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A B S T R A C T

The current study implements psychometric network analysis within the framework of confirmatory (structural equation) modeling. Utility is demonstrated by three
applications on independent data sets. The first application uses WAIS data and shows that the same kind of fit statistics can be produced for network models as for
traditional confirmatory factor models. This can assist deciding between factor analytical and network theories of intelligence, e.g. g theory versus mutualism theory.
The second application uses the ‘Holzinger and Swineford data’ and illustrates how to cross-validate a network. The third application concerns a multigroup analysis
on scores on the Brief Test of Adult Cognition by Telephone (BCATC). It exemplifies how to test if network parameters have the same values across groups. Of
theoretical interest is that in all applications psychometric network models outperformed previously established (g) factor models. Simulations showed that this was
unlikely due to overparameterization. Thus the overall results were more consistent with mutualism theory than with mainstream g theory. The presence of common
(e.g. genetic) influences is not excluded, however.

1. Introduction

The description of the structure of individual differences in cognitive
performance and the explanation of the etiology of these differences are
two major themes within differential psychology. Both are closely
connected to advances in statistics and psychometrics (c.f., Jensen,
1998; Kovacs & Conway, 2016; Mackintosh, 2011; van der Maas, Kan,
Marsman, & Stevenson, 2017). The first factor analysis, for instance,
was carried out on scholastic achievement data and concerned an in-
vestigation of the correlational structure among individual differences
in subjects as varied as Classics, French, English, Math, Pitch, and Music
(Spearman, 1904). According to the (single) common factor model that
Spearman devised, the variance in each of these cognitive measures
could be described as partly shared among all observed variables and as
partly unique to the measure (see Fig. 1a). Spearman's explanation of
this structure was that all observed variables (i.e. the subjects' scores)
were influenced by two kinds of unobserved sources (causes) of var-
iance: (1) a single (unitary) source of variance with common effects,
dubbed ‘g’, which stands for general intelligence or general cognitive
ability, and (2) a variety of sources of variance that were unique to each
observed variable.

Once broader sets of cognitive variables were analyzed, the single
common factor model transpired as unsatisfactory, due to the presence
of residual positive correlations among the observed variables (Burt,

1909; Burt, 1911). Consequently, in order to accommodate multiple
factors of intelligence, more elaborated factor analytic techniques were
developed (Burt, 1909, 1911; Holzinger & Swineford, 1937; Schmid &
Leiman, 1957; Thurstone, 1931). The development of orthogonal and
oblique rotation (Thurstone, 1947) highlighted that the hypothesis of
multiple independent common sources of intelligence was also pro-
blematic, as orthogonal model-implied correlation structures did not
match observed correlation structures either. Oblique first order factor
models, in which factors are allowed to correlate, provided better
matches. Next, in order to explain the structure among the correlations
among those factors, higher order factor modeling was introduced
(Schmid & Leiman, 1957). In addition, confirmatory techniques were
developed (Jöreskog, 1967; Jöreskog & Sörbom, 1989), which provided
the opportunity to compare factor models statistically and so also the
means to distinguish between competing factor theoretical explanations
of the correlation structures.

Whereas Spearman's single common factor model of intelligence
was relatively soon discarded as providing a satisfactory description of
the structure of intelligence (Burt, 1909), the advances in psychometric
modeling retained Spearman's hypothesis of an underlying general
factor of intelligence, so that more than a century later ‘g’ still plays a
major role in mainstream psychometric theories of human psycho-
metric intelligence (Gottfredson, 2016). Indeed, expert consensus dic-
tates the “given” that the structure of psychometric intelligence can be
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arranged hierarchically, with a general factor at the apex and less broad
factors arrayed below (Carroll, 2003; Jensen, 1998; Johnson, Bouchard
Jr, Krueger, McGue, & Gottesman, 2004; Neisser et al., 1996; Schneider
& McGrew, 2018). This interpretation is also given to the bi-factor
models in which higher order factor models are nested, but which some
prefer over those higher order models (e.g., Gignac & Watkins, 2013).
We note that from a descriptive (statistical) point of view bi-factor
models may tend to fit better, but also that from an explanatory (sub-
stantive theoretical) perspective, a bifactor model of intelligence is
considered unsatisfactory (e.g., Jensen, 1998; Hood, 2008). Decisions
as to which model to adopt as a the best model should rely on both fit
and theory, not on fit itself (Morgan, Hodge, Wells, & Watkins, 2015;
Murray & Johnson, 2013). In other words, theory drives, fit assists.

Possibly this is one reason that the substantial interpretation of the
general factor of intelligence remains unsettled (Carroll, 2003; Horn,
1998; Nisbett et al., 2012; Schneider & McGrew, 2018), hence despite
the wide acceptance of the possibility to extract such a factor. Indeed,
the nature of the general factor persists as a topic of heated debate, and
one with renewed attention (Bartholomew, Deary, & Lawn, 2009;
Kovacs & Conway, 2016). This debate may be summarized as follows.
Firstly, provided the general factor represents indeed a single, unitary
source (cause) of common variance, the question remains which one. Is g
‘mental energy’, as Spearman (1927) himself suggested? Or is it, for
instance, abstract reasoning ability (Gustafsson, 1984), working
memory capacity (Kyllonen & Christal, 1990), neural plasticity
(Garlick, 2002), or the efficiency of mitochondrial functioning (Geary,
2018)? Secondly, that the general factor represents a single, unitary
source of variance is not a given, but a hypothesis, which – like any
other scientific hypothesis – requires empirical scrutiny.

In this regard, the results of other (non-psychometric) lines of re-
search are of importance. These include, among others, educational
science, sociology, (neuro)biology, and genetics. Also within these lines
statistical and psychometric modeling has added value, as the following
examples clarify. Cortical thickness and (total, grey, and white matter)
volume are well-known neurobiological correlates with intelligence (for
an overview of biological correlates, see Jensen, 1998), but with help of
more advanced (structural equation) modeling (SEM) one can test
competing hypotheses about the way such variables may have impact
(Kievit et al., 2012). Similarly, family studies and later molecular ge-
netic studies have shown that IQ and g are substantially heritable (see
Plomin & von Stumm, 2018, for a recent overview) and that the same
holds for the many brain correlates of intelligence (Hill et al., 2018;
Plomin & von Stumm, 2018). Again with the help of SEM, one can test
competing hypotheses about how genetic and environmental influences
may have their effects (Neale & Cardon, 1994). It allows one to in-
vestigate, for instance, if genetic and environmental influences are
mediated by a latent factor (e.g., g) or that they more likely follow
independent pathways. Such research is all but trivial, because viola-
tion of assumptions concerning the etiology of the phenotype decreases
the power to detect genetic variants (van der Sluis, Posthuma, & Dolan,

2013). Genetics and statistical modeling can thus inform each other
(Franić et al., 2013; Grotzinger et al., 2018). More generally, both
psychometric and non-psychometric lines of research are necessary to
understand the concept of intelligence and their integration is wel-
comed.

