unidimensionality of 

the dimensions in the SDS.

Exploratory Graph Analysis

Golino and Epskamp (2017) proposed EGA as a new method to estimate the number of 

latent variables underlying multivariate data using undirected network models (Lauritzen, 

1996). The original EGA technique proposed by Golino and Epskamp (2017) starts by 

estimating a network using the GGM model (Lauritzen, 1996) and then applies a clustering 

algorithm for weighted networks. In the next paragraphs, the connection between GGM and 

factor models will be made. We explain the walktrap algorithm in more extensive more 

detail in Appendix A.

Equating the GGM with Factor Models

Consider a set of random variables y that are normally distributed with a mean of zero and 

variance-covariance matrix Σ. Let K (kappa) be the inverse of Σ, also known as the precision 

matrix:

K = Σ−1 (1)

Each element kij can be standardized to yield the partial correlation between two variables yi 

and yj, given all other variables in y, y−c(i,j) (Epskamp, Waldorp, Mõttus, & Borsboom, 

2018):

Cor Y i, Y j y−(i, j) = − kij
kii kjj

. (2)

Epskamp et al. (2018) points out that modeling K in a way that every nonzero element is 

treated as a freely estimated parameter generates a sparse model for Σ. The sparse model of 

the variance-covariance matrix is the GGM (Epskamp et al., 2018). The level of sparsity of 

the GGM can be set using different methods. The most common approach in network 

psychometrics is to apply a variant of the least absolute shrinkage and selection operator 
(LASSO; Tibshirani, 1996) termed graphical LASSO (GLASSO; Friedman, Hastie, & 

Tibshirani, 2008). The GLASSO is a regularization technique that is very fast to estimate 

both the model structure and the parameters of a sparse GGM (Epskamp et al., 2018). It has 

a tuning parameter (γ), that can be chosen in a way to minimize the extended Bayesian 

information criterion (EBIC; Chen & Chen, 2008), which is used to estimate optimal model 

fit and has been shown to accurately retrieve the true network structure in simulation studies 

(Epskamp & Fried, 2018; Foygel & Drton, 2010).

1The current paper is part of an international effort to develop new techniques, methods and metrics for healthy aging launched in 
2017 by the World Health Organization (International Consortium on Metrics and Evidence for Healthy Ageing).
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Now, we’ll connect the GGM with factor models, and show how network psychometrics can 

be used to discover underlying latent structures in multivariate data. Let y represent a 

centered, normally distributed variable and η represent a set of latent variables. A general 

model connecting y and η is given by:

y = Λη + ε, (3)

where Λ is a factor loading matrix leading to the factor analysis model:

Σ = ΛΨΛ⊤ + Θ, (4)

where Ψ is Var(η) and Θ is Var(ε). Assuming a simple structure, Λ can be reordered to be 

block-diagonal (each item can load only in one factor), and assuming local independence, Θ 
is a diagonal matrix indicating that after conditioning on all latent factors the variables are 

independent (Epskamp et al., 2018).

Golino and Epskamp (2017) showed a decomposition (using the Woodbury matrix identity; 

Woodbury, 1950) leads to two important properties connecting GGM and factor model to 

orthogonal factors, with the resulting GGM being composed of unconnected clusters, while 

for oblique factors, the resulting GGM is composed of weighted clusters that are connected 

for each factor. These two characteristics can be explained as follows. Let the inverse of the 

variance-covariance matrix be the precision matrix K, as shown in equation (1), therefore 

(following Woodbury, 1950):

K = ΛΨΛ⊤ + Θ −1 = Θ−1 − Θ−1Λ Ψ−1 + Λ⊤Θ−1Λ −1Λ⊤Θ−1 . (5)

If X = (Ψ−1+ Λ⊤Θ−1Λ), and knowing that Λ⊤Θ−1Λ is diagonal, then K is a block matrix in 

which every block is the inner product of factor loadings and residual variances, with 

diagonal blocks scaled by diagonal elements of X and off-diagonal blocks scaled by the off-

diagonal elements of X. As Golino and Epskamp (2017) argue, constraining the diagonal 

values of X to one will not lead to information loss. Furthermore, the absolute off-diagonal 

elements of X will be smaller than one. Considering the formation of X, its off-diagonal 

values will equal zero if the latent factors are orthogonal (Golino & Epskamp, 2017).

In sum, network modeling and factor modeling are closely connected (Epskamp et al., 

2018), and the use of network psychometrics for dimensionality assessment is a direct 

consequence of the two properties pointed to earlier. If the resulting GGM of orthogonal 

factors is a network with unconnected clusters (often referred to as communities) and the 

resulting GGM of oblique factors is a set of connected weighted clusters for each factor, 

then a community detection algorithm for weighted networks (which detects these clusters) 

can be applied to transform a network psychometric model into a dimensionality assessment 

technique.
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Walktrap Community Detection

Golino and Epskamp (2017) proposed the use of the Walktrap algorithm (Pons & Latapy, 

2006) to detect the number of dimensions (i.e., communities) in a network. The algorithm 

uses “random walks” or a stochastic number of steps from one node, across an edge, to 

another. The number of steps the random walks take can be adjusted but for current 

estimation purposes, EGA always applies the default number of four. The choice of using 

four steps comes from previous simulation studies that have shown that the Walktrap 

algorithm outperforms other community detection algorithms for weighted networks using 

four steps (Gates, Henry, Steinley, & Fair, 2016; Yang, Algesheimer, & Tessone, 2016).

A limitation of the Walktrap algorithm as an automated way to identify clusters in networks 

is that it penalizes unidimensional structures, since this algorithm decides the best 

partitioning of the clusters using the modularity index (Newman, 2004). Therefore, EGA it 

is not expected to work well with unidimensional structures. An overview of the Walktrap 

algorithm and why the modularity index penalizes unidimensional structures can be found in 

Appendix A. A new EGA algorithm that takes advantage of this characteristic and that could 

potentially be used in both unidimensional and multidimensional structures will be presented 

in a later section.

EGA Performance

Golino and Epskamp (2017) studied the accuracy in estimating the number of dimensions of 

EGA along with six traditional techniques: very simple structure (VSS; Revelle & Rocklin, 

1979), minimum average partial (MAP; Velicer, 1976), Bayesian information criterion 

(BIC), EBIC, K1, and PA with generalized weighted least squares extraction and random 

data generation from a multivariate normal distribution. The authors simulated 32,000 data 

sets to fit known factor structures, systematically manipulating four variables: number of 

factors (2 and 4), number of items (5 and 10), sample size (100, 500, 1000 and 5000), and 

correlation between factors (0, .20, .50 and .70). The results of Golino and Epskamp (2017) 

showed that the accuracies of the different techniques, in ascending order, were: 39% for 

VSS, 50% for MAP, 81% for K1, 81% for BIC, 82% for EBIC, 89% for PA, and 93% for 

EGA. EGA was especially superior to the traditional techniques in the cases of larger 

structures (4 factors) and very high factor correlations (.70), achieving an accuracy of 71% 

which was much higher than the next best method (PA = 40%). Golino and Epskamp (2017) 

ascertained that EGA was the most robust method because its accuracy was less affected by 

the manipulated variables than those of the other methods.

The higher accuracy of EGA, when compared to traditional factor analytic methods, might 

be explained by the network psychometrics approach focus on the unique variance between 

pairs of variables rather than the variance shared across all variables. When a dataset is 

simulated following a traditional factor model, the dimensionality structure becomes clearer 

when a network of regularized partial correlations is estimated. Figure 1 shows two 

simulated five-factor model (population correlations). One with loadings of .70, inter-factor 

correlations of .70, and eight items per factor, and the other with loadings of .70, orthogonal 

factors and eight items per factor. In this figure, the population correlation matrix is plotted 
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as a network with a two-dimensional layout computed using the Fruchterman-Reingold 

algorithm (Fruchterman & Reingold, 1991).

In this layout, nodes with stronger edges (e.g. high correlations) are placed closer than nodes 

with weak edges (e.g. low correlations). The two-dimensional layout helps to visually 

inspect groupings of variables, since variables with higher correlations are plotted together. 

The colors of the nodes represent the factors. On the left side of the figure, the population 

correlation matrix is shown; on the right side the estimated EGA structure is shown. The 

high correlation structure is shown in the top of the figure, and the orthogonal structure in 

the bottom. Estimating a network using regularized partial correlations results in a clearer 

structure with five groups of variables for the high correlation structure. Also, the strength of 

the regularized partial correlations is stronger within clusters than between clusters for the 

high correlation structure (top), making the true simulated five-factor structure easier to 

depict, even if the true correlation between factors is high.

A New EGA Algorithm for Unidimensional and Multidimensional Structures

Considering the limitation of unidimensionality detection in the walktrap algorithm, the 

original EGA technique is not expected to work with single factor structures. To use EGA as 

a dimensionality assessment technique for both unidimensional and multidimensional 

structures, a new EGA algorithm is necessary. In the current paper, we propose such an 

algorithm that remedies this limitation of the walktrap algorithm. Figure 2 shows a 

description of the new EGA algorithm.

The algorithm starts by simulating an unidimensional structure with four variables and 

loadings of .70. Then, it binds the simulated data with the empirical (user-provided) data. 

The next step is the estimation of the GGM (if the network model is set to be a GGM). The 

correlation matrix is computed using the cor_auto function of the qgraph package (Epskamp, 

Cramer, Waldorp, Schmittmann, & Borsboom, 2012). The EBICglasso function (from 

qgraph) is then used to estimate the GGM. The EBICglasso function will search for the 

optimal level of sparsity (using λ parameter in the glasso algorithm) in a network by 

choosing a value of λ that minimizes the extended Bayesian information criteria (EBIC; 

Chen & Chen, 2008). Following Foygel and Drton (2010), 100 values of λ are chosen. 

