Abstracts The abstract, although it heads the article, is often written last, together with the title. This is partly because writers know what they have achieved, and partly because it is not easy to write an abstract. Abstracts have to summarise what has been done, sometimes in as few as 150 words. It is easier to write an abstract if you remember that all abstracts have a basic structure. Indeed, the phrase ‘structured abstracts’ says it all. This kind of abstract, common in medical research journals and now appearing in many social science articles, can be adapted for most normal purposes. STRUCTURED ABSTRACTS Structured abstracts are typically written using five sub-headings – ‘background’, ‘aim’, ‘method’, ‘results’ and ‘conclusions’. Sometimes the wording of these sub-headings varies a little – ‘objectives’ for ‘aim’, for example, but the meaning is much the same. Structured abstracts were introduced into medical research journals in the 1980s. Since then they have been widely used in medicine and other areas of research (Nakayama et al., 2005). In 2004, I published a narrative review of their effectiveness based upon thirty-one research papers available at that time (Hartley, 2004). I concluded that, compared with traditional abstracts, structured abstracts: • contained more information • were easier to read • were easier to search • facilitated peer review for conferences • were generally welcomed by readers and by authors. Figure 2.3.1a below shows a typical structured abstract. Figure 2.3.1b shows the same abstract written with the sub-headings removed. It can be seen that both abstracts are clear, and so it is useful to write an abstract in 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 Chapter 2.3 a structured form first, and then to adjust it for the journal you are writing for if this journal does not use them. Figures 2.3.1a and b illustrate some of the virtues of structured abstracts. Using the sub-headings and the appropriately spaced typographical layout makes the content clearer (Hartley and Betts, 2007). Furthermore, structured abstracts are easier for readers to scan, as every abstract follows the same format. The sub-headings thus allow the readers to go to the same place each time in an abstract to find out what it says. Furthermore, as the information required has to be provided by the author under each sub-heading, nothing gets missed out. With traditional abstracts, it is all too common to find that some elements are missing – the background, the method or the results, for example. Often one is left saying, ‘So, what happened?’ or ‘So what?’. 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 32 The academic article Background. In 1997 four journals published by the British Psychological Society began publishing structured abstracts. Aims. The aim of the studies reported here was to assess the effects of these structured abstracts by comparing them with original versions written in a traditional, unstructured format. Method. The authors of the articles accepted for publication in the four journals were asked to supply copies of their traditional abstracts (written when the paper was submitted for publication) together with copies of their structured abstracts requested by the editor when their paper was accepted. Forty-eight such requests were made, and thirty pairs of abstracts were obtained. The abstracts were then compared on a number of measures. Results. Analysis showed that the structured abstracts were significantly more readable, significantly longer and significantly more informative than the traditional ones. Judges assessed the contents of the structured abstracts more quickly and with significantly less difficulty than they did the traditional ones. Almost every respondent expressed positive attitudes to structured abstracts. Conclusions. The structured abstracts fared significantly better than the traditional ones on every measure used in this enquiry. We recommend, therefore, that editors of other journals in the social sciences consider adopting structured abstracts. Figure 2.3.1a An original abstract in structured form. Adapted from Hartley and Benjamin (1998), and reproduced with permission of the British Journal of Educational Psychology. © the British Psychological Society. Many people think that structured abstracts are only suitable for empirical papers – those with ‘methods’ and ‘results’. As one of my correspondents put it: It seems to me that the format you have chosen imposes a unitary conception of research, at a time when educational research in particular, and social science more widely, has at last broken away from narrow strictures of method and procedure. However, I believe that the underlying characteristics of a structured abstract can apply to many other forms of enquiry. Figure 2.3.2a, for example, shows an original abstract written to accompany a review paper. Figure 2.3.2b shows a revision of it that, in my view, makes the background, aims and conclusions of the study more explicit. Bayley and Eldredge (2003) provide references to a variety of papers in the health sciences that have structured abstracts. These include qualitative studies, narrative reviews, systematic reviews, meta-analyses and randomised controlled trials. Table 2.3.1 similarly lists some more recent