The essence of statistical modeling and model selection (Kline,
2015) is the combination of Popperian logic (Popper, 2005) and Oc-
cam's razor or ‘the law of parsimony’. That is, hypotheses can never be
proven, but they can be disproven and competing hypotheses can be
rejected for being too complex or too simplistic (all else equal). This
may thus favor the one hypothesis over the other. In this regard, out-
comes of recent studies using bivariate latent change models (McArdle
& Hamagami, 2001) on cognitive developmental data (Hofman et al.,
2018; Kievit et al., 2017) are relevant to the debate concerning the
status of g, as they favored the so-called mutualism model of in-
telligence (van der Maas et al., 2006; see discussion section) over the g
hypothesis. In the words of Kievit et al., 2017:

[A] mutualism model, which proposes that basic cognitive abilities
directly and positively interact during development, provides the
best account of developmental changes. Individuals with higher
scores in vocabulary showed greater gains in matrix reasoning and
vice versa. These dynamic coupling pathways are not predicted by
other accounts and provide a novel mechanistic window into cog-
nitive development. (p. 1).

In brief, the mutualism model of intelligence is a model of cognitive
development that was inspired by research in ecosystem modeling,
where the dynamics between variables are due to reciprocal causation.
The key idea is that such reciprocal causation also occurs among cog-
nitive abilities during their development.

As a formal model, the mutualism model describes intraindividual
change (growth) in a given cognitive ability as a function of both (1)
autonomous growth, i.e., growth that does not dependent upon other
cognitive abilities, and (2) growth due to the influence of the devel-
opment of other cognitive abilities. The autonomous function is as-
sumed to follow a logistic shape (although this assumption is not cru-
cial). This shape reflects, firstly, the idea of rapid initial growth, and,
secondly, that of eventual slowing down due to the presence of limiting
capacities. Unlike in g theory, these capacities are (or can be) con-
sidered statistically independent. Yet, because the growth of a given
cognitive ability is not only limited by its own, specific limiting capa-
city, but is also affected by the level of other cognitive abilities (through
the dynamical interactions), and thus by their corresponding limiting
capacities, the cognitive abilities themselves become positively corre-
lated throughout the course of their development.

Mutualism thus provides an alternative explanation of the positive
manifold, i.e. the robust finding and Spearman's original observation
that cognitive performance measures correlate positively with another.
The strength of the mutualistic interactions between cognitive abilities
can be represented in an interaction matrix, M (see Fig. 1b, for an

g 

Math Classics French English Pitch Music 

.96     .87     .81   .74   .69      .65 

Example Mutualism Matrix M 
Classics French English Math Pitch Music 

Classics 0.00 0.28 0.21 0.17 0.14 0.13 
French 0.28 0.00 0.15 0.13 0.11 0.10 
English 0.21 0.15 0.00 0.11 0.10 0.09 
Math 0.17 0.13 0.11 0.00 0.09 0.08 
Pitch 0.14 0.11 0.10 0.09 0.00 0.07 
Music 0.13 0.10 0.09 0.08 0.07 0.00 
Residual variance 0.21 0.34 0.44 0.54 0.61 0.65 

Fig. 1. (a) Spearman's (1904) single common factor model (left panel), and (b) a mutualism model, M, that predicts the exact same correlation matrix (right panel).
Note: Both concern solutions obtained in OpenMx using Maximum Likelihood. Matrix M contains regression weights, see main text.
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example). If these strengths are assumed equal over individuals, and
provided the systems near their equilibrium, the values in this matrix
represent regression weights of the direct influences of cognitive abil-
ities on each other (van der Maas et al., 2006; see also Appendix).

As has been noted (van der Maas et al., 2017), mutualism – the idea
of dynamic coupling between cognitive abilities – aligns neatly with
some of the latest and most rapid developments in psychometrics,
namely psychometric network modeling (Borsboom, 2008; Epskamp,
Cramer, Waldorp, Schmittmann, & Borsboom, 2012). To date, psycho-
metric network analyses have been carried out on indicators of de-
pression (Madhoo & Levine, 2016; van Borkulo et al., 2015), schizo-
phrenia (Levine & Leucht, 2016; van Rooijen et al., 2018), autism
(Ruzzano, Borsboom, & Geurts, 2015), loneliness (Fried et al., 2015),
and many more constructs related to psychopathology (for a review, see
Fried et al., 2017). Although it was psychopathology that has motivated
this advancement (Borsboom, 2008; Borsboom & Cramer, 2013), this
type of analysis is gaining popularity in other fields as well, including
personality (Costantini et al., 2015), attitudes (Dalege, Borsboom,
Harreveld, & van der Maas, 2017), interests (Sachisthal et al., 2018),
and also cognition and intelligence (Golino & Demetriou, 2017; van der
Maas et al., 2017).

The key differences between traditional factor analysis and psy-
chometric network analysis once applied to cognitive data are sum-
marized in Table 1. It shows that one may conceptualize cognitive
abilities as being related to each other directly, rather than through
common, unobserved variables on which they depend. Indeed, the
connections between any pairs of cognitive variables can be modeled
using (full or full partial) correlations only, hence without postulating
any latent factors. In a psychometric network model, the extent to
which a specific cognitive ability connects with the remaining abilities
in the network is allowed to vary both by the magnitude and the
number of connections with the other cognitive abilities in the system.
This implies that clustering can occur, that some variables may
(therefore) share more common variance than others, and that net-
works can thus yield similar (even identical) model implied variance-
covariance structures as factor models, albeit not necessarily so. Yet,
the explanation of this hierarchical structure is thus radically different.

Within the field of intelligence, psychometric network modeling has
initially been regarded as an exploratory means to help determine the
number of factors in cognitive datasets (Golino & Demetriou, 2017).
This is indeed a useful application. Yet, the potential of network ana-
lysis reaches further, because factor models can be regarded as network
models in which the values of the pathways (edges) are constrained by
the latent variables. In other words, factor models are nested within
network models. The implementation of psychometric networks within

the confirmatory framework may so be of help in distinguishing be-
tween factor analytical and network theories of intelligence, namely by
comparing the fit of factor models to the fit of network models (and
associated mutualism models). Other applications of confirmatory
network modeling may lie in the comparison of networks among each
other and the cross-validation of networks, e.g. ones that were estab-
lished using exploratory network analysis in previous studies. This
would parallel the transition from exploratory factor modeling to con-
firmatory factor modeling. The aim of the current paper is to evaluate
such utility. To this end, we provide three applications of confirmatory
network analysis using independent datasets, and which are all well-
researched in the field of cognition and intelligence. An additional si-
mulation study backs up the validity of the approach.