These values are logarithmically evenly spaced between λMax (the smallest value which will 

result in a completely empty network—that is, no edges between the nodes) and λMax/100. 

The ratio of the lowest λ value compared to λMax is set to 0.1. A hyperparameter (γ; 

gamma) of EBICglasso controls the severity of the model selection. EBIC is computed for 

values of gamma larger than zero. However, when gamma is zero, BIC is computed instead 

(for more details, see Chen & Chen, 2008).

In the implementation of the EGA algorithm, the gamma hyperparameter of the EBICglasso 

function is set to 0.5. If the resulting network has a node with the strength of zero (i.e., 

disconnected from the rest of the network), then gamma is set to 0.25. The process repeats 

until all nodes are connected in the resulting network or if the gamma parameter is zero. In 

this last case, the EBIC is equal to the regular BIC.

Golino et al. Page 7

Psychol Methods. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the next step, the walktrap algorithm is used. If the number of estimated clusters in the 

network is equal to or lower than 2, then the empirical data is unidimensional. This is one of 

the most important parts of the new EGA algorithm. Since the walktrap algorithm will 

penalize networks with only one cluster, by adding a simulated dataset with a known 

unidimensional structure, the walktrap algorithm will estimate at least two clusters: one 

comprised by the simulated data, and the other by the empirical or user-provided dataset. In 

this case, the estimated number of factors/clusters in the empirical data is one, since the 

other cluster is composed by the simulated data. If the number of clusters is greater than 

two, then the new EGA algorithm will re-estimate the network, and apply the walktrap 

algorithm as described above. The final clustering solution is defined by all clusters with at 

least two variables (or nodes/items). The resulting network plot will show the estimated 

network and the nodes are colored by cluster/factor. If one variable (or node) is estimated as 

belonging to a single cluster, this variable won’t be colored in the plot. This strategy helps 

the user identify if there are any variables that do not pertain to any cluster in the network.

Another difference from the original EGA method is related to the gamma parameter of the 

EBICglasso function. Originally, Golino and Epskamp (2017) used the default of 0.5. This 

modification, together with the removal of clusters with single nodes, makes the result of 

EGA more likely to be stable, in the sense that it will generate less extreme results with the 

number of clusters approaching the number of variables.

EGA with TMFG estimation

More recently, a new approach to estimate psychometric networks, the TMFG, entered the 

field (Christensen et al., 2018). The TMFG method applies a structural constraint on the 

network, which restrains the network to retain a certain number of edges (3n-6, where n is 

the number of nodes; Massara et al., 2016). The network is composed of 3- and 4-node 

cliques (i.e., sets of connected nodes; a triangle and tetrahedron, respectively). The TMFG 

method constructs a network using zero-order correlations and the resulting network can be 

associated with the inverse covariance matrix (yielding a GGM; Barfuss, Massara, Di 

Matteo, & Aste, 2016). Notably, the TMFG can use any association measure and thus does 

not assume the data is multivariate normal.

Construction begins by forming a tetrahedron (Figure 3) of the four nodes that have the 

highest sum of correlations that are greater than the average correlation in the correlation 

matrix, which is defined as:

c =
∑i ∑jcij

n , (6)

wi = ∑
j

{
cij > c = cij
cij ≤ c = 0 , (7)

where cij is the correlation between node i and node j, c is the average correlation of the 

correlation matrix (6), and wi is the sum of the correlations greater than the average 

correlation for node i (7).
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Next, the algorithm iteratively identifies the node that maximizes its sum of correlations to a 

connected set of three nodes (triangles) already included in the network and then adds that 

node to the network. In equation (8), this is mathematically defined as the maximum gain of 

the score function (S; e.g., sum of correlations) for each node (v) with each node in a set of 

triangles (t1, t2, t3) in the network (Figure 4):

MaxGain = max
v ∈ v1…vk

S v, t1 , max
v ∈ v1…vk

S v, t2 , …, max
v ∈ v1…vk

S v, t3 , (8)

The process is completed once every node is connected in the network. In this process, the 

network automatically generates what’s called a planar network. A planar network is a 

network that could be drawn on a sphere with no edges crossing (Figure 3; often, however, 

the networks are depicted with edges crossing; Tumminello, Aste, Di Matteo, & Mantegna, 

2005).

An intriguing property of planar networks is that they form a “nested hierarchy” within the 

overall network (Song, Di Matteo, & Aste, 2011). This simply means that sub-networks are 

nested within larger sub-networks of the overall network. The constituent elements of these 

sub-networks are 3-node cliques (i.e., triangles), which form an emergent hierarchy in the 

overall network (Song, Di Matteo, & Aste, 2012). Research that compared a novel 

algorithm, which exploited this hierarchical structure, to several traditional methods of 

hierarchical clustering (e.g., complete linkage and k-mediods) found that the novel algorithm 

outperformed the traditional methods, retrieving more information with fewer clusters (Song 

et al., 2012). Similar to EGA, EGAtmfg first constructs the network (using the TMFG 

method) and the walktrap algorithm is applied.

Factor Analytic Techniques

Eigenvalue-Based Methods

The eigenvalue-greater-than-one rule, also known as Kaiser’s rule or K1, is perhaps the most 

well-known method for identifying the number of factors to retain. K1 indicates that only 

factors with eigenvalues above one should be retained. The rationale of this rule is that a 

factor should explain at least as much variance as a variable is bestowed in the standard 

score space and that components with eigenvalues above one are ensured to have positive 

internal consistencies (Garrido et al., 2013; Kaiser, 1960). However, the proofs for this rule 

were developed for population statistics, and a large body of research has shown that it 

doesn’t perform well with finite samples (Hayton, Allen, & Scarpello, 2004). Nevertheless, 

recent studies have shown that this rule is still applied in practice frequently (Izquierdo, 

Olea, & Abad, 2014).

Parallel analysis was originally proposed by Horn (1965) as a modification of the K1 rule 

(Kaiser, 1960) that took into account the sampling variability of the latent roots. The 

rationale behind this method is that the true dimensions should have sample eigenvalues that 

are larger than those obtained from random variables that are uncorrelated at the population 

level. Parallel analysis has been one of the most studied and accurate dimensionality 
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assessment methods for continuous and categorical variables to date (Crawford et al., 2010; 

Garrido et al., 2013; Garrido, Abad, & Ponsoda, 2016; Ruscio & Roche, 2012; Timmerman 

& Lorenzo-Seva, 2011).

Although Horn (1965) based PA on the eigenvalues obtained from the full correlation matrix 

using principal component analysis (PApca), Humphreys and Ilgen (1969) suggested that a 

more precise estimate of the number of common factors could be obtained by computing the 

eigenvalues from a reduced correlation matrix with estimates of communalities in its 

diagonal using principal axis factoring (PApaf). As a communality estimate, they chose the 

squared multiple correlations between each variable and all the others. Even though these 

two variants of PA have not been compared frequently, Crawford et al. (2010) found that for 

continuous variables their overall accuracies were similar for structures of one, two, and four 

factors (60% for PApca and 65% for PApaf), with neither method being superior to the other 

across all the studied conditions. With categorical variables (two to five response options), 

however, Timmerman and Lorenzo-Seva (2011) found that PApca clearly outperformed 

PApaf for structures of one and three major factors (overall accuracies of 95% for PApca and 

70% for PApaf).

Automated Scree Test Methods

The scree test optimal coordinate (OC) and acceleration factor (AF) methods (Raiche, Walls, 

Magis, Riopel, & Blais, 2013) constitute two non-graphical solutions to Cattell’s scree test 

(Cattell, 1966). A detailed description of OC and AF can be found on Appendix B. In their 

validation study with continuous variables, Raiche et al. (2013) found that the percentage of 

correct dimensionality estimates of OC (49%) was comparable to that of PA (53%), and 

between moderately to considerably higher than those for AF (39%), the Cattell-Nelson-

Gorsuch scree test (30%), the K1 rule (21%), and the standard error scree (9%), among other 

methods. Similarly, Ruscio and Roche (2012) showed that the OC (74%), PA (76%), and the 

Akaike Information Criterion (73%) had comparable accuracies that were notably higher 

than other methods including the BIC (60%), MAP (60%), the chi-square test of model fit 

(59%), the AF (46%), and K1 (9%).

Method

Design

In order to evaluate the performance of the different dimensionality methods, six relevant 

variables were systematically manipulated using Monte Carlo methods: the number of 

factors, factor loadings, variables per factor, factor correlations, number of response options, 

and sample size. For each of these, their levels were chosen to represent conditions that are 

encountered in empirical research and that could produce differential levels of accuracy for 

the dimensionality procedures.

Number of factors: structures of 1, 2, 3, and 4 factors were simulated. These number of 

factors conditions include the important test of unidimensionality (Beierl, 2018), as well as 

dimensions that are below, at, and above the median number of first-order latent variables of 

3 that is generally found in psychological factor analytic research (Jackson, Gillaspy Jr, & 

Golino et al. Page 10

Psychol Methods. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Purc-Stephenson, 2009). Additionally, these levels are in line with typical simulation studies 

in the area of dimensionality (e.g., Auerswald & Moshagen, 2019; Garrido et al., 2016).

Factor loadings: factor loadings were simulated with the levels of .40, .55, .70, and .85. 

According to Comrey and Lee (2016), loadings of .40, .55, and .70 can be considered as 

poor, good, and excellent, respectively, thus representing a wide range of factor saturations. 

In addition, loadings of .85 were also simulated, which although not frequently encountered 

in psychological data, allow for the evaluation of the dimensionality methods under ideal 

conditions.