papers in the 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 Abstracts 33 In 1997 four journals published by the British Psychological Society began publishing structured abstracts. The aim of the studies reported here was to assess the effects of these structured abstracts by comparing them with original versions written in a traditional, unstructured format. The authors of the articles accepted for publication in the four journals were asked to supply copies of their traditional abstracts (written when the paper was submitted for publication) together with copies of their structured abstracts requested by the editor when their paper was accepted. Forty-eight such requests were made and thirty pairs of abstracts were obtained. The abstracts were then compared on a number of measures. Analysis showed that the structured abstracts were significantly more readable, significantly longer and significantly more informative than the traditional ones. Judges assessed the contents of the structured abstracts more quickly and with significantly less difficulty than they did the traditional ones. Almost every respondent expressed positive attitudes to structured abstracts. In short, the structured abstracts fared significantly better than the traditional ones on every measure used in this enquiry. We recommend, therefore, that editors of other journals in the social sciences consider adopting structured abstracts. Figure 2.3.1b The same abstract in unstructured form. health and social sciences that have used structured abstracts with a variety of research methods. After the title, the abstract is the most frequently read part of any paper. Writing it in a structured format (with or without the headings) ensures that it is informative and complete. 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 34 The academic article There is something of a controversy taking place over how best to theorise human learning. In this article we join the debate over the relationships between sociocultural and constructive perspectives on learning. These two perspectives differ in not just their conceptions of knowledge (epistemological assumptions) but also in their assumptions about the known world and the knowing human (ontological assumptions). We articulate in this article six themes of a nondualist ontology seen at work in the sociocultural perspective, and suggest a reconciliation of the two. We propose that learning involves becoming a member of a community, constructing knowledge of various levels of expertise as a participant, but also taking a stand on the culture of one’s community in an effort to take up and overcome the estrangement and division that are consequences of participation. Learning entails transformation of both the person and the social world. We explore the implications of this view for thinking about schooling and for the conduct of educational research. Figure 2.3.2a An original abstract for a review paper. Reproduced with permission from Packer and Goicoechea (2000) and Taylor & Francis, www. informaworld.com. Table 2.3.1 Examples of studies with structured abstracts published in the health and social sciences Method Example Literature review Mayhew and Simpson (2002) Observational study Lauth et al. (2006) Survey Wilding and Andrews (2006) Longitudinal study Flouri (2006) Statistical paper Prosser and Trigwell (2006) Simulation Wright (2006) Experimental study Clariana and Koul (2006) Epidemiological study Evans (2000) Meta-analysis Bunn et al. (2006) Systematic review Duperrex et al. (2006) Qualitative study Maliski et al. (2002) REFERENCES Bayley, L. & Eldredge, J. E. (2003). The structured abstract: An essential tool for researchers. Hypothesis, 17(1), 1 and 11–15. Or: http://research.mlanet.org/structured_ abstract.html. (Retrieved 1 August 2006.) Bunn, F., Collier, T., Frost, C., Ker, K., Roberts, I. & Wentz, R. (2003). Traffic calming for the prevention of road traffic injuries: Systematic review and meta-analysis. Injury Prevention, 9(3), 200–4. Clariana, R. B. & Koul, R. (2006). The effects of different forms of feedback on fuzzy and verbatim memory of science principles. British Journal of Educational Psychology, 76(2), 259–70. Duperrex, O., Bunn, F. & Roberts, I. (2002). Safety education of pedestrians for injury prevention: A systematic review of randomised controlled trials. British Medical Journal, 324(7348), 1129–34. Evans, L. (2000). Risks older drivers face themselves and threats they pose to other road users. International Journal of Epidemiology, 29(2), 315–22. 