All confirmatory factor and network analyses were carried out in R
(R Core Team, 2018) version 3.5.1 (Windows 10) using structural
equation modeling package OpenMx version 2.11.5 (Boker et al., 2011)
with Maximum Likelihood (ML) as estimator of the parameters. R codes
are published on GitHub (https://github.com/kjkan/nwsem).

2. Application 1

An often-used approach to test competing factor analytical theories of
intelligence against each other is to investigate published correlation
matrices of psychometric intelligence batteries. The research into the
factor structure of the Wechsler Adult Intelligence Scale - Fourth Edition
(WAIS-IV, Wechsler, 2008), to which some journals have devoted special
issues (Tobin, 2013), constitutes a good example. On the basis of the
correlations among the WAIS-IV subtests, some researchers have endorsed
second order (g) factor models, albeit different ones (c.f., Wechsler, 2008;
Benson, Hulac, & Kranzler, 2010; Canivez & Kush, 2013; Weiss, Keith,
Zhu, & Chen, 2013), while others have rejected such models, in favor of an
oblique first order (hence non-g) factor model (e.g., Ward, Bergman, &
Hebert, 2012). Yet others have maintained that both should be rejected in
favor of a bi-factor model (Gignac & Watkins, 2013). However, as men-
tioned, from a explanatory standpoint bifactor models of intelligence are
considered unsatisfactory (Jensen, 1998; Hood, 2010).

In the light of competing explanations of the structure, the question
remains if (theoretical satisfactory) factor models should be preferred
over the network conceptualization of intelligence. To demonstrate that
the implementation of psychometrics network can help answering this
question, we extended the series of WAIS-IV analyses and compared the
fits of (a) a measurement model, (b) a higher order g factor model, and
(c) a non-saturated psychometric network model, with (d) a saturated
model (interpreted as a network in which all variables connect directly
to each other).

Table 1
Differences between traditional factor analysis and psychometric network analysis.

Difference Traditional factor analysis Psychometric network analysis

Formulation (Hierarchical) factor structure System of inter-relating variables
Terminology Observed variables

Correlations between observed variables
Nodes (vertices)
Edges
A network is defined by a set of nodes connected by a set of edges of
varying degrees of importance.

Preferred structure A latent variable ‘general factor’ is at the apex.
More specific factors are arranged below.

By partial correlations.
Two subtests are related, and that relation cannot be due to any of the
other variables in the network.

Subtest level interpretation Each subtest has one or more standardized ‘factor loadings’ (regression
coefficient on the factors in the model) ranging from −1 to 1. These
loadings determine the extent to which a factor influences individual
differences in subtest scores.

Each node or vertice (observed variable) is indexed by ‘centrality’.
Centrality indices identify ‘the most fundamental variables’ in the
network

Subtest cluster
interpretation

The labels of the latent factors are derived from the subtest labels and
the way the observed variables load on the factors.

Labels of observed clusters (‘communities’) are derived from the way the
observed variables group in the network.

Concrete example Vocabulary and performance on mathematical tasks are correlated due
to their common dependency on the variable g, which has not been
observed, but is hypothesized to exist.

Any partial correlation between vocabulary and performance on
mathematical tasks denotes a direct dependency, i.e. after taking into
account possible shared dependencies on the other variables in the
network.
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2.1. Method

2.1.1. Participant sample
The sample consisted of 1800 individuals (aged 16 to 89 years old)

who participated in the standardization of the WAIS–IV and who
completed all 15 subtests of the battery (Wechsler, 2008).

2.1.2. Measures
The subtests were: (1) Similarities (SI), (2) Vocabulary (VC), (3)

Information (IN), (4) Comprehension (CO), (5) Block Design (BD), (6)
Matrix Reasoning (MR), (7) Visual Puzzles (VP), (8) Figure Weights (FW),
(9) Picture Completion (PC), (10) Digit Span (DS), (11) Arithmetic (AR),
(12) Letter-Number Sequencing (LN), (13) Symbol Search (SS), (14) Coding
(CD), and (15) Cancellation (CA). For detailed information concerning
the psychometric properties of the WAIS-IV, we refer to its Technical
and Interpretative Manual, which also contains the correlation matrix
among the subtest scores (Wechsler, 2008, Table 5.1, p.62).

2.1.3. Statistical approach
2.1.3.1. Factor analysis. The following confirmatory factor models were
fitted: (1) a measurement model, i.e. an oblique first order-four-factor
model which includes Verbal Comprehension (indicated by SI, VC, IN,
and CO), Perceptual Reasoning (indicated by BD, MR, VP, FW, and PC),
Working Memory (indicated by DS, AR, and LN), and Processing Speed
(indicated by SS, CD, and CA) as the four correlated latent variables; (2)
a second order hierarchical factor model that explained the correlation
between these latent variables by postulating a shared dependency of
these variables on a second order latent variable, ‘g’.

2.1.3.2. Psychometric network analysis. An exploratory psychometric
network was established following the guidelines and
recommendations (Costantini et al., 2015; Epskamp, Borsboom, &
Fried, 2018) that are used widely in network psychometrics. This
involved the computation of a Gaussian Graphical Model (GGM) of the
full partial correlation matrix (the use of full partial correlations rather
than Pearson correlations implies that any connection between two
variables cannot be attributed to any of the other variables in the
model). This can be considered the saturated network model.
Subsequently, by means of qgraph's built-in unregularized GGM
model search procedure, the network model was adjusted for the
presence of false positive edges, i.e., partial correlations between
pairs of observed variables that probably do not differ from 0. The
result was a more sparse (hence nonsaturated) network model.

2.1.3.3. Networks as structural models. Package qgraph is under
development and does not yet provide many of the commonly used
fit indices. However, because the matrix algebraic properties of
psychometric networks have been explicated (Epskamp, Rhemtulla, &
Borsboom, 2017; see also Appendix A), it is possible to obtain these
indices by implementing the networks in OpenMx (Boker et al., 2011),
which is a structural equation R package that uses matrix algebraic
expressions.