Variables per factor: the factors generated were composed of 3, 4, 8, and 12 indicators with 

salient loadings. Three items are the minimum required for factor identification (Anderson, 

1958), 4 items per factor represents a slightly overidentified model, while factors composed 

of 8 and 12 items may be considered as moderately strong and highly overidentified, 

respectively (Velicer, 1976; Widaman, 1993). It should be noted that the condition of 12 

variables per factor was simulated for unidimensional structures only.

Factor correlations: factor correlations were simulated with the levels of .00, .30, .50, 

and .70. This includes the orthogonal condition (.00), as well as medium (.30) and large 

(.50) correlation levels, according to Cohen (1988). Further, although factor correlations 

of .70 are very large, in some areas within psychology (e.g., intelligence), researchers 

sometimes have to distinguish between constructs that are this highly correlated (e.g., Kane, 

Hambrick, & Conway, 2005).

Number of response options: normal continuous and dichotomous types of data were 

generated. The level of association between the continuous variables was measured using 

Pearson’s correlations, while tetrachoric correlations were used for the dichotomous 

variables.

Sample size: datasets with 500, 1,000, and 5,000 observations were simulated. Sample sizes 

of 500 and 1,000 can be considered as medium and large, respectively (Li, 2016), while a 

sample of 5,000 observations allows for the evaluation of the dimensionality methods in 

conditions that can approximate their population performance. Further, these sample sizes 

were selected by taking into account that tetrachoric correlations require large sample sizes 

to achieve acceptable sampling errors, especially when the item difficulties vary 

substantially (such as when the data are skewed; Timmerman & Lorenzo-Seva, 2011).

In order to generate more realistic factor structures, several steps were undertaken. First, the 

factor loading for each item was drawn randomly from a uniform distribution with values 

ranging from ±.10 of the specified level manipulated (e.g., for the level of .40 the loadings 

were drawn from the range of .30 to .50). Second, as it is common in practice to find 

complex structures in which items present non-zero loadings on multiple factors, we 

generated cross-loadings consistent to those commonly found in real data. The cross-

loadings were generated following the procedure described in (Meade, 2008) and (Garcia-

Garzon, Abad, & Garrido, 2019a): cross-loadings were randomly drawn from a normal 

distribution, N(0, .05), for all the items. Third, the magnitude of skewness for each item was 

randomly drawn with equal probability from a range of −2 to 2 in increments of . 50, 
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following (Garrido et al., 2013). A skewness level of zero corresponds to a symmetrical 

distribution, while ±1 can be categorized as a meaningful departure from normality (Meyers, 

Gamst, & Guarino, 2016) and ±2 as a high level of skewness (Muthén & Kaplan, 1992).

As the simulation design of the current study is not completely crossed (e.g., there are no 

factor correlations for unidimensional structures), it can be broken down into two parts: (a) 

the unidimensional conditions with a 4 × 4 × 2 × 3 (factor loadings × variables per factor × 

number of response options × sample size) design, for a total of 96 condition combinations; 

and (b) the multidimensional conditions with a 4 × 3 × 4 × 2 × 3 (factor loadings × variables 

per factor × factor correlations × number of response options × sample size) design, for a 

total of 288 condition combinations. For each of these 384 conditions combinations, 500 

replicates were simulated.

Data Generation

For each simulated condition, 500 sample data matrices were generated according to the 

common factor model. A detailed description of the data simulation approach can be found 

on Appendix C. The resulting continuous variables were also dichotomized by applying a set 

of thresholds according to specific levels of skewness (Garrido et al., 2013). For each sample 

data matrix generated, the convergence of EGA with GLASSO estimation was verified (see 

the convergence rate on Appendix D). If the analysis did not generate a numeric estimation 

(i.e. number of factors), the sample data matrix was discarded and a new one was generated, 

until we obtained 500 sample data matrices per condition.

Data analysis

We used R (R Core Team, 2017) for all our analyses. The AF and OC techniques were 

computed using the nFactors package (Raiche, 2010), while PA with resampling was applied 

using the fa.parallel function contained in the psych package (Revelle, 2018). Both versions 

of EGA were applied using the EGAnet package (Golino & Christensen, 2019). The figures 

were generated using the ggplot2 (Wickham, 2016) and ggpubr package (Kassambara, 

2017).2

In order to evaluate the performance of the dimensionality methods three complementary 

criteria were used: the percentage of correct number of factors (PC), the mean bias error 

(MBE), and the mean absolute error (MAE). The first criteria (PC) is calculated as the sum 

of the estimated number of factors that are equal to the simulated number of factors divided 

by the number of sample data matrices simulated (i.e. the percentage of correct estimates). 

The second criteria (MBE) is the sum of the estimated number of factors minus the 

simulated number of factors, divided by the total number of sample data matrices simulated. 

2The paper was written following a reproducible approach, integrating text and code into two sets of files. The first set has all the code 
used in the simulation. The second set contains an R Markdown file integrating the manuscript text and code used for the statistical 
and graphical analysis presented in the results’ section. The papaja package (Aust & Barth, 2018) was used to easily create a 
document following the APA guidelines. Two other methods that are available in R and that may be used by applied researchers are 
Velicer’s MAP (Velicer, 1976) and the very simple structure (VSS; Revelle & Rocklin, 1979), with both being implemented in the 
psych package (Revelle, 2018). Since Golino and Epskamp (2017) already compared EGA with VSS and MAP, the current paper 
won’t present and discuss these two methods. However, readers interested in comparing EGA and EGAtmfg with MAP and VSS can 
find a summary of the results in Appendix E.
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The third criteria (MAE) is similar to MBE, but uses the absolute value of the difference 

between the estimated and the simulated number of factors.

The PC criterion varies from 0% (signaling complete inaccuracy) to 100% (indicating 

perfect accuracy). In the case of the MBE, 0 reflects a total lack of bias, while negative and 

positive values denote underfactoring and overfactoring, respectively. Regarding the MAE 

criterion, higher values signal larger departures from the population number of factors, while 

the value of 0 indicates perfect estimation accuracy.

Finally, analyses of variance (ANOVA) were conducted to investigate how the factor levels 

and their combinations impacted the accuracy of the dimensionality methods. The PC and 

MAE were set (separately) as the dependent variables and the manipulated variables 

constituted the independent factors. The partial eta squared (η2) measure of effect size was 

used to assess the magnitude of the main effects and interactions, per technique. According 

to Cohen (1988), η2 values of 0.01, 0.06, and 0.14 can be considered as small, medium, and 

large effect sizes, respectively. It is important to note that all the codes used in the current 

study is available at an Open Science Framework repository, for reproducibility purposes: 

https://osf.io/e9f2c/?view_only=3732b311ef304b1793ee92613dcb0fe7.

Results

Overall Performance

The overall performance of the dimensionality methods, as well as their performance across 

the levels of the independent variables, is presented in Table 1. According to the accuracy of 

the methods shown in the table, the methods can be classified into three groups: low (below 

70%; AF and OC), moderate (70% and 80%; EGAtmfg and K1), and high accuracy (> 80%; 

PApaf, PApca and EGA). In terms of the PC criterion, the methods from best to worst were: 

EGA (M = 87.91%, SD = 32.60%), PApca (M = 83.01%, SD = 37.55%), PApaf (M = 

81.88%, SD = 38.52%), K1 (M = 79.46%, SD = 40.40%), EGAtmfg (M = 74.61%, SD = 

43.52%), OC (M = 66.36%, SD = 47.25%) and AF (M = 54.59%, SD = 49.79%).

In terms of the MBE, EGA method showed the least overall bias, with a very small tendency 

to overfactor (0.02), followed by EGAtmfg (MBE = −0.12), PApaf (−0.25) and PApca 

(−0.29), which had a moderate tendency to underfactor. The rest of the methods had 

considerable larger MBEs, with OC (−0.61) and AF (−0.97) underfactoring, and K1 (0.33) 

overfactoring. Regarding the MAE, the two best methods were EGA (0.27) and PApca 

(0.30), followed by PApaf (0.32) and EGAtmfg (0.32). The remaining methods, K1 (0.46), 

OC (0.71) and AF (0.97), produced MAEs that were markedly worse.

Unidimensional Structures

Figure 5 shows the accuracy of the methods per sample size, factor loadings and number of 

variables for continuous (Figure 5A) and dichotomous (Figure 5B) data. In each plot, a 

dashed gray line represents an accuracy of 90%. Inspecting Figure 5 reveals several notable 

trends. First, while most methods presented an accuracy higher than 90% in the continuous 

data condition (Figure 5A), EGAtmfg fails considerably when the number of variables per 

factor is 12 (M = 26.20%). Second, K1 presents a low accuracy for sample size of 500, 
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loadings of .40 and 12 variables per factor (M = 11.75%). Third, PApaf performs poorly 

when the factor loadings is .40 and the number of items is 3 or 4 (M = 0.35%), improving 

significantly for 3 or 4 variables per factor and loadings of .55 (M = 57.52%)

In the dichotomous data condition, the scenario is a slightly more nuanced for the percentage 

of correct dimensionality estimates. AF and PApca are the two most accurate methods 

(99.78% and 99.27%, respectively), followed by OC (M = 94.57%) and EGA (M = 92.54%). 

The accuracy of K1 and OC decreases with an increase in the number of variables, for factor 

loadings of .40 and .55 and sample sizes of 500 and 1000. EGAtmfg once again presents a 

very low accuracy when the number of variables is 12 (M = 11.38%), although presenting a 

high accuracy for 3, 4 or 8 items (M = 97.29%). It is also notable that PApaf presents a much 

lower percentage of correct estimates for loadings of .40 (M = 40.87%) and .55 (M = 

40.87%), especially when compared with EGA (MLOAD=0.40 = 91.22%, MLOAD=0.55 = 

95.87%).

