Renewable energy in the systems perspective

Case study: Policy sequencing

- Synergies (positive feedback)
 - RE enables actors to decrease ETS costs
 - Enlarged coalitions (eventually)
 - Learning (market solutions)
- Conflicts (negative feedback)
 - RE increases certificates surplus
 - Both communities initially skeptical

CS 2: Defining system boundaries (costs perspective)

CS 2: Defining system boundaries (costs perspective)

CS 2: Defining system boundaries (costs perspective)

Systems perspective

System components	What to watch	Acting upon a system
• Function or purpose	• Feedback loops	• System levers
System boundaries	Stocks and flows	Unintended consequences
• Parts	• Delays	
• Interactions		

Feedback loops

Reinforcing

- RES deployment <> RES costs
- RES deployment <> integration tech costs
- RES deployment <> system costs
- RES deployment <> acceptance
- RES deployment <> political feasibility

Balancing

- RES deployment <> wholesale price
- RES deployment <> system costs
- RES deployment <> acceptance

Stocks and flows, delays

Electricity generation mix (2019)

Other Solar 3% Wind Hydro Gas **7**%_ 38% Nuclear_ 20% Coal 23%

Expected new capacity (GW, 2020)

System levers = system characteristics

- Numbers and events
- Stocks and flows
- Feedback loops (balancing and reinforcing)
- Information flows
- Rules
- Goal(s)
- Paradigm(s)

Unintended effects