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 Abstracts 35 Background. An interesting debate is currently taking place among proponents of different ways of thinking about human learning. In this article we focus on that portion of the debate that addresses sociological and constructive perspectives on learning. These two perspectives differ in not just their conceptions of knowledge (epistemological assumptions) but also in their assumptions about the known world and the knowing human (ontological assumptions). Aims and approach. We wish to try and reconcile these two different approaches first by examining the ontological assumptions of them both. We then consider six key themes of a nondualist ontology seen at work in the sociocultural perspective. Finally we propose that the constructive perspective attends to epistemological structures and processes which the sociological perspective must place in a broader historical and cultural context. Conclusions. We conclude that learning involves becoming a member of a community, constructing knowledge of various levels of expertise as a participant, and taking a stand on the culture of one’s community in an effort to take up and overcome the estrangement and division that are consequences of participation. Learning entails transformation of both the personal and the social world. We explore the implications of this view for thinking about schooling and the conduct of educational research. Figure 2.3.2b The same abstract in structured form. Flouri, E. (2006). Parental interest in children’s education, children’s self-esteem and locus of control, and later educational attainment: Twenty-six year follow-up of the 1970 British Birth Cohort. British Journal of Educational Psychology, 76(1), 41–56. Hartley, J. (2004). Current findings from research on structured abstracts. Journal of the Medical Library Association, 92(3), 368–71. Hartley, J. & Benjamin, M. (1998). An evaluation of structured abstracts in journals published by the British Psychological Society. British Journal of Educational Psychology, 68(3), 443–56. Hartley, J. & Betts, L. (2007). The effects of spacing and titles on judgments of the effectiveness of structured abstracts. Journal of the American Society for Information Science & Technology, 58(14), 2335–40. Lauth, G. W., Heubeck, B. G. & Mackowiak, K. (2006). Observation of children with attention-deficit hyperactivity (ADHD) problems in three natural classroom contexts. British Journal of Educational Psychology, 76(2), 385–404. Maliski, S. L., Heilemann, M. V. & McCorkle, R. (2002). From ‘death sentence’ to ‘good cancer’: Couples’ transformation of a prostate cancer diagnosis. Nursing Research, 5(6), 391–7. Mayhew, D. R. & Simpson, H. M. (2002). The safety value of driver education and training. Injury Prevention, 8 (Suppl. II): ii3-ii8. Nakayama, T., Hirai, N., Yamazaki, S. & Naito, M. (2005). Adoption of structured abstracts by general medical journals and format for a structured abstract. Journal of the Medical Library Association, 93(2), 237–42. Packer, M. J. & Goicoechea, J. (2000). Sociocultural and constructivist theories of learning: Ontological, not just epistemology. Educational Psychologist, 35(4), 227–41. Prosser, M. & Trigwell, K. (2006). Confirmatory factor analysis of the Approaches to Teaching Inventory. British Journal of Educational Psychology, 76(2), 405–19. Wilding, J. & Andrews, B. (2006). Life goals, approaches to study and performance in an undergraduate cohort. British Journal of Educational Psychology, 76(1), 171–82. Wright, D. B. (2006). Comparing groups in a before-after design: When t test and ANCOVA produce different results. British Journal of Educational Psychology, 76(3), 663–75. FURTHER READING Hartley, J., Rock, J. & Fox, C. (2005). Teaching psychology students to write structured abstracts: An evaluation study. Psychology Teaching Review, 1(1), 2–11. Kamler, B. & Thomson, P. (2004). Driven to abstraction: Doctoral supervision and writing pedagogies. Teaching in Higher Education, 9(2), 195–209. Kelly, A. E. & Yin, R. K. (2007). Strengthening structured abstracts for education research: The need for claim-based structured abstracts. Educational Researcher, 36(3), 133–8. 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 36 The academic article Introductions It is but a short step from structured abstracts to structured texts. In the following chapters we shall see how each part of the structure of a scientific article (the introduction, method, results, discussion and conclusion) can indeed be subdivided into finer structures. Swales and Feak (2004) describe what they characterise as ‘moves’ in the various sections of academic articles. Basically, a ‘move’ is a stage in the argument that all writers go through. The ‘moves’ for the introduction are typically as follows (p. 244): • Move 1: The authors establish a research territory: (a) by showing that the general research area is important, central, interesting, problematic or relevant in some way (optional); (b) by introducing and reviewing items of previous research in the area (obligatory). • Move 2: They then establish a ‘niche’ by indicating a weakness in the account so far: (a) by indicating a gap in the previous research, raising a question about it or extending previous knowledge in some way (obligatory). • Move 3: They then occupy the niche by saying they are going to put this right: (a) by outlining the purposes or stating the nature of the present research (obligatory); (b) by listing research questions or hypotheses to be tested (optional); (c) by announcing the principal findings (optional). Swales and Feak argue that most introductions to academic articles follow this basic structure. Lewin et al. (2001) offer a similar, but more detailed, analysis that readers might also find useful. 