Figure 6 shows the absolute bias (MAE) for continuous (Figure 6A) and dichotomous data 

(Figure 6B). In the continuous data condition, PApca, OC and AF presented a MAE of zero, 

while EGA had a MAE 0.04, K1 0.05, K1 had 0.05, PApaf 0.20, and EGAtmfg 0.24.

Except for loadings of .40 and .55, EGAtmfg presented higher bias for conditions with 12 

items, in general (MAE = 0.26). PApaf had higher MAE for loadings of .40 and three or four 

variables per factor (MAE = 1.00), and for loadings of .55 and 3 variables per factor (MAE 

= 0.71). Also, EGA, K1 and EGAtmfg presented an increased bias in the conditions with 

factor loadings of .40, 12 variables per factor and sample size of 500.

Bias increased in the dichotomous data conditions (Figure 6B). The order of MAE (from 

worst to best), however, remained the same: EGAtmfg (MAE = 0.24), PApaf (MAE = 0.20), 

K1 (MAE = 0.05 and EGA (MAE = 0.04). OC (MAE = 0), AF (MAE = 0) and PApca (MAE 

= 0) presented the lower bias.

Table 2 shows the effect sizes per condition simulated. K1 and PApaf were the methods that 

presented the highest effect sizes, in general. Both methods are very affected, in terms of 

accuracy and bias, by the variability in the number of variables, factor loadings and the 

interaction between factor loadings and number of variables. EGAtmfg is also very affected 

by the number of variables per factor, both in terms of accuracy and bias.

Multidimensional structures

Figure 7 shows the accuracy of the methods per sample size, factor loadings, interfactor 

correlation and number of variables for continuous (Figure 7A) and dichotomous data 

(Figure 7B), for the five most accurate techniques (PApaf, EGA, EGAtmfg, K1 and PApca). 

In each plot, a dashed gray line represents an accuracy of 90%. For the continuous data 

condition, the order of the methods in terms of percentage of correct dimensionality 

estimates is: PApaf (M = 88.18%), EGA (M = 87.20%), K1 (M = 83.29%), PApca (M = 

81.02%) and EGAtmfg (M = 76.33%).

The first notable trend in Figure 7 is the very high accuracy (above 90%) in the continuous 

data condition (Figure 7A) for loadings from .55 to .85 and interfactor correlation from zero 
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to .50 for most methods, with the following exceptions. For loadings of .55, orthogonal 

factors and three variables per factor, the accuracy of PApaf is lower than 75%. The accuracy 

of K1 is also below 75% in conditions with eight items and samples of 500, as well as PApca 

in conditions with 3 or 4 items, samples of 500 and interfactor correlation of .50. EGAtmfg 

presents a PC lower than 75% irrespective of sample size when the interfactor correlation 

is .50 and three variables per factor.

It is important to note that the accuracy of K1 goes down with the increase in the number of 

variables per factor, in conditions with loadings of .40, sample sizes of 500 or 1000. The 

accuracy of EGA is almost always lower than 75% with loadings of .40 and sample size of 

500. It is also notable that PApaf have very low PCs in conditions with loadings of .40 and 3 

or 4 variables per factor.

In the conditions where the interfactor correlation is .70, factor loading is .40, and number of 

variables per factor is eight, PApaf presented a mean percentage of correct estimates of 

92.13% and 99.87% for sample size of 1000 and 5000, while EGA presented an accuracy of 

66.07% for sample size of 1000 and 98.06% for sample size of 5000. In the same conditions, 

EGAtmfg presented an accuracy of 69.67% and 92.73% for sample sizes of 1000 and 5000, 

while PApca presented an accuracy of 48.60% and 100%, and K1 7.73% and 95.33% 

respectively for samples of 1000 and 5000.

In conditions with interfactor correlation of .70 and factor loadings of .55, PApca and K1 

only presented percentage of correct dimensionality estimates above 90% with eight 

variables per factor and sample size of 1000 and 5000. EGA and EGAtmfg presented an 

accuracy higher than 90% irrespective of sample size with eight variables per factor, for a 

loading of .55 and interfactor correlation of .70. EGA (86.07%) and PApaf (99.59%), on the 

other side, presented high PCs for loadings varying from .55 to .85 and sample sizes of 1000 

and 5000, irrespective of the number of variables per factor when the interfactor correlation 

is .70.

The accuracy for EGA and PApaf for factor loadings of .70, across all conditions, is 98.83% 

and 99.99%, respectively. For factor loadings of .85 is 100% for both EGA and PApaf. At 

the same time, EGAtmfg presented an accuracy of 82.12% for loadings of .70 and 85.54% 

for loadings of .85, while K1 presented an accuracy of 91.27% and 92.01%, and PApca of 

84.99% and 87.78% for loadings of .70 and .85, respectively.

In the dichotomous data condition, the scenario is, again, more nuanced in terms of accuracy 

than in the continuous data condition (Figure 7B). EGA is the most accurate method (M = 

81.47%), followed by PApaf (M = 78.74%), PApca (M = 70.23%), EGAtmfg (M = 69.38%) 

and K1 (M = 65.78%).

Figure 7B reveals two general tendencies. One is the increase of PC with the increase of 

number of variables per factor, sample size and factor loadings. The second one is the 

decrease in accuracy as the interfactor correlation increases from zero to .70. With loadings 

of .40, most techniques present accuracies lower than 90%, except in the following 

conditions. For a sample size of 1000, eight items per factor and orthogonal factors, EGA, 

PApca and EGAtmfg presented an accuracy greater than 90%. For a sample size of 5000 and 
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orthogonal factors, EGA and PApca achieved an accuracy higher than 90% irrespective of 

the number of variables per factor, while PApaf increased the accuracy with the increase in 

the number of variables and K1 decreased the accuracy with the number of items going from 

3 to 8. With an interfactor correlation of .30, PApca achieved an accuracy higher than 90% 

with eight items and a sample of 1000, and with a sample size of 5000, the accuracy was 

above 90% irrespective of the number of variables, while EGA achieved the same level of 

accuracy only with four or eight variables per factor. With an interfactor correlation of .50, 

EGA, EGAtmfg, PApaf and PApca presented accuracies above 90% with eight items and 

sample size of 5000. When the correlation was .70, only EGA presented an accuracy higher 

than 90%, with a sample size of 500 and eight variables per factor.

As the factor loadings increase, the accuracy of the methods also increase, even if the 

interfactor correlation is .70. EGA presented an accuracy of 23.92% for loadings of .40, 

54.21% for loadings of .55, 89.32% for loadings of .70 and 99.22% for loadings of .85. 

PApaf presented a similar pattern, with PC of 44.64% for loadings of .40, 80.46% for 

loadings of .55, 94.59% for loadings of .70 and 98.99% for loadings of .85.

Figure 8 shows the percentage of correct dimensionality estimates by interfactor correlation 

and factor loadings for EGA, PApaf and PApca in multidimensional structures with 

dichotomous data. It is interesting to note that EGA presents a higher accuracy than PApaf 

for factor loadings of .40, in conditions with interfactor correlations of zero and 0.30. At the 

same time, EGA is more accurate than PApca in conditions with interfactor correlations 

of .50 and .70.

Figure 9 shows the bias (MAE) for continuous (Figure 9A) and dichotomous data (Figure 

9B). In the continuous data condition, PApaf presented the lowest bias (MAE = 0.28), 

followed by EGAtmfg (MAE = 0.29), K1 (MAE = 0.32), PApca (MAE = 0.33) and EGA 

(MAE = 0.45). The bias of the techniques increases with the increase of interfactor 

correlation, but decreases with higher sample sizes and higher factor loadings. Interestingly, 

while EGA presented a mean absolute error of 1.62 for loadings of .40, it shrank to 0.15 for 

loadings of .55 and to 0.01 for loadings of .70 or .85. PApaf had a similar pattern, presenting 

a mean absolute error of 1.01 for loadings of .40, 0.11 for loadings of .55 and 0 for loadings 

of .70 or .85. In contrast, PApca presented a mean absolute error of 0.50, 0.33 and 0.24 for 

loadings of .40, .55 and to .70 or .85, respectively.

Finally, in the dichotomous data condition, EGA presented the lowest bias (MAE = 0.27), 

followed by EGAtmfg (MAE = 0.38), PApaf (MAE = 0.44), PApca (MAE = 0.52) and K1 

(MAE = 0.89). Similarly to the continuous variables, the bias of the techniques increases 

with the increase of interfactor correlation, but decreases with higher sample sizes and 

higher factor loadings.

Table 3 shows the effect size for the five most accurate methods (a heatmap version of Table 

3 is available in Appendix F). It is interesting to note that EGA presents a high effect size for 

factor loading, both in terms of accuracy and bias. EGAtmfg presents a high effect size for 

the number of variables and interfactor correlation, while PApaf is more affected by factor 

loadings. PApca presents a high effect size for interfactor correlation and factor loadings. As 
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with the unidimensional structures, K1 presented a higher number of moderate and high 

effect sizes.

In sum, the results revealed that AF and OC presented high accuracy only in the 

unidimensional conditions, K1 and EGAtmfg presented a moderately good accuracy in both 

unidimensional and multidimensional structures, and EGA, PApaf, PApca presented higher 

accuracies in general. The most accurate technique was EGA, with a mean accuracy of 88% 

accross conditions, followed by PApca (83%) and PApaf (82%).

How to use EGA in R

In order to demonstrate how to implement the new EGA algorithm in R, a brief example will 

be presented. We will use a dataset that included 2247 people that participated in the 

Virginia Cognitive Aging Project (VCAP; Salthouse, 2018), who completed the 33-item 

Social Desirability Scale (SDS; Crowne & Marlowe, 1960) during the first measurement 

occasion (between 2001 and 2017). The participants’ (64.8% women) age ranged from 18 to 

97 years old (M = 50.72, SD = 18.73) and had an average of 15.65 years of education.

