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A B S T R A C T

Considerable research indicates that learners are sensitive to proba-
bilistic structure in laboratory studies of artificial language learning.
However, the artificial and simplified nature of the stimuli used in
the pioneering work on the acquisition of statistical regularities has
raised doubts about the scalability of such learning to the com-
plexity of natural language input. In this review, we explore a central
prediction of statistical learning accounts of language acquisition
– that sensitivity to statistical structure should be linked to real lan-
guage processes – via an examination of: (1) recent studies that have
increased the ecological validity of the stimuli; (2) studies that
suggest statistical segmentation produces representations that share
properties with real words; (3) correlations between individual vari-
ability in statistical learning ability and individual variability in
language outcomes; and (4) atypicalities in statistical learning in
clinical populations characterized by language delays or deficits.

© 2015 Elsevier Inc. All rights reserved.

Introduction

To acquire language, infants must learn a vast number of individual words, expressions, and gram-
matical constructions. The speed with which infants succeed at this immense undertaking has impressed
theorists for many years (e.g., Chomsky, 1959). With respect to vocabulary alone, a typical university
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graduate has a receptive vocabulary of 150,000 words (Miller & Gildea, 1987). An average 5th grader
knows 40,000 words. By age 6, a typically developing child comprehends 10,000 words (Anglin, Miller,
& Wakefield, 1993). Even learning a single word poses multiple learning challenges. At minimum, infants
must associate a referent with a word form. To do so, infants must have some knowledge of the word
form − some memory representation of the sounds of the word − before they can create a mapping
between a word form and its meaning. Discovering the acoustic form of a word is itself problematic
because infants hear relatively few words in isolation, even in infant directed speech (Brent & Siskind,
2001; Van de Weijer, 2001). Moreover, simply recognizing a word form does not suffice for word learn-
ing, because the word’s meaning is only learned when the infant discovers which of the many possible
items and events in the environment to which the word form refers. One learning process that may
help infants learn the meaning of words, and provide useful information about many other aspects
of language, is statistical learning.

Statistical learning refers to learning on the basis of some aspect of the statistical structure of el-
ements of the input, primarily their frequency, variability, distribution, and co-occurrence probability.
To illustrate how statistical learning might be useful for language acquisition, consider the problem
of word learning once again. The co-occurrence of sounds in the input can help infants discover words
as a function of the probability with which they occur together (e.g., Newport & Aslin, 2000). For example,
in the phrase happy#doggie, the syllables within the words happy and doggie predict each other more
reliably than the syllables that span the word boundary, because syllable combinations that occur in-
cidentally between words (e.g., py#do; the end of happy and the beginning of doggie) are less likely
to occur than combinations that co-occur within words. Similarly, the co-occurrence of lexical forms
and objects or events in the environment can provide infants with information about the referent of
a particular lexical form (e.g., Yu & Smith, 2007; Vouloumanos, 2008). For example, a word like doggie
is more likely to occur in the presence of a canine than in the presence of a fork, information that
can help infants pair the lexical form with the appropriate referent.

Statistical learning accounts of many aspects of language acquisition, including word segmenta-
tion (e.g., Perruchet & Vinter, 1998; Swingley, 2005; Saffran, Aslin, & Newport, 1996; Thiessen, Kronstein,
& Hufnagle, 2013), phonological learning (Maye, Werker, & Gerken, 2002; Thiessen & Saffran, 2003,
2007), and syntactic learning (Thompson & Newport, 2007; Tomasello, 2000), arose from studies that
directly manipulated the statistical structure of artificial linguistic input (e.g., Saffran, Aslin et al., 1996).
These accounts have been influential for the past 15 years and have generated many productive lines
of research (e.g., Newport & Aslin, 2004; Thiessen & Saffran, 2003). Perruchet and Pacton (2006) de-
scribed the field of statistical learning as “growing exponentially” (p. 233). However, statistical learning
approaches rely primarily on research conducted in a laboratory setting with artificial toy languages
(e.g., one study familiarized infants with strings generated from a miniature artificial grammar and
subsequently tested them on their ability to discriminate novel strings that obeyed the rules of the
grammar from illegal strings, which found that children can generalize information from these gram-
mars to novel grammatical strings; Gomez & Gerken, 1999). Criticisms of statistical learning approaches
have raised doubts about the ability of such laboratory findings to scale up to the complexity of real
language (e.g., Johnson & Seidl, 2009; see also Pierrehumbert, 2003, 2006). The goal of this paper is
to explore the feasibility of statistical approaches for the acquisition of natural languages. This will
be accomplished by (1) briefly describing a theoretical account of statistical learning through which
relevant phenomena will be discussed, (2) discussing the criticisms of some of the early studies as
well as some recent studies that have tried to address these criticisms, and (3) exploring predictions
statistical learning accounts make about language acquisition. Some of these predictions have already
been investigated empirically, whereas others will need to be addressed in future studies.

The extraction and integration framework

The first experiments on infant statistical learning were focused on word segmentation (Saffran,
Aslin et al., 1996). Those experiments demonstrated that infants could segment fluent speech on the
basis of the co-occurrence probability between adjacent syllables, a statistical feature called “transi-
tional probability” (Aslin, Saffran, & Newport, 1998). Although the term “statistical learning” has been
frequently taken to be synonymous with sensitivity to transitional probabilities, subsequent work has
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demonstrated that language learners are sensitive to a broader set of statistical structures, such as
the distribution of exemplars across a continuum (e.g., Maye et al., 2002). To describe the range of
statistical structure to which infants are sensitive, and to examine how this sensitivity might contrib-