Since a full network model is a saturated model and will thus yield
perfect fit, this type of network modeling might thus not be the most
interesting from a theoretical perspective. Yet those models can be
considered as the null-models against which factor models are tested.
As structural equation software allows for (equality and inequality)
constraints, specific parameters can be set to 0 (either a priori or post
hoc). In OpenMx this utility of SEM can be applied to elements in the
partial correlation matrix, so that the fit of sparser, hence theoretically
more interesting networks can be assessed. With the purpose to de-
monstrate this utility, we implemented in OpenMx the network that
resulted from the exploratory analysis above. Ideally, in a true con-
firmatory analysis, one would have specified the network a priori (see
Applications 2 and 3).

2.1.3.4. Model selection by model comparison. Model selection involves
multiple steps: (1) Model testing, (2) model fitting, and (3) relative fit
comparison, and in that order (Kline, 2015). The first step usually
consists of a (central or noncentral) χ2 test that is applied to all the
models under consideration. As a statistical test, the χ2 assesses
whether there is a significant discrepancy between the observed and
model implied variance-covariance matrices, where significant χ2

values represent a significant discrepancy. The χ2 statistic can also be
used as a measure of fit (in step 2): A nonsignificant result implies a good
model fit, i.e. a satisfactory reduction of the data, because the model
could not be rejected as constituting the data generating mechanism. As
a measure of fit, the outcome of the χ2 test is sensitive to sample size, so
that a significant result is not necessarily indicative of a ‘bad’ fit; the
model may still be considered to summarize the data well enough.
Because of this sensitivity it is common practice in factor analysis and
structural equation modeling to judge models (also) according to
alternative fit indices.

Per the recommendations in OpenMx (Boker et al., 2011), we ob-
tained in our analyses: (1) The Non-normed Fit Index (NNFI), which
represents the proportion of total covariance among the observed vari-
ables that is explained by a target model with the null model as a
baseline model; (2) the Comparative Fit Index (CFI), which is based on
the non-central χ2 distribution, and accounts for sample size; and (3) the
Root Mean Square Error of Approximation (RMSEA) together with its
associated 95% Confidence Intervals (CI) and P-values. The RMSEA es-
timates the extent to which the model, with unknown, but optimally
chosen parameter values would fit the population covariance matrix if it
were available. The following (standard) cut-off values were applied in
order to conclude a model fits the data well: NNFI > 0.90 and CFI >
0.93. RMSEA values of < 0.01, < 0.05, and < 0.08 were considered to
reflect excellent, good, and acceptable fit, respectively (Byrne, 1994; Hu
& Bentler, 1999; MacCallum, Browne, & Sugawara, 1996).

To assess relative fit (step 3), the log likelihood is obtained, which is
a maximized likelihood function expressed negatively, such that nested
models can be compared by means of log-likelihood ratio testing
(Wilks, 1938). Like the χ2 test in step 1, this log-likelihood ratio test is
also sensitive to sample size, however. For non-nested models a true
statistical test is not available, but these (and nested models as well) can
be compared using fit criteria such as Akaike's information criterion
(AIC; Burnham & Anderson, 2004), the Bayesian information criterion
(BIC; Schwarz, 1978), or adjusted versions of the latter, e.g. the sample
adjusted BIC (SABIC; Sclove, 1987). These fit criteria are all functions of
both the log-likelihood and the number of freely estimated parameters
in the model. The AIC estimates the relative quality (information loss;
where lower values represent a better fit). The two Bayesian criteria
extend the AIC by penalizing the number of parameters more strongly.

2.2. Results

The model fitting results are provided in Table 2. This table high-
lights that at the nominal significance level of α = 0.05, the χ2 statistic
would reject all models under consideration, but also that according to
the alternative fit measures, the fits of the measurement model and the
higher order g factor model were acceptable, and the fits of the network
model good. In line with those results, the relative fit information cri-
teria (AIC, BIC, SABIC) indicated that the sparse network model yielded
better relative fits than the factor models, hence even after penalizing
for model complexity.

On the basis of those results, we would come to the conclusion that
the g model deserved rejection in favor of the network model. A risk,
however, is that we have arrived at an overparameterized solution.

2.3. Validation by simulations

To investigate if psychometric network modeling (through R
package qgraph) yielded an overparameterized solution, and showed
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the better fit for that reason, we conducted an additional Monte Carlo
simulation study.

2.3.1. Method
Multivariate normal sample data were generated according to the

observed WAIS-IV correlation matrix (saturated model) as well as ac-
cording to the factor and network models described above. Next, all
these models were fitted on all generated sample data sets, after which
we determined in each sample which model was selected by the AIC,
BIC and SABIC as the best model. So, for instance, in one series of si-
mulations we generated sample data according to the network model
above and fitted in each of these samples (1) this network model, (2)
the measurement model, and (3) the higher order g factor model. In a
parallel analysis, we did not fit the original network, but derived - for
each sample separately - a new network through qgraph and fitted that
network on the data. This was repeated for situations in which the
higher order g model, the measurement model and the saturated model
were the true models.

A single series consisted of 1000 runs. The sample size in each run
equaled the original WAIS-IV sample size (n= 1800, see above). The
sample size and model implied variance-correlation matrices were used
as input to the multivariate normal simulation function ‘mvnorm’ in R
package MASS (Ripley, 2002). Means remained unmodeled and were
set at 0 (in the population).

Apart from the relative fit criteria, we obtained the outcomes of the
χ2 test and the alternative fit indices described above. The χ2 test was
expected to yield approximate uniform distributions for the true model,
so that at a nominal significance level of α = 0.05, the true model
would be rejected in about 5% of the cases (the Type I error frequency).
The χ2 test was furthermore expected to not always reject competing
models (leading to Type II errors). If overparameterization would occur,
the AIC, BIC, and SABIC were expected to favor the true model in
general (but perhaps not in every single case).

2.3.2. Results
The χ2 test and fit criteria performed as expected. When the true

model was fitted, P-values pertaining to the χ2 test statistic of the true
model were indeed approximately uniformly distributed. If a wrong
model was fitted, P-values were generally skewed to the right. An ex-
ception was when the true model was the higher order g model while
the measurement model was fitted to the data. In that case, P-values
were also approximately uniformly distributed (in line with the nest-
edness).

The results of model selection procedure are presented in Table 3.
They highlight that the fit criteria performed well and picked out the
true model - i.e. the higher order g model, measurement model or
network - in the large majority of cases. So, for example, when the true
model was a higher order factor model and the measurement model and
network model would thus also provide a solution, the latter two were
generally (correctly) rejected, because of their unnecessary complexity.