To start, the EGAnet package can be downloaded and installed from CRAN:

# Install ‘EGAnet’ package

install.packages(“EGAnet”) 

The EGAnet package was developed as a simple and easy way to implement the exploratory 

graph analysis technique. The package has several functions but we will focus on the new 

EGA algorithm in this tutorial. This function simultaneously integrates the algorithm to 

determine unidimensional and multidimensional structures. The number of dimensions is 

given by the GLASSO with the lambda parameter set via EBIC or using the TMFG method. 

The number of underlying dimensions (or factors) is detected using the walktrap algorithm.

Arguments of the EGA Function

The new EGA function has several arguments: data, model, plot.EGA, n, steps, nvar, nfact, 

load, and .... The first argument, data, is the input of variables, which can be in the form of 

raw data or an already computed correlation matrix. If the data is a correlation matrix, then 

the sample size needs to be specified using the n argument. The second argument specifies 

the network estimation model to use (either “glasso” or “TMFG”) and defaults to “glasso”. 

The plot.EGA argument determines whether to plot the EGA results (defaults to TRUE). 

Next, the steps argument is the number of steps to be used in the walktrap algorithm. This 

argument defaults to 4, which is recommended.

# EGA arguments

EGA(data, model = c(“glasso”, “TMFG”), plot.EGA = TRUE,

n, steps = 4, nvar = 4, nfact = 1, load = .70, ...) 
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The next three arguments: nvar, nfact, and load are parameters used to simulate data for 

detecting unidimensionality. nvar sets the number of variables (defaults to 4), nfact sets the 

number of factors (defaults to 1), and load sets the item loadings on each factor (defaults 

to .70). We recommend using the default values when estimating multidimensional 

structures but adjusting the nvar value for unidimensional structures. Our tutorial will 

provide recommendations for how to do so. Finally, the ... argument is used to pass 

additional network estimation arguments into glasso or TMFG functions. Links to these 

functions are provided in the EGA function’s documentation.

Tutorial

The first step is to load the EGAnet package. Then, the dataset should be imported into R. In 

this case, the SDS dataset composed of dichotomous (TRUE/FALSE) variables is saved as 

a .csv file in the local directory, so the function to import the dataset into R is the read.csv 

function. An object named sds can be created to store the data and, as a last step, the EGA 

function is used. It is important to note that before importing the dataset the reversed items 

had been recoded so that all the items have the same direction.

# Load ‘EGAnet’ package

library(“EGAnet”) 

# Read in data

sds <- read.csv(“./Datasets/SDS.csv”) 

# Estimate EGA network

ega.sds <- EGA(data = sds, model = “glasso”, plot.EGA = TRUE)

The results in Figure 10 show five dimensions for the SDS, which can be interpreted as 

follows. The first dimension (red nodes) reflects behaviors and attitudes that are egoist, 

insouciant, a little bit manipulative and resentful, with items such as item 19: I sometimes 
try to get even rather than forgive and forget. The second reflects behaviors and attitudes of a 

cautious and well-mannered people, with items similar to item 27: I never make a long trip 
without checking the safety of my car. The third factor, in turn, indicates a trait of integrity 

and credibility, with items such as: I would never think of letting someone else be punished 
for my wrongdoings (item 24). The fourth factor indicates a trait of sympathy, generally 

exhibited by people that are easy to get along with, with items as item 4: I have never 
intensely disliked anyone (item 4). Finally, the fifth factor reflects a low self-esteem trait 

with items such as item 5: On occasion I have had doubts about my ability to succeed in life 
(item 5).

The results above differs from the most common dimensionality structure of the SDS scale, 

proposed by Millham (1974), that suggested two constructs of social desirability: one 

involving self-denial of undesirable characteristics (denial) and another involving a tendency 

to attribute socially desirable characteristics (attribution; Ventimiglia & MacDonald, 2012).

To check which structure presents a better fit to the data, the CFA function from the EGAnet 

package can be used. This function takes the object generated by the EGA function, and fits 
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the corresponding confirmatory factor model using lavaan (Rosseel, 2012). The CFA 

function can be used as follows

# Fit a confirmatory factor model using an EGA object:

cfa.ega.sds <- CFA(ega.obj = ega.sds, data = sds, estimator = “WLSMV”, 

plot.CFA = FALSE) 

# Fit an alternative confirmatory factor model using lavaan,

# but following the approach implemented in the EGA code.

# The first step is to duplicate an EGA object

ega.sds.theory <- ega.sds 

# And change the column names of the dim.variables component of the EGA

object

ega.sds.theory$dim.variables[,1] <- colnames(sds) 

# Select the items that are part of Factor 1

ega.sds.theory$dim.variables[c(3,5, 6, 9, 10, 11, 12, 14, 15, 19, 22, 23, 

28, 30, 32),2] <- rep(1, 15)

# Select the items that are part of Factor 2:

ega.sds.theory$dim.variables[c(1, 2, 4, 7, 8, 13, 16, 17, 18, 20, 21, 24, 

25, 26, 27, 29, 31, 33),2] <- rep(2, 18) 

# Fit the CFA model:

cfa.sds.theory <- CFA(ega.obj = ega.sds.theory, estimator = ‘WLSMV’, 

plot.CFA = FALSE, data = sds) 

The fit of the CFA model can be inspected using cfa.ega.sds$fit.measures, and a plot can be 

called using the plot(cfa.ega.sds). The five-factor structure estimated using EGA presented 

the highest CFI (0.97) and the lowest RMSEA (0.03) compared to the theoretical two-factor 

(attribution-denial) model: CFI = 0.95, RMSEA = 0.03).

To determine whether the SDS dimensions described above are unidimensional, we can 

apply EGA and adjust the nvar argument for data generation. The default value of 4 was used 

in the simulation to keep the argument consistent across the conditions. We recommend, 

however, to adjust this value when testing whether data is unidimensional. We recommend 

setting nvar to the number of variables that are in the dimension being tested. Factor one, for 

example, had 14 items (Figure 5), so nvar should be set to 14. Factor two had 6 items, factor 

three and four had 5 items and factor five had 3 items, so nvar should be set to 6, 5, 5, and 3, 

respectively. We also computed parallel analysis with PAF and PCA using tetrachoric 

correlations and data generation via resampling from the psych package (Revelle, 2018). To 

demonstrate how to implement this procedure, the following code can be applied:

# Load ‘psych’ package

library(“psych”) 

# Initialize result vectors

# EGA
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ega.res <- vector(“numeric”, length = max(ega.sds$wc)) 

# PApaf

papaf.res <- vector(“numeric”, length = max(ega.sds$wc)) 

# PApca

papca.res <- vector(“numeric”, length = max(ega.sds$wc)) 

# Run ‘for’ loop to determine dimensions

for(i in 1:max(ega.sds$wc)) 

{ 

# Identify target items

target <- which(ega.sds$wc == i) 

# Estimate dimensions

# EGA

ega.res[i] <- max(EGA(sds[,target], model = “glasso”, plot.EGA = FALSE, nvar 

= length(target))$wc) 

cap <- capture.output(pa <- fa.parallel(sds[,target], sim = FALSE, cor = 

“poly”, plot = FALSE)) 

# PApaf

papaf.res[i] <- pa$nfact 

# PApca

papca.res[i] <- pa$ncomp 

} 

# Combine and name results

res <- rbind(ega.res, papaf.res, papca.res) 

row.names(res) <- c(“EGA”, “PApaf”, “PApca”) 

colnames(res) <- paste(“Factor”,1:5) 

# Return results

res 

As the results show in Table 4, EGA and PApca estimated unidimensional structures for all 5 

factors, while PApaf only estimated one factor as unidimensional.

These results are consistent with our simulation findings, suggesting that EGA and PApca 

are effective, while PApaf is inaccurate at estimating unidimensionality in dichotomous data. 

This tutorial demonstrates how EGA can first be used to detect the number of dimensions in 

a multidimensional construct. Then, it shows how EGA can be applied to the dimensions 

identified in a construct to verify that each dimension is indeed unidimensional. For applied 

researchers, the steps demonstrated in this tutorial are particularly useful for applying EGA 

to their own dimensional assessments. This has particular implications for scale 

development and psychometric assessment practices. EGA appears to be robust for both 

multidimensional and unidimensional assessments, whereas traditional methods such as 

PApaf and PApca would be necessary to estimate multidimensional and unidimensional 

structures, respectively. Thus, applied researchers can use EGA as a single, all-around 

dimension identification approach.
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Discussion

The present study examined the dimensionality identification accuracy of two new 

exploratory graph analysis methods (one that can deal with both unidimensional and 

multidimensional structures, and the other that implements a new network estimation), as 

well as several traditional factor-analytic techniques, using an extensive Monte Carlo 

simulation. Aside from manipulating salient variables across ranges of plausible values that 

may be found in applied settings, all the structures that were generated had varying main 

factor loadings, cross-loadings, and skewness across items in order to enhance the ecological 

validity of the simulation. Additionally, previous studies comparing EGA with traditional 

factor-analytic methods only included dichotomous variables in the simulation design. The 

current paper also included continuous data, expanding our knowledge about the suitability 

of EGA as a dimensionality assessment technique compared to traditional methods.

In addition to the Monte-Carlo simulation, a straightforward R tutorial on how to use and 

interpret EGA was provided, and the method was applied to an empirical dataset composed 

of scores from a well-known social desirability scale. This study extends previous research 

for EGA with GLASSO estimation by providing evidence of its accuracy across a broader 

set of conditions than previously considered, and is the first to examine the performance of 

EGA in unidimensional structures and the performance of EGA with the TMFG estimation, 

which emerges as an important complementary technique.