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 Chapter 2.5 AN EXAMPLE While writing this section of Academic Writing and Publishing, I coincidentally received a copy of a paper by Slatcher and Pennebaker (2006). This paper was about the effects of one of the partners of a dating couple writing either neutral or strongly emotional letters to the other one about their relationship. The paper concluded that the participants who wrote the emotional letters were significantly more likely to be dating their romantic partners three months later than were the writers of the neutral letters. Be that as it may, I was intrigued to observe that the introduction to this paper followed almost exactly the generic structure described by Swales and Feak. Slatcher and Pennebaker’s introduction contains five paragraphs. Here are some examples of how the moves appear: Move 1: Establishing a research territory The paper starts (paragraphs 1 and 2) with describing the background and setting the scene. Key phrases are: ‘Researchers are now . . .’, ‘Preliminary findings suggest . . .’, ‘There are a number of ways in which one could measure the effects of expressive writing . . .’. Move 2: Establishing a niche The paper continues (in paragraphs 3 and 4) with the following key phrases: ‘Although previous studies have addressed . . . none have . . .’, ‘One potential mediator is . . .’, ‘There are various ways to measure . . .’, ‘The use of emotional words may be particularly relevant . . .’, ‘One way is to analyse the texts used in instant messaging . . .’. Move 3: Occupying the niche The introduction concludes (in paragraph 5) with the following key phrases: ‘In the present study we sought to investigate the social effects of expressive writing . . .’, ‘Three predictions were tested. First . . .’. Slatcher and Pennebaker thus follow Swales and Feak’s analysis almost line by line. It is also worth noting, in passing, that the literature review in this paper is quite short, and there are only nine references. Day and Gastel (2006) comment that, ‘Introductions should supply sufficient information to allow the reader to understand and evaluate the results of the present study without (them) needing to refer to previous publications on the topic’ (pp. 57–8). Of course many papers are written with more detailed substructures. Three types of structure typical in introductions are: 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 42 The academic article 1 The one listed above – where the authors establish their niche by indicating limitations or omissions in the previous research. 2 One where two (or more) different areas of research are reviewed – and the authors establish their niche by bringing them together. 3 One where some previous research has provided support for a particular finding or theory, and some has not – and the authors establish their niche by seeking to resolve and explain this. Further, there are disciplinary variations: Haggan (1998), for example, examined the introductions for twenty-six articles in the sciences, twentysix in linguistics and twenty-six in the arts. She found that the introductions in the science papers were less likely to contain a plan for the paper than were the introductions in linguistics, and that they lay midway in their use of impersonal language between introductions in the arts (the least personal) and introductions in linguistics (the most personal). Introductions in the sciences were more personal, however, when there was more than one author. Such disciplinary formulaic introductions enhance the clarity of a paper and ensure that the readers’ expectations about the format and the purpose of an introduction are maintained. Such devices keep the reader reading. REFERENCES Day, R. A. & Gastel, B. (2006). How to write and publish a scientific paper (6th edn). Cambridge: Cambridge University Press. Haggan, M. (1998). In search of the linguistics niche: A study of research article introductions in Linguistics, Literature and Science. Arab Journal for the Humanities, 61, 345–77. Lewin, B., Fine, J. & Young, L. (2001). Expository discourse: A genre-based approach to social science research texts. London: Continuum. Slatcher, R. B. & Pennebaker, J. W. (2006). How do I love thee? Let me count the words. Psychological Science, 17(8), 660–4. Swales, J. M. & Feak, C. B. (2004). Academic writing for graduate students (2nd edn). Ann Arbor, MI: University of Michigan Press. FURTHER READING Kendall, P. C., Silk, J. S. & Chu, B. C. (2000). Introducing your research report: Writing the introduction. In R. J. Sternberg (Ed.), Guide to publishing in psychology journals (pp. 41–57). Cambridge: Cambridge University Press. 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 Introductions 43 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 Methods Method sections vary in journal articles, but rather less so than introductions. This is because the ‘moves’ in the method sections generally involve working through a series of subsections. Most method sections are usually subdivided (with subheadings) into three sections, as follows: 1 participants 2 measures 3 procedure(s). If no participants are involved, then the method simply describes the measures and procedure(s). In the Slatcher and Pennebaker (2006) example, there are three subheadings in the method section: Participants, Procedure and Linguistic Analysis (or measures). Method sections may be brief and succinct – when the methods used are well known and standardised – or quite lengthy, when the methods used are