When the unmodeled structure (saturated model) was the input, the
AIC identified the saturated model as the true data generating me-
chanism, but the BIC and SABIC, which punish stronger for complexity,
then suggested the nonsaturated network to be the model of preference.
This signified that the network model (df = 71) implied matrix and the

observed WAIS matrix were close. Since the network model clearly
replicated over each independent sample of the population, that close
fit was unlikely due to overparameterization.

2.4. Conclusion

With respect to the description of the WAIS IV variance-covariance
structure, we can conclude that the network model provided a better
description than the g model. From a substantive perspective, we may
conclude that the result provides evidence against g in favor of a net-
work conceptualization of intelligence. This in turn fits with the mu-
tualism theory of intelligence. Hence between the two explanations - the
g hypothesis and the mutualism hypothesis - mutualism is the preferred
one.

3. Application 2

Application 1 demonstrated the key advantage of implementing a
network as a structural equation model, namely the possibility to obtain
commonly used fit statistics. Application 2 aims to demonstrate a
second advantage, namely the opportunity to cross-validate networks,
extending psychometric network analysis with truly confirmatory
techniques. Similar to investigations in which a previously established
factor model is tested in other (sub)samples, networks established in the
one (sub)sample - e.g. by exploratory network analysis in qgraph - can
now be subjected to statistical testing in other (sub)samples.

3.1. Method

3.1.1. Participant sample
The total sample consisted of 301 seventh and eighth grade children

who participated in a study conducted by Holzinger and Swineford
(1939).

3.1.2. Measures
The original, full dataset contained scores on 26 tests, which aimed

to indicate the children's Verbal ability, Mathematical-ability, Spatial
ability, Memory capacity, and Mental speed. In the literature, a smaller
subset of 9 variables is used more widely, e.g. in SEM-teaching material.
This subset is freely available in multiple SEM programs, including
LISREL (Jöreskog & Sörbom, 1989), Mplus (Muthén & Muthén, 2012),
and AMOS, (Arbuckle, 2014) as well as in R SEM packages OpenMx
(Boker et al., 2011) and lavaan (Rosseel, 2012). The subtests that
comprise this subset include Visual perception (VIS), Cubes (CUB), Lo-
zenges (LOZ), Paragraph comprehension (PCM), Sentence completion
(SCM), Word meaning (WM), Speeded addition (SA), Speeded counting of
dots (SCD), and Speeded discrimination straight and curved capitals (SDC).

3.1.3. Statistical approach
In short, the sample was split randomly in two subsamples (using R

function ‘sample’). This was possible since the Holzinger and Swineford
data concerned raw scores rather than a correlation or covariance
matrix. Next, on the basis of the covariance matrix in Subsample 1 an
exploratory psychometric network model was extracted using the same
procedure as in Application 1. Subsequently, this network was fitted on

Table 2
Showing the fit statistics of obtained in Application 1 (analysis of the Wechsler Adult Intelligence Scale – Fourth Edition).

Model -2LL χ2 df P AIC BIC SABIC CFI NNFI RMSEA CI95l CI95u PRMSEA

Saturated model 11,568.16 0 0 1.00 240.00 899.47 518.23 1.00 1.00 0.00 – – –
Measurement model 12,464.85 896.70 99 < 0.01 968.70 1.166.54 1.052.17 0.95 0.93 0.07 0.068 0.079 0.00
Second order g-model 12,490.71 922.56 101 < 0.01 990.56 1.177.41 1.069.39 0.95 0.93 0.07 0.068 0.079 0.00
Network 11,698.10 129.94 71 <0.01 257.94 609.65 406.33 1.00 0.99 0.02 0.014 0.028 1.00

Note. Abbreviations: -2LL: minus 2 times the log-likelihood, df: degrees of freedom, CI95l and CI95u: lower and upper boundaries of the 95% confidence interval of
the RMSEA value; PRMSEA: the P-value associated with this interval. Preferred model bold faced and underlined.
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the (raw) data in Subsample 2.
In addition to the network model, and in line with the procedure

followed in Application 1, we also fitted a measurement model and
higher order g factor model in the two subsamples. The measurement
model included the three (correlated) first order factors Verbal Ability
(indicated by the three verbal tests PCM, SCM, and WM), Spatial Ability
(indicated by the three spatial tests VIS, CUB, and LOZ), and Speeded
addition (indicated by the three speed tests SA, SCD, and SDC). In the
second order factor model the correlations between the three first order
factors were explained by a second order general factor ‘g’. The models
were judged on the basis of the same fit criteria as in Application 1. We
note that the measurement model and g factor model were expected to
yield the same results as the measurement model, as the number of first
order factors was only three.

3.2. Results

The results of Application 2 are summarized in Table 4, from which
it can be obtained that they corroborated the results from Application 1:
In subsample 1 the model fits of the measurement model and the g
model were acceptable and the network model fitted well. In subsample
2; the network model fitted not as well as in subsample 1, but the fits
were still acceptable and according to the relative fit indices the net-
work model still outperformed the g model.

3.3. Conclusion

As illustrated, confirmatory network modeling provides a means to
cross-validate networks. In the example above, a network established in
the one subsample fitted in the next subsample, meaning that the net-
work replicated over the subsamples; the skeleton of the network could
thus be assumed invariant over the subsamples. Not only in the sub-
sample from which the network was extracted, but also in the sub-
sample in which the network was cross-validated, the network out-
performed the factor models.

Although the skeleton replicated, parameter values may have not. In
Application 3, we illustrate how to test if (two or more) networks can be
also be considered invariant in their parameter values. This utility is first
of all of interest for psychometric network modelers, but can also be
conceived of providing additional tests within research into measure-
ment invariance.

4. Application 3

Apart from illustrating the possibility to test for parameter in-
variance, we also aimed to address a more substantive question, namely
if there are any changes in the (factor or network) structure during
cognitive aging.

Table 3
Showing the results of the simulation study, i.e. the frequencies the true model was chosen according to the AIC, BIC, and SABIC.