Method Performance

The results from the simulation study revealed that the methods could be classified into three 

groups: those with high accuracy only in the unidimensional conditions (AF and OC), those 

with a moderately good accuracy in both unidimensional and multidimensional structures 

(K1, EGAtmfg) and those with higher accuracies in general (EGA, PApaf, PApca). Of the 

high performing methods, none was the best across every condition and criteria, and all 

showed strengths and weaknesses.

Overall, the new EGA algorithm presented the highest accuracy to correctly estimate the 

number of simulated factors, and the lowest mean bias error. It is important to note that the 

new EGA algorithm can adequately deal with unidimensional structures, a condition that the 

original EGA method proposed by Golino and Epskamp (2017) could not handle. At the 

same time, the new EGA algorithm was implemented in a way that doesn’t change the 

original EGA method if the data presents more than two factors. Both EGA and EGAtmfg 

performed similarly to the most accurate traditional technique, parallel analysis, in a number 

of conditions.

The new EGA algorithm (using the GGM model) was the most accurate method with 

medium (.55), and the second best with high (.70) and very high (.85) factor loadings, 

followed closely by PApaf. Also, of the five best methods, EGA and PApaf were the two 

most robust to the factor correlations, sustaining the smallest decreases in accuracy with 

higher factor correlations. The excellent performance of EGA in these conditions is in line 

with previous research (Golino & Epskamp, 2017). With low loadings (.40) combined with 

smaller samples (500), however, the performance of EGA was lower, but still presented rates 
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of correct estimates that were in line with those of the other well performing methods. 

Recent developments in the area of network psychometrics seems to improve the estimation 

of the GGM model to deal with low sample sizes and large number of variables (Williams, 

2018; Williams & Rast, 2019). Future studies should investigate how these new GGM 

estimation procedures can improve the accuracy of EGA, especially in conditions with low 

sample size, low factor loadings and moderate or high interfactor correlation.

EGA with TMFG provided correct dimensionality estimates just below that of the other high 

performing methods, but its most notable characteristic was that its estimates, along those of 

the new EGA and PApaf, were the closest to the population values. In comparison to the 

other good performing methods, EGAtmfg was at its best in the unidimensional structures 

for fewer variables per factor, and in the multidimensional conditions it was best for 

structures weaker factor correlations (≤ .50), and eight variables per factor. In contrast, the 

biggest limitations of EGAtmfg came from structures that were composed of many variables 

per factor, and with highly correlated factors. It is likely that these conditions create 

problems for EGAtmfg due to the way it constructs the network, through the formation of 

tetrahedrons (groups of four nodes), which severely limits (or enforces) cross-dimension 

connections. Future simulations should examine a new method that constructs the network in 

a similar way as the TMFG but eliminates its artificial structural constraint (i.e., 3- and 4-

node cliques; Massara & Aste, 2019).

In terms of the two PA methods, they generally performed well, thus extending the vast 

literature supporting the accuracy of this procedure (e.g., Garrido et al., 2013, 2016; 

Timmerman & Lorenzo-Seva, 2011). Comparing both parallel analysis methods, it’s 

interesting to point that while PApca was more accurate in the unidimensional conditions, 

PApaf was more robust in the multidimensional conditions, especially with higher interfactor 

correlations. These two methods complemented each other, with one being stronger where 

the other was weaker, and vice versa (e.g., for factor loadings, variables per factor, and factor 

correlations). In the case of PApca, the method showed a clear bias in the condition of 

multiple factors, few variables per factor (3 or 4) combined with moderate (.50) or very high 

factor correlations (.70). In these cases the method will generally produce a one-factor 

estimate regardless of the actual dimensionality of the data. The reason for this is simple: the 

population eigenvalues after that corresponding to the first factor will be lower than one, and 

thus, asymptotically PApca is not able to retain them. In terms of PApaf, it produced 

comparatively poorest performance with low factor loadings (.40).

It is important to note that PApca, which is generally a well performing dimensionality 

method, is biased at the population level for models with high factor correlations. The null 

model used to compute the reference eigenvalues only constitutes a strictly adequate 

reference for the first observed eigenvalue (Braeken & Van Assen, 2017). The values of 

subsequent eigenvalues for the data under consideration are conditional upon the structure in 

the data captured by previous eigenvalues. Particularly, when factors are highly correlated 

and the number of variables is small, the first eigenvalue will be very large, whereas 

succeeding eigenvalues will be necessarily notably smaller (as the sum of the eigenvalues is 

always constrained to be equal to the total variance). This situation will give rise to scenarios 

where the eigenvalues from major factors after the first will be lower than the reference 
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eigenvalues at the population level, thus limiting the accuracy of the method for these 

conditions. EGA, in contrast, performs considerably more accurately in these conditions.

It is also interesting to note that the automated scree methods presented a very high accuracy 

in the unidimensional conditions, but moderately low accuracies in the multidimensional 

conditions. Their percentage of correct estimates was between 20% and 30% below to that 

of the EGA and PA methods. The AF method was one of the most accurate methods for 

orthogonal structures and for single factors (unidimensional structures), but its accuracy 

shrinks as the interfactor correlation increases. In the case of K1, the method tended to 

overestimate the population dimensionality by very large amounts, as has been widely 

documented in the literature (Costello & Osborne, 2005). Surprisingly, the accuracy of K1 in 

the current simulation was not bad. This can be explained by the use of three and four 

variables per factor in the simulation design, a condition in which K1 presents higher 

accuracies. However, the results of the present study show very clear that the K1 technique 

should be avoided in situations where the number of variables per factor is relatively high, 

and the factor loadings are small or moderate. A similar pattern was identified for MAP and 

VSS (see Appendix D). MAP presented a moderately low accuracy for 2 (52.5%), 3 (47.4%) 

and 4 (44.4%) factors, while VSS presented very low accuracies (14.7%, 7.3% and 5.9%, 

respectively). However, MAP presented a very high accuracy for unidimensional structures 

(99.7%), and VSS followed in the same direction (91%).

The current paper presents limitations that should be addressed in future studies. A question 

that remains open regards the accuracy of the EGA techniques compared to PApaf and 

PApca when the simulated data has a complex structure where items have large loadings on 

more than one factor. Also, little is known about the accuracy of EGA in the presence of 

population error. Lim and Jahng (2019), for example, investigated several variants of parallel 

analysis, and discovered that the majority of the PA methods presented much lower 

accuracies in the presence of population error. Both the issue of complex factor structures 

and population error should be addressed in future studies comparing EGA and PA 

techniques.

EGA in Practice—Which EGA method should be used with empirical data? In this section 

we will provide some practical recommendations to guide researchers in the implementation 

of EGA and EGAtmfg. On one hand, it is useful to always compute both EGA and 

EGAtmfg and see if their estimates agree. In our simulation, 58.0% of the cases where EGA 

erred it did so by overfactoring, while in 85.6% of the cases that EGAtmfg erred it was due 

to underfactoring. Thus, when the methods agree it is likely because they have found the 

optimal solution. For example, in this study EGA and EGAtmfg provided the same estimate 

for 78% of the datasets, and for these, their accuracy was nearly perfect (PC = 91.85%, 

MAE = 0.10). Therefore, if both EGA and EGAtmfg produce the same dimensionality 

estimate researchers can have increased confidence that the solution suggested is optimal, or 

if not, very close to it. On the other hand, when the two methods disagreed in the present 

study the accuracy of EGA (PC = 73.73%, MAE = .82) decreases and EGAtmfg (PC = 

12.94%, MAE = 1.07) significantly decreases. In these instances when EGA and EGAtmfg 

provide different estimates in practice, researchers can look at the line plots presented in 

Figures 5 and 7 to see the method that is likely to perform better in the conditions that they 
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think most apply to their data. Additionally, in these cases where EGA and EGAtmfg 

disagree, it is important to more strongly consider potential alternative solutions (with less or 

more dimensions, respectively) to those suggested by the methods. In particular, to help the 

researchers decide which dimensionality estimate is better, a fit index was recently 

developed specifically for EGA (Golino et al., 2019) and could be used to check which 

dimensionality structure (i.e., estimated using EGA or EGAtmfg) fits the the data better. 

Lastly, researchers could also use PApaf to check if the number of factors matches the 

number of factors estimated using the EGA techniques (Garcia-Garzon et al., 2019b).

Conclusion

This paper describes the EGA method and shows, through an extension simulation, that it 

performs as well as the best factor-analytic techniques. On top of excellent performance, 

EGA possess several advantages over traditional methods. First, with EGA, researchers do 

not need to decipher a factor loading matrix but instead can immediately interpret which 

items belong to which factor with the color-coded network plot. Second, EGA does not 

require the researcher to make any decisions about the type of rotation to use for the factor 

structure. There are an enormous number of factor rotations for researchers to chose from, 

which can make it difficult for researchers to know whether they are using the appropriate 

rotation method. Third, EGA is a single step approach and does not require additional steps 

to verify factors, while with traditional methods, the number of dimensions are estimated 

first and then are followed by exploratory factor analysis with the specified number of 

dimensions. These last two advantages ultimately reduce the number of researcher degrees 

of freedom and eliminate most of the potential for bias and errors. In sum, we show that 

EGA is a promising method for accurate dimensionality estimation.
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Appendix A

Walktrap Community Detection

To define the random walk, let A be a square matrix of edge weights (e.g., partial 

correlations) in the network, where Aij is the strength of the (partial) correlation between 

node i and j and a node’s strength is the sum of node i’s connections to its neighbors 

NS = ∑jAij. The steps move from one node to another randomly and uniformly using a 

transition probability, Pij =
Aij

NS(i) , which forms the transition matrix, P.

To determine the communities that the nodes belong to, the transition matrix is used to 

compute a distance metric, r, which measures the structural similarity between nodes (1). 