new or different and thus require careful elaboration. Students and authors are typically instructed to write their method sections in such a way that readers can repeat the method from the descriptions given. Day and Gastel (2006, p. 64) recommend that colleagues unfamiliar with what was done should be asked to read the account to see if they can follow it. Authors are sometimes too close to what they did and thus tend to forget to mention tiny but – sometimes – key details. A useful device for clarifying the procedure or the method for the reader – especially if it is complicated – is to summarise it in a table or figure (e.g. see Gotzsche, 2006). Figure 2.6.1 gives a schematic version of Slatcher and Pennebaker’s prose description of their method. Such procedures, though, are rarely used. None of the authors of fifty-six articles in the 2005 volume of the Journal of Educational Psychology used this strategy, and only two provided illustrations of the equipment used. However, eleven (i.e. twenty per cent) of these articles did include figures to illustrate either the theoretical models underlying the reasoning for their experiments or the analyses that they were going to use. 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 Chapter 2.6 REFERENCES Day, R. A. & Gastel, B. (2006). How to write and publish a scientific paper (6th edn). Cambridge: Cambridge University Press. Gotzsche, P. C. (2006). Believability of relative risks and odds ratios in abstracts: A cross sectional study. British Medical Journal, 333, 231–4. Slatcher, R. B. & Pennebaker, J. W. (2006). How do I love thee? Let me count the words. Psychological Science, 17(8), 660–4. FURTHER READING Reis, H. T. (2000). Writing effectively about design. In R. J. Sternberg (Ed.), Guide to publishing in psychology journals (pp. 81–97). Cambridge: Cambridge University Press. 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 46 The academic article ProcedureParticipants Measures 86 couples Relationship Assessment Scale Experimental group (N = 44 couples) Write text messages for 20 mins on days 4, 5 and 6 about their deepest thoughts and feelings about their current romantic relationship Control group (N = 42 couples) Write text messages for 20 mins on days 4, 5 and 6 about their daily activities Figure 2.6.1 A schematic illustration of the prose version of the Method used in the study by Slatcher and Pennebaker (2006). Results A ‘moves’ analysis of the results sections of academic articles either looks like this: • Move 1: State the main findings in order – relating them in turn to the hypotheses and methods used. • Move 2: State the subsidiary findings – relating them in turn to the hypotheses and methods used. or it is an interweaving of the two – the first set of main findings and related subsidiary ones, followed by the second set, and so on. Again these subsections may be cued by subheadings. Slatcher and Pennebaker (2006), for example, divide their results section into two main parts (separated by the subheadings, ‘Relationship stability and language use’, and ‘Mediation effects of changes in use of emotional words’). They provide a description of the results obtained, mainly in prose, in each part, indicating that the partners who wrote the romantic letters were significantly more likely to be dating their romantic partners three months later than were the partners who wrote the neutral ones. It is typical in results sections to present the main data that support (or reject) the hypotheses in the form of tables and graphs. Indeed, it is quite common to find that the first sentence of a results section begins, ‘Table 1 shows that . . .’. Slatcher and Pennebaker’s paper is unusual here in that they provide only one such table, near the start of their second section of results, and this table is not used to illustrate their main findings. Because tables and graphs are so important in academic and scientific writing, I shall discuss them separately, in more detail, in Chapter 3.5. Salovey (2000) argues that the art of writing a good results section is to take the readers through a story. This does not mean working step by step through the results obtained, but rather – as implied above – articulating what happened and illustrating it clearly, usually with data. In my view, this story is clearer if the sequence of topics addressed in the results section is the same as that articulated in the introduction and the method(s) sections. 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 Chapter 2.7 Swales and Feak (2004) comment that the distinction between the results and the subsequent discussion section is not always as sharp as one might think. They cite a study by Thompson (1993) that showed that the authors of papers in biochemistry used a variety of rhetorical devices in their results section to justify their methodology, to interpret and comment on the findings, and to relate them to previous research. Indeed, the only thing that they did not do in their results sections was to call for further research – this was left for the discussion. REFERENCES Salovey, P. (2000). Results that get results. Telling a good story. In R. J. Sternberg (Ed.), Guide to publishing in psychology journals (pp. 121–32). Cambridge: Cambridge University Press. Slatcher, R. B. & Pennebaker, J. W. (2006). How do I love thee? Let me count the words. Psychological Science, 17(8), 660–4. Swales, J. M. & Feak, C. B. (2004). Academic writing for graduate students (2nd edn). Ann Arbor, MI: University of Michigan Press. Thompson, D. K. (1993). Arguing for experimental ‘facts’ in science: A study of research article results sections in biochemistry. Written Communication, 10(1), 106–28. 