Preferred model Preferred model

Higher order Measurement True network Saturated Higher order Measurement Extracted network Saturated

True model Criterion

Higher order AIC 86.7% 13.3 % 0% 0% 86.7% 13.3 % 0% 0%
BIC 99.8% 0.2% 0% 0% 99.8% 0.2% 0% 0%
SABIC 98.2% 1.8% 0% 0% 98.2% 1.8% 0% 0%

Measurement AIC 0.1% 99.9% 0% 0% 0.1% 99.9% 0% 0%
BIC 8.2% 91.8% 0% 0% 8.2% 91.8% 0% 0%
SABIC 0.9% 99.1% 0% 0% 0.9% 99.1% 0% 0%

Network AIC 0% 0% 100% 0% 0% 0% 100% 0%
BIC 0% 0% 100% 0% 0% 0% 100% 0%
SABIC 0% 0% 100% 0% 0% 0% 100% 0%

Saturated AIC 0% 0% 0% 100% 0% 0% 38.1% 61.9%
BIC 0% 0% 100% 0% 0% 0% 100% 0%
SABIC 0% 0% 98.6% 1.4% 0% 0% 100% 0%

Table 4
Showing the fit statistics of obtained in Application 1 (analysis of the Wechsler Adult Intelligence Scale Fourth Edition).

Fit in Subsample 1

Model -2LL χ2 df P AIC BIC SABIC CFI NNFI RMSEA CI95l CI95u PRMSEA

Saturated model 3722.31 0.00 0 1.00 3830.31 3992.89 3821.99 1.00 1.00 0.00 – – –
Measurement model 3761.68 39.36 24 0.02 3821.68 3912.00 3817.05 0.96 0.94 0.07 0 0.107 0.229
Higher order g model 3761.68 39.36 24 0.02 3821.68 3912.00 3817.05 0.96 0.94 0.07 0 0.107 0.229
Network model 3742.77 20.46 20 0.43 3810.78 3913.13 3805.53 1.00 1.00 0.01 0 0.079 0.794

Refit in Subsample 2

Model -2LL χ2 df P AIC BIC SABIC CFI NNFI RMSEA CI95l CI95u PRMSEA

Saturated model 3609.51 0.00 0 1.00 3717.51 3880.44 3709.54 1.00 1.00 0.00 – – –
Measurement model 3684.44 74.93 24 0.00 3744.44 3834.96 3740.01 0.90 0.84 0.12 0.083 0.155 0.000
Higher order g model 3684.44 74.93 24 0.00 3744.44 3834.96 3740.01 0.90 0.84 0.12 0.083 0.155 0.000
Network model 3646.76 37.25 20 0.01 3714.76 3817.35 3709.75 0.96 0.94 0.08 0.025 0.119 0.127

Note. Abbreviations: -2LL: minus 2 times the log-likelihood, df: degrees of freedom, CI95l and CI95u: lower and upper boundaries of the 95% confidence interval of
the RMSEA value; PRMSEA: the P-value associated with this interval.
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4.1. Method

4.1.1. Participant sample
The sample consisted of individuals who participated in the Midlife

in the United States (MIDUS) national study (Lachman, Agrigoroaei,
Tun, & Weaver, 2014). At the start of this large-scale study the number
of participants (then aged 24 to 75) equaled 7100 (Brim, Ryff, &
Kessler, 2004). The cognitive performance measures were collected
9 years later (together with a rich assortment of other variables, see
Lachman & Tun, 2008; Tun & Lachman, 2006; Tun & Lachman, 2008).
These cognitive scores pertain to 3779 individuals.

To test for possible age related changes, the sample was divided into
age groups, based on established age cut-offs used in the literature
(Crowley et al., 2016). The group younger consisted of participants of
age 35 to 54 (N= 1876), the group middle age 55 to 64 (N= 1000) and
older 65 or older (up to 86) (N= 903).

4.1.2. Measures
Measures comprised the scores on the seven subtests of the Brief Test

of Adult Cognition by Telephone (BTACT; (Lachman et al., 2014). These
subtests assess (I) immediate recall; (II) delayed recall; (III) working memory
span (backward digit span); (IV) verbal fluency (category fluency); (V)
inductive reasoning (completing a pattern in a series of 5 numbers); (VI)
processing speed (the number of digits produced by counting backward
from 100 in 30 s); and (VII) attention switching and inhibitory control (by
the Stop and Go Switch Task; Tun & Lachman, 2008).

For detailed information concerning the psychometric properties of
the BCTAT, we refer to Lachman et al. (2014). In short, the reliability of
the BCTAT has been established by means of parallel-forms and test-
retesting; the concurrent validity has been based on correlations with a
full-test face-to-face assessment and the external validity on the corre-
lations between BCTAT scores and demographic factors and indices of
health; the construct validity has been investigated by confirmatory
factor modeling. This factor modeling revealed two correlated factors
(r= 0.34), which are commonly interpreted as Episodic memory (in-
dicated by immediate and delayed word recall) and Executive func-
tioning (indicated by the remaining subtests).

4.1.3. Statistical approach
The statistical approach is detailed below, but can be summarized as

follows: For each age group, we first derived descriptive statistics, in-
cluding means, variances, and correlation matrices. As these have not
been published previously they are presented in Table 5. Further ana-
lysis involved again the fit of factor models and psychometric network
models. Next, these models were implemented in a multigroup fashion.
Provided models were tenable in each age group, we tested for para-
meter invariance over the age groups by introducing equality con-
straints. To assess fit, the same indices were used as in Applications 1
and 2.

4.1.3.1. Factor analysis. Following Lachman et al. (2014), we fitted in
each subsample a measurement model, i.e. an oblique first order-two-
factor model with the factors episodic memory and executive
functioning as two correlated latent variables. A second order factor
model was not fitted since the number measurement model was only
two, leaving this model unidentified. In addition, if we would identify it
by constraining the second order loadings to be equal, this would yield
the exact same fit as the fit of the measurement model.

4.1.3.2. Network analysis. In the group younger we extracted a network
model using the same guidelines as in Application 1 and 2.
Subsequently, this network was fitted in the groups middle and older,
after which we obtained the fit statistics of these unigroup models.

4.1.3.3. Model comparison. Next, the aim was to specify the factor
model and the network model in a multigroup fashion, after which we

tested if parameters (factor loadings in the factor model, edges in the
network model) could be assumed equal over the age groups.

4.2. Results

4.2.1. Descriptive statistics
The visualization of the full partial correlation networks (Fig. 2)

showed that Lachman et al., 2014 ‘s distinction between episodic
memory and executive functioning appeared meaningful, since im-
mediate recall and delayed recall clustered more strongly together than
with the other measures.

4.2.2. Model fitting results
As the modeling statistics in Table 6 show, the fit of the measure-

ment model was acceptable in the group younger, inconclusive in the
group middle, and not acceptable in the group older. This result made
that testing the assumption of equal factor loadings would not have any
meaning. The fits of the network model established in the group younger
were good in all three groups. The information criteria (AIC, BIC,
SABIC) corroborated these findings. They revealed better relative fit for
the network model, not only in group younger from which the network
was extracted, but also in the groups middle and older.