This structural similarity is defined as (Pons & Latapy, 2006):
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rij = ∑
k = 1

n Pik − Pjk
2

NS(k) (A1)

This distance can be generalized to the distance between nodes and communities by 

beginning the random walk at a random node in a community, C. This can be defined as:

PCj = 1
C ∑

i ∈ C
Pij . (A2)

Finally, this can be further generalized to the distance between two communities:

rC1C2 = ∑
k = 1

n PC1k − PC2k
2

NS(k) , (A3)

where this definition is consistent with the distance between nodes in the network (Eq. A1).

Algorithm

The algorithm begins by having each node as a cluster (i.e., n clusters). The distances, r, are 

computed between all adjacent nodes, and the algorithm then begins to iteratively choose 

two clusters. These two clusters chosen are then merged into a new cluster, updating the 

distances between the node(s) and cluster(s) with each merge (in each k = n − 1 steps).

Clusters are only merged if they are adjacent to one another (i.e., an edge between them). 

The merging method is based on Ward’s agglomerative clustering approach (Ward, 1963) 

that depends on the estimation of the squared distances between each node and its 

community (σk), for each k steps of the algorithm. Since computing σk is computationally 

expensive, Pons and Latapy (2006) adopted an efficient approximation that only depends on 

the nodes and the communities rather than the k steps. The approximation seeks to minimize 

the variation of σ that would be induced if two clusters (C1 and C2) are merged into a new 

cluster (C3):

Δσ C1, C2 = 1
n ∑

i ∈ C3
riC3

2 − ∑
i ∈ C1

riC1
2 − ∑

i ∈ C2
riC2

2 . (A4)

Since Ward’s approximation adopted by Pons and Latapy (2006) only merges adjacent 

clusters, the total number of times Δσ is updated is not very large, and the resulting values 

can be stored in a balanced tree. A sequence of Pk partitions into clusters (1 ≤ k ≤ n, being n 
the total number of nodes) is obtained. The best number of clusters is defined as the partition 

that maximizes modularity.

Modularity is a measure that was proposed by Newman (2004) to identify meaningful 

clusters in networks and is calculated as follows. Let j and k be two clusters in a network 

with m and n nodes. If the number of edges between clusters is p, then one-half of fraction 
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of the edges linking j and k is ejk = 1
2 p, so that the total fraction of edges between the two 

clusters is ejk + ejk (Newman, 2004). On the other hand, ejj represents the fraction of edges 

that fall within cluster j, whose sum equals one: ∑jejj = 1. Newman (2004) points out that a 

division of networks into clusters is meaningful if the value of the sums of ejj and eii is 

maximized. However, in cases where only one cluster is presented, the maximal value will 

be one, which is also the value of ∑jejj. Therefore, for networks composed by only one 

cluster this index is not informative. A solution Newman (2004) proposed was to calculate 

an index that takes ∑jejj and subtract from it the value that it would take if edges were 

placed at random. For a given cluster j, the modularity is calculated as:

Q = ∑
j

(ejj − aj2), (A5)

where aj is given by ∑jejk. Therefore, the modularity index penalizes network structures 

with only one cluster, since in this condition the value of Q would be zero (Newman, 2004).

Appendix B

For p number of variables, the OC procedure aims to identify the actual factors by 

computing p–2 two-point regression models, and verifying if the eigenvalue in question is 

greater than the one estimated by these models. The last positive verification, starting from 

the second eigenvalue, and continuing without interruption, is used to determine the number 

of factors to retain. The predicted eigenvalue λi, known as the optimal coordinate, is 

estimated through the linear regression model using only the last eigenvalue and the (i + 1)tℎ 

eigenvalue so that

λi = a(i + 1) + b(i + 1)(i) (B1)

with

b(i + 1) = λp − λ(i + 1) /(p − i − 1) (B2)

and

a(i + 1) = λ(i + 1) − b(i + 1)(i + 1) . (B3)

On the other hand, the AF method searches for the point in the eigenvalue plot where the 

slope of the curve changes abruptly. In order to achieve this, the AF evaluates an 

approximation to the second derivative of the OC equation,

λi = a(i + 1) + b(i + 1)(i), (B4)

at each of the i eigenvalues (from 2 to p - 1) using the function

f′(i) = f(i + 1) − 2f(i) − f(i − 1) . (B5)

Golino et al. Page 26

Psychol Methods. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Additionally, Raiche, Walls, Magis, Riopel, and Blais (2013) complement the OC and AF 

methods with the K1 rule or PApca, such that no eigenvalues are retained that are below one 

(K1) or below the eigenvalue obtained from independent variates (PApca).

Appendix C

Data simulation approach

First, the reproduced population correlation matrix (with communalities in the diagonal) was 

computed:

RR = ΛΦΛ′, (C1)

where RR is the reproduced population correlation matrix, lambda (Λ) is the measurement 

model (i.e. a k × r factor loading matrix for k variables and r factors) and phi (Φ) is the 

structure matrix of the latent variables (i.e. a r × r matrix of correlations among factors). The 

population correlation matrix RP was then obtained by inserting unities in the diagonal of 

RR, thereby raising the matrix to full rank. The next step was performing a Cholesky 

decomposition of RP, such that:

RP = U′U . (C2)

If either RP was not positive definite (i.e., at least one eigenvalue was ≤ 0) or an item’s 

communality was greater than 0.90, the Λ matrix was replaced and a new RP matrix was 

computed following the same procedure. Subsequently, the sample data matrix of 

continuous variables was computed as:

X = ZU, (C3)

where Z is a matrix of random standard normal deviates with rows equal to the sample size 

and columns equal to the number of variables.

Appendix D

Overall, the convergence rates (CRs) of the EGA analysis are high across most conditions. 

Those with lower CRs are small factor loading conditions (i.e., loadings = 0.4) associated 

with small to medium sample size (i.e., N=500 or 1000). This is expected as the results are 

consistent with the performance of EGA, where EGA works best with medium to high factor 

loadings or small loadings with large sample size. We think the reason for the 

nonconvergence could be related to the GLASSO regularization procedure. This pattern is 

consistent for both unidimensional and multidimensional conditions.

Among the small loading and small sample conditions, in multidimensional conditions, the 

number of factors affects the CRs. The more the factors, the lower the CRs tend to be. 

Furthermore, consistent with the performance of EGA, CRs for medium to high factor 

loading conditions (i.e., loadings = 0.55, 0.7 or 0.85) are very high, with occasionally a few 

non-converged conditions when loadings = 0.5 and sample size is small. All unidimensional 
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cases with medium to high loadings have 100% CRs. In sum, the CR was 97% for the 

multidimensional and 99.59% for the unidimensional structures.

Appendix E

Table E1.

Mean accuracy (PC) for EGA, EGAtmfg, VSS and MAP

Method NFAC Mean SD

EGA 1 0.96 0.20

EGA 2 0.82 0.39

EGA 3 0.84 0.37

EGA 4 0.79 0.41

EGAtmfg 1 0.79 0.41

EGAtmfg 2 0.70 0.46

EGAtmfg 3 0.74 0.44

EGAtmfg 4 0.64 0.48

VSS 1 0.92 0.28

VSS 2 0.15 0.35

VSS 3 0.07 0.26

VSS 4 0.06 0.24

MAP 1 1.00 0.05

MAP 2 0.52 0.50

MAP 3 0.47 0.50

MAP 4 0.44 0.50

Table E2.

Mean Bias Error (MBE) for EGA, EGAtmfg, VSS and MAP

Method NFAC Mean SD

EGA 1 0.07 0.20

EGA 2 −0.09 0.39

EGA 3 −0.13 0.37

EGA 4 −0.20 0.41

EGAtmfg 1 0.27 0.41

EGAtmfg 2 −0.24 0.46

EGAtmfg 3 −0.28 0.44

EGAtmfg 4 −0.43 0.48

VSS 1 0.19 0.28

VSS 2 1.41 0.35

VSS 3 1.43 0.26

VSS 4 0.99 0.24

MAP 1 0.00 0.05

MAP 2 −0.47 0.50

MAP 3 −1.00 0.50
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Method NFAC Mean SD

MAP 4 −1.59 0.50

Table E3.

Mean Absolute Error (MAE) for EGA, EGAtmfg, VSS and MAP

Method NFAC Mean SD

EGA 1 0.07 0.20

EGA 2 0.20 0.39

EGA 3 0.25 0.37

EGA 4 0.35 0.41

EGAtmfg 1 0.27 0.41

EGAtmfg 2 0.31 0.46

EGAtmfg 3 0.35 0.44

EGAtmfg 4 0.48 0.48

VSS 1 0.19 0.28

VSS 2 2.01 0.35

VSS 3 2.92 0.26

VSS 4 3.45 0.24

MAP 1 0.00 0.05

MAP 2 0.48 0.50

MAP 3 1.01 0.50

MAP 4 1.59 0.50

Appendix
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Figure F1. 
Effect Size - Multidimensional Structures
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Figure 1. 
Simulated five factor model with loadings of .70 and 5,000 observations with interfactor 

correlation of .70 (top) and zero (bottom). The left side shows the population correlation 

matrix plotted as a network of zero-order correlations, while the left side shows the EGA 

estimation of the population correlation matrix. Nodes represent variables, edges represent 

correlations, and the node colors indicates the simulated factors.
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Figure 2. 
New EGA algorithm for unidimensional and multidimensional structures
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Figure 3. 
A depiction of a network tetrahedron (left) and a tetrahedron drawn so that no edges are 

crossing (right)
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Figure 4. 
A depiction of how TMFG constructs a network. Starting with the tetrahedron, the node with 

the largest sum to three other nodes in the network is added (top left). This process continues 

until all nodes are included in the network.
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Figure 5. 
Accuracy per sample size, factor loadings and number of variables (NVAR) for 

unidimensional factors with continuous (A) and dichotomous (B) data.
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Figure 6. 
Mean Absolute Error (MAE) per sample size, factor loadings and number of variables 