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 48 The academic article Discussions Discussions, like introductions, have a typical structure. Lewin et al. (2001) and Swales and Feak (2004) describe typical ‘moves’ in the discussion sections of academic research papers. Putting these descriptions together suggests the following moves: • Move 1: Restate the findings and accomplishments. • Move 2: Evaluate how the results fit in with the previous findings – do they contradict, qualify, agree or go beyond them? • Move 3: List potential limitations to the study. • Move 4: Offer an interpretation/explanation of these results and ward off counter-claims. • Move 5: State the implications and recommend further research. Discussions, then, go beyond a summary of the findings and, indeed, there may be disciplinary differences in how they are approached. Holmes (1997), for instance, found that the discussion sections of papers in sociology and political science were similar in format to those in the sciences, whereas those in history were less complex. Swales and Feak (2004) state that some scientists believe that a long discussion implies weak methods and results, whereas social scientists and people in the arts may well believe the opposite. AN EXAMPLE Lewin et al. (2001) provide numerous quotations from the discussion sections of several research articles to support the above ‘moves’ analysis. In terms of Slatcher and Pennebaker’s (2006) paper referred to earlier, we may note the following sentences contained in the six paragraphs of their discussion section: 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 Chapter 2.8 • Move 1: Restating the findings and accomplishments: – Par. 1: ‘The very simple act of writing about their romantic relationship changed the way in which participants communicated . . .’; – Par. 2: ‘Taken together these findings shed light on processes underlying interactions in close relationships . . .’; – Par. 3: ‘An advantage of the current design is that . . .’; – Par. 6: ‘Unlike previous expressive-writing studies, this is the first to demonstrate . . .’. • Move 2: Evaluating how the results fit in with previous research: – Par. 3: ‘In particular, the findings relating to increases in emotion words illuminate previous research [3 references provided]’. • Move 3: Stating the limitations: – Par. 5: ‘There are some potential limitations in this study. First . . . Second . . .’. • Move 4: Warding off alternative explanations: – Par. 5. ‘. . . make this an unlikely possibility’. • Move 5: Stating implications: – Par. 4: . . . [this finding] ‘has clear implications for clinicians’; – Par. 5: ‘. . . future studies should address this issue’. These quotations illustrate that the five moves are present, but they are not as clearly sequenced or indicated as might be implied from the list above. Authors seem more flexible in how they tackle their discussions, although the moves listed are usually present. Discussion sections are difficult to write because their aim is to discuss and comment on the findings, rather than just to report them. Day and Gastel (2006) suggest that journal editors reject many papers because of their weak discussions. They recommend that discussions should end with a short summary regarding the significance of the work, which, they claim, is not always adequately considered. Woods (1999) recommends: 1 that writers should keep notes about what it might be useful to include in the discussion as ideas occur to them when they are writing other sections; and 2 that it might be wise to set aside a day or two to tackle this section of the paper. This, he says, will make the task less daunting. 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 50 The academic article REFERENCES Day, R. A. & Gastel, B. (2006). How to write and publish a scientific paper (6th edn). Cambridge: Cambridge University Press. Holmes, R. (1997). Genre analysis, and the social sciences: An investigation of the structure of research article discussion sections in three disciplines. English for Specific Purposes, 16(4), 321–37. Lewin, B., Fine, J. & Young, L. (2001). Expository discourse: A genre-based approach to social science research texts. London: Continuum. Slatcher, R. B. & Pennebaker, J. W. (2006). How do I love thee? Let me count the words. Psychological Science, 17(8), 660–4. Swales, J. M. & Feak, C. B. (2004). Academic writing for graduate students (2nd edn). Ann Arbor, MI: University of Michigan Press. Woods, P. (1999). Successful writing for qualitative researchers. London: Routledge. FURTHER READING Calfee, R. (2000). What does it all mean? The discussion. In R. J. Sternberg (Ed.), Guide to publishing in psychology journals (pp. 133–45). Cambridge: Cambridge University Press. 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111 Discussions 51 1111 2 3 4 5 6 7 8 9 1011 1 2 31 4 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 44111