According to the multigroup modeling results edges could not be
constrained without a significant reduction in fit: Δχ2 (28) = 60.60,
P < 0.001. So although configural network invariance was established,
the stricter assumption of parameter invariance needed rejection.

From a substantive perspective, we conclude that over age (or co-
horts) a single network skeleton describes the structure among the
variables best. Yet, there are age changes (or cohort differences) in at
least one of the edges.

5. Discussion

We fitted multiple confirmatory factor analytic and psychometric
network models on three independent, well-researched datasets. Our
results firstly highlight the utility of extending the kind of psychometric
network analysis (Borsboom, 2008; Epskamp et al., 2012) that rapidly
gained popularity in the fields of psychopathology (Fried et al., 2017)
and entered recently the field of cognition and intelligence (Golino &
Demetriou, 2017; van der Maas et al., 2017). As demonstrated, the
implementation of network models within a confirmatory (structural
equation) modeling framework (Boker et al., 2011; Epskamp et al.,
2017) permits, for instance, (1) the comparisons among factor and
networks models, which can assist in the comparison of a priori theo-
retically driven models, (2) the comparison of networks over groups,
and (3) the combination of these two.

From a descriptive viewpoint concerning individual differences in
cognitive performance, the major finding of interest was that the psy-
chometric networks provided better descriptions of the data than pre-
viously established confirmatory factor analytic models. Additional si-
mulations showed this is unlikely due to overparameterization. In view
of substantive theory, our results imply that the hypothesis of an un-
derlying general factor of intelligence is not required in order to explain
the pattern of correlations between the different cognitive performance
measures. More strongly, the current results provide an empirical ar-
gument against g theory (e.g. Jensen, 1998) favoring the mutualism
theory of intelligence (van der Maas et al., 2006). The latter posits that
positive associations between cognitive abilities arise through re-
ciprocal dynamical interaction between those abilities during devel-
opment, and that this is a sufficient explanation.

According to mutualism theory, interactions between any two
cognitive abilities can be direct (either one directional or bidirectional)
and/or indirect (directional or bidirectional). Some of the interactions
may even be zero or negative; as long as the majority of the interactions
is positive, a positive manifold of Pearson correlations can be expected
(van der Maas et al., 2006). The presence of variety in edge strength
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and of sparsity is particularly interesting, as it links to observed hier-
archical organization of intelligence itself, but also to the hierarchical
organization among (brain) variables that related to intelligence (e.g.
Clauset, Moore, & Newman, 2008; Taylor, Hobbs, Burroni, &
Siegelmann, 2015).

We note that we do not argue against a hierarchical con-
ceptualization of intelligence from a descriptive (or constructivist)

perspective. Rather the current results are more consistent with the
notion that such hierarchical organization is the result of dynamical
interaction between the subsystems that underlie cognitive perfor-
mance. In our view, the hierarchy is an emergent property of the system
as a whole. Of importance in future research is first to identify ‘med-
iational nodes’, and, next, to specify how the effects of (non-psycho-
metric) variables are mediated by those nodes. Variables of interest

Table 5
Partial and Spearman's correlation matrices among the Brief Test of Adult Cognition by Telephone (BTACT) tests.

Immediate Delayed Digit Category Number Backward SGST

Recall Recall Span Fluency series counting

Group Younger (age 35–54; n = 1876)

Immediate recall 0.73 0.10 0.07 0.01 0.03 0.01
Delayed recall 0.76 0.07 0.01 0.05 −0.04 0.04
Digit span 0.29 0.28 −0.01 0.19 0.16 0.01
Category fluency 0.19 0.17 0.15 0.20 0.14 0.10
Number series 0.20 0.20 0.31 0.32 0.25 0.07
Backward counting 0.16 0.13 0.29 0.29 0.40 0.31
SGST 0.14 0.14 0.16 0.23 0.25 0.40

Group Middle (age 55–64; n= 1000)

Immediate 0.74 0.09 0.05 0.05 0.07 0.01
Delayed 0.76 0.08 0.02 0.01 −0.05 −0.02
Digit span 0.30 0.27 0.01 0.20 0.10 0.02
Category fluency 0.19 0.15 0.19 0.20 0.22 0.11
Number series 0.23 0.18 0.33 0.37 0.26 0.04
Backward counting 0.19 0.12 0.27 0.41 0.44 0.38
SGST 0.10 0.05 0.15 0.29 0.26 0.48

Group Older (age 65 and older; n = 903)

Immediate 0.73 0.20 0.07 0.05 −0.05 0.11
Delayed 0.78 0.08 0.05 −0.01 0.06 −0.09
Digit span 0.43 0.38 −0.02 0.18 0.06 0.03
Category fluency 0.24 0.22 0.16 0.16 0.13 0.16
Number series 0.24 0.20 0.31 0.30 0.34 −0.05
Backward counting 0.19 0.18 0.23 0.33 0.44 0.39
SGST 0.18 0.11 0.16 0.30 0.21 0.46

Note. To the right, upper triangle consists of partial correlations and lower triangle of Pearson's r correlation coefficients. Statistically significant (P < 0.01) values
underlined for clarity.
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Fig. 2. showing networks by age group using the coordinates of the age group invariant restricted network. Edges were estimated freely within the age groups. The
skeleton is identical over the groups, but parameter values could not be assumed all equal over the groups, so at least 1 pair differs. Note. The edges represent partial
correlations. The thicker the edges, the stronger the partial correlation. Abbreviations: Imm: Immediate recall, Dly: Delayed recall, BDS: Backward Digit Span, CtF:
Category Fluency, NmS: Number Series, BcC: Backward Counting, SGS: Performance on the Stop and Go Switch Task.
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may include, genetic variants and brain correlates, for instance, but also
societal factors, such as education. The combination of non-psycho-
metric and psychometric variables may so shed further light on the
etiology of the hierarchical organization.

Apart from the fact that psychometric network models outperformed
traditional factor models, we obtained additional findings of theoretical
interest. The variance-covariance structure of the MIDUS BTACT could
not be assumed age invariant. This suggests some changes in the variance
covariance structure, hence in factor structure across age (or cohorts). As
the network's skeleton could be assumed invariant, the shift in the values
of edges may denote a shift in interaction strengths across age (or gen-
erations), which then may be result of natural maturation (van der Maas
et al., 2006) or of changes in environmental requirements (Dickens &
Flynn, 2001; van der Maas et al., 2017), for instance.