(NVAR) for unidimensional factors with continuous (A) and dichotomous (B) data.
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Figure 7. 
Accuracy per sample size, factor loadings and number of variables (NVAR) for 

multidimensional factors with continuous (A) and dichotomous (B) data.
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Figure 8. 
Boxplot comparing the percentage of correct estimates between EGA, PApaf and PApca in 

multidimensional structures with dichotomous data by interfactor correlation and 

factorloadings.
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Figure 9. 
Mean Absolute Error (MAE) per sample size, factor loadings and interfactor correlation for 

unidimensional factors with continuous (A) and dichotomous (B) data.
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Figure 10. 
EGA dimesional structure of the Social Desirability Scale.
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Table 2

ANOVA partial eta squared (ηp
2) effect sizes for the percentage correct (PC) and mean absolute error (MAE) 

criterion variables for the unidimensional structures

AF EGA EGAtmfg K1 OC PApaf PApca

Conditions PC MAE PC MAE PC MAE PC MAE PC MAE PC MAE PC MAE

N 0.00 0.00 0.03 0.01 0.01 0.01 0.09 0.11 0.02 0.02 0.00 0.00 0.00 0.00

NVAR 0.00 0.00 0.07 0.02 0.59 0.50 0.18 0.23 0.03 0.03 0.19 0.15 0.00 0.00

LOAD 0.00 0.00 0.00 0.00 0.04 0.03 0.23 0.26 0.06 0.05 0.35 0.32 0.01 0.01

Data 0.00 0.00 0.04 0.00 0.01 0.01 0.08 0.12 0.04 0.04 0.01 0.01 0.00 0.00

N:NVAR 0.00 0.00 0.04 0.01 0.02 0.01 0.07 0.11 0.01 0.01 0.00 0.00 0.00 0.00

N:LOAD 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.13 0.03 0.03 0.00 0.00 0.00 0.00

NVAR:LOAD 0.00 0.00 0.00 0.00 0.06 0.04 0.19 0.28 0.04 0.04 0.20 0.16 0.00 0.00

N:Data 0.00 0.00 0.02 0.00 0.00 0.00 0.03 0.05 0.02 0.02 0.00 0.00 0.00 0.00

NVAR:Data 0.00 0.00 0.05 0.01 0.01 0.01 0.05 0.11 0.03 0.03 0.00 0.00 0.00 0.00

LOAD:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.13 0.06 0.06 0.00 0.00 0.01 0.01

N:NVAR:LOAD 0.00 0.00 0.00 0.00 0.01 0.01 0.06 0.13 0.02 0.02 0.00 0.00 0.00 0.00

N:NVAR:Data 0.00 0.00 0.03 0.00 0.00 0.00 0.01 0.04 0.01 0.01 0.00 0.00 0.00 0.00

N:LOAD:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.03 0.03 0.00 0.00 0.00 0.00

NVAR:LOAD:Data 0.00 0.00 0.01 0.01 0.01 0.01 0.03 0.12 0.04 0.04 0.00 0.00 0.00 0.00

N:NVAR:LOAD:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.02 0.00 0.00 0.00 0.00

Note. AF = scree test acceleration factor; EGA = exploratory graph analysis with the graphical LASSO; EGAtmfg = EGA with the triangulated 
maximally filtered graph approach; K1 = Kaiser-Guttman eigenvalue rule; OC = scree test optimal coordinate; PApca = parallel analysis with 
principal component analysis; PApaf = parallel analysis with principal axis factoring. N = sample size; LOAD = factor loading; NVAR= variables 

per factor; CORF= factor correlation; Data = Continuous/dichotomous. Large effect sizes (ηp2 ≥ 0.14) are bolded and highlighted in dark grey; 

moderate effect sizes (ηp2 between 0.6 and 0.13) are highlighted in light grey.
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Table 3

ANOVA partial eta squared (ηp
2) effect sizes for the percentage correct (PC) and mean absolute error (MAE) 

criterion variables for the multidimensional structures

EGA EGAtmfg K1 PApaf PApca

Conditions PC MAE PC MAE PC MAE PC MAE PC MAE

NFAC 0.00 0.00 0.00 0.02 0.03 0.15 0.00 0.00 0.03 0.14

N 0.03 0.01 0.01 0.01 0.08 0.18 0.02 0.01 0.05 0.05

NVAR 0.04 0.00 0.23 0.22 0.03 0.35 0.09 0.10 0.16 0.16

LOAD 0.26 0.06 0.10 0.12 0.21 0.41 0.33 0.30 0.09 0.08

CORF 0.13 0.01 0.25 0.23 0.07 0.02 0.00 0.01 0.39 0.40

Data 0.01 0.00 0.01 0.01 0.07 0.18 0.03 0.01 0.04 0.03

NFAC:N 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.01

NFAC:NVAR 0.00 0.00 0.00 0.01 0.00 0.09 0.00 0.00 0.00 0.04

N:NVAR 0.00 0.01 0.00 0.00 0.03 0.20 0.00 0.00 0.00 0.00

NFAC:LOAD 0.00 0.01 0.00 0.00 0.01 0.10 0.01 0.00 0.01 0.02

N:LOAD 0.03 0.02 0.00 0.00 0.05 0.17 0.01 0.00 0.01 0.01

NVAR:LOAD 0.02 0.01 0.01 0.02 0.10 0.45 0.11 0.13 0.00 0.00

NFAC:CORF 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.13

N:CORF 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02

NVAR:CORF 0.04 0.00 0.10 0.11 0.05 0.02 0.01 0.02 0.13 0.15

LOAD:CORF 0.09 0.01 0.01 0.03 0.01 0.01 0.00 0.03 0.02 0.02

NFAC:Data 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.01 0.00 0.01

N:Data 0.00 0.00 0.00 0.00 0.01 0.05 0.01 0.00 0.01 0.01

NVAR:Data 0.00 0.01 0.00 0.00 0.02 0.18 0.00 0.00 0.00 0.00

LOAD:Data 0.00 0.01 0.00 0.00 0.03 0.14 0.02 0.01 0.01 0.01

CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01

NFAC:N:NVAR 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

NFAC:N:LOAD 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

NFAC:NVAR:LOAD 0.00 0.00 0.00 0.00 0.00 0.10 0.01 0.00 0.00 0.00

N:NVAR:LOAD 0.01 0.01 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00

NFAC:N:CORF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

NFAC:NVAR:CORF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03

N:NVAR:CORF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFAC:LOAD:CORF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N:LOAD:CORF 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00

NVAR:LOAD:CORF 0.02 0.00 0.00 0.00 0.01 0.00 0.01 0.03 0.01 0.01

NFAC:N:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFAC:NVAR:Data 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

N:NVAR:Data 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

NFAC:LOAD:Data 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00
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EGA EGAtmfg K1 PApaf PApca

Conditions PC MAE PC MAE PC MAE PC MAE PC MAE

N:LOAD:Data 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

NVAR:LOAD:Data 0.00 0.01 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00

NFAC:CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N:CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NVAR:CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LOAD:CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFAC:N:NVAR:LOAD 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

NFAC:N:NVAR:CORF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFAC:N:LOAD:CORF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFAC:NVAR:LOAD:CORF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N:NVAR:LOAD:CORF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

NFAC:N:NVAR:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFAC:N:LOAD:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFAC:NVAR:LOAD:Data 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

N:NVAR:LOAD:Data 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00

NFAC:N:CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFAC:NVAR:CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N:NVAR:CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFAC:LOAD:CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N:LOAD:CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NVAR:LOAD:CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFAC:N:NVAR:LOAD:CORF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFAC:N:NVAR:LOAD:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFAC:N:NVAR:CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFAC:N:LOAD:CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFAC:NVAR:LOAD:CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N:NVAR:LOAD:CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NFAC:N:NVAR:LOAD:CORF:Data 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note. EGA = exploratory graph analysis with the graphical LASSO; EGAtmfg = EGA with the triangulated maximally filtered graph approach; K1 
= Kaiser-Guttman eigenvalue rule; PApca = parallel analysis with principal component analysis; PApaf = parallel analysis with principal axis 
factoring. N = sample size; LOAD = factor loading; NVAR= variables per factor; CORF= factor correlation; Data = Continuous/dichotomous. 

Large effect sizes (ηp2 ≥ 0.14) are bolded and highlighted in dark grey; moderate effect sizes (ηp2 between 0.6 and 0.13) are highlighted in light 

grey.
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Table 4

Unidimensional Results for EGA, PApaf, and PApca

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

EGA 1 1 1 1 1

PApaf 5 3 3 2 1

PApca 1 1 1 1 1

Psychol Methods. Author manuscript; available in PMC 2021 June 01.


	Abstract
	Present Research
	Exploratory Graph Analysis
	Equating the GGM with Factor Models
	Walktrap Community Detection
	EGA Performance
	A New EGA Algorithm for Unidimensional and Multidimensional Structures
	EGA with TMFG estimation

	Factor Analytic Techniques
	Eigenvalue-Based Methods
	Automated Scree Test Methods

	Method
	Design
	Data Generation
	Data analysis

	Results
	Overall Performance
	Unidimensional Structures
	Multidimensional structures

	How to use EGA in R
	Arguments of the EGA Function
	Tutorial

	Discussion
	Method Performance
	EGA in Practice

	Conclusion

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Table E1.
	Table E2.
	Table E3.
	AppendixFigure F1. Effect Size - Multidimensional Structures
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Table 1
	Table 2
	Table 3
	Table 4