5.1. Limitations

A limitation of the current analyses was that all data concerned cross-
sectional data, precluding the study of intra-individual differences. To
distinguish optimally between g theory and the mutualism theory, we
therefore advocate the type of longitudinal modeling used by Hofman
et al. (2018) and Kievit et al. (2017). Of additional advantage is that in
these models asymmetries in mutualistic interactions can be studied.
Future research along these lines can be further extended by including
broader sets of cognitive variables (rather than sets of two).

It should also be noted that although we applied network modeling
using confirmatory techniques, (different, competing) a priori theore-
tical network models were not tested. Application 1 in particular must
still be considered as being explorative in nature. In the literature, this
type of structural equation modeling – a utilization that nevertheless
contributes greatly to the clarification and the development of theories
– is referred to as ‘the exploratory mode’ of confirmatory modeling
(Raykov & Marcoulides, 2012). Results always requires replication
across other samples from the same population, so that the overall re-
sults can be considered trustworthy. The reason is that results obtained
from one study are limited generalizable; chance factors may have led
to a particular dataset. Our simulation study showed that the risk of
overparameterization can nevertheless be considered low. Possibly the
risk increases in relatively small samples, so we advance the use of
relatively large samples.

5.2. General conclusion

Overall, the current study promotes confirmatory psychometric
network analysis, in the field of cognition and intelligence in particular,

and in differential psychology in general. Future research along these
lines is warranted in order to distinguish between factor analytical and
network interpretations on the etiology of intra- and interindividual
differences.

With respect to the debate concerning the theoretical status of g, we
conclude the following. We do not exclude the presence of common or
general influences, e.g. of certain genetic variants or environmental
variables like exposure to education. The question to be answered is
more how such effects could have arisen: Are they the result of dyna-
mical reciprocal interactions or are they due to a single mediating
variable g which has never been found to exist? The evidence from the
current series of studies argues clearly against the latter and therefore
against mainstream g theory. They favor the mutualism theory of in-
telligence.
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Appendix A. Appendix

In general, a confirmatory (n-) factor model aims to describe the
observed variance-covariance matrix (among m variables), Σ, as

= +T (LISREL notation; Jöreskog & Sörbom, 1989), where Λ
is the (m× n) matrix containing the factor loadings, Φ the (n× n)
variance-covariance matrix of the n latent factors, and ϴ the (m×m)
variance-covariance matrix of the residuals (of the observed variables).

Psychometric network models aim to describe Σ
as = ( ) 1 (Epskamp, Rhemtulla, & Borsboom, 2016), where Ι
is an (m×m) identity matrix, Ω is an (m×m) matrix containing partial
correlations (but with 0's on the diagonal, such that Ι+Ω is the actual
partial correlation matrix). Matrix Δ is a (m×m) diagonal matrix
containing scaling parameters.

The mutualism model aims to describe Σ as
= M M( ) ( )1 T (van der Maas et al., 2006), where Ι is again

an (m×m) identity matrix and M the matrix containing the mutualistic
weights, mij, i.e. regression weight of variable i on variable j. In the
standard mutualism model matrix Ψ is a diagonal matrix containing the
variances of limiting capacities. The formula of the covariance structure
predicted by the mutualism model is essentially the same as the general
formula for path models (Wright, 1934), in which Ψ is not (necessarily)
diagonal.

Table 6
Showing the fit statistics of the statistical modeling in Application 3.

Uni-group model (group) -2LL χ2 df P AIC BIC SABIC CFI NNFI RMSEA CI95l CI95u PRMSEA

Saturated (younger) 52,772.85 0.00 0 1.00 52,842.8 53,036.6 52,925.5 1.00 1.00 0.00 – – –
Measurement (younger) 52,927.58 154.73 13 < 0.001 52,971.6 53,093.4 53,023.5 0.95 0.93 0.08 0.064 0.089 < .0.01
Network (younger) 52,777.36 4.51 7 0.72 52,833.4 52,988.4 52,899.4 1.00 1.00 < 0.001 < 0.001 0.025 > 0.99
Saturated (middle) 28,050.67 0.00 0 1.00 28,120.7 28,292.4 28,181.3 1.00 1.00 0.00 – – –
Measurement (middle) 28,163.33 197.13 13 < 0.001 28,207.3 28,315.3 28,245.4 0.95 0.91 0.09 0.070 0.106 < 0.001
Network (middle) 28,064.16 13.49 7 0.06 28,120.2 28,257.6 28,168.6 1.00 0.99 0.03 < 0.001 0.059 0.90
Saturated (older) 25,024.72 0.00 0 1.00 25,094.7 25,262.9 25,151.8 1.00 1.00 0.00 – – –
Measurement (older) 25,221.85 112.66 13 < 0.001 25,265.8 25,371.6 25,301.7 0.89 0.83 0.13 0.107 0.144 < 0.001
Network (older) 25,043.28 18.56 7 0.01 25,099.3 25,233.8 25,144.9 0.99 0.98 0.04 0.014 0.071 0.66

Multi-group model (nested model) -2LL χ2 df P AIC BIC SABIC CFI NNFI RMSEA CI95l CI95u PRMSEA

Saturated 105,848.2 0.00 0 1.00 106,058.2 106,713.1 106,379.5 1.00 1.00 0.00 – – –
Network 105,884.8 36.56 21 0.019 106,052.8 106,576.7 106,309.8 1.00 0.99 0.01 0.003 0.023 > 0.99
(Invariant edges) 105,945.4 97.15 49 < 0.001 106,057.4 106,406.7 106,228.7 0.99 0.99 0.02 0.010 0.022 > 0.99

Note. Abbreviations: -2LL: minus 2 times the log-likelihood, df: degrees of freedom, CI95l and CI95u: lower and upper boundaries of the 95% confidence interval of
the RMSEA value; PRMSEA: the P-value associated with this interval. Preferred model bold faced and underlined.

K.-J. Kan et al. Intelligence 73 (2019) 52–62

60



More generally models can be framed within the Reticular Action Model
(RAM; McArdle & McDonald, 1984): = F A S A F( ) ( )1 T T. Here F
is an (m× (m+ n)) filter matrix (consisting of a (m×m) identity matrix
augmented with a (m× n) matrix containing zeroes); A an (asymmetric)
matrix containing all directed pathways between all (observed and latent)
variables; S a symmetric matrix containing all undirected pathways between
all (observed and latent) variables. In network models, for instance, S is thus
further specified as Δ(Ι−Ω)−1Δ, whereas Matrix F is restricted to be an
identity matrix and A a matrix containing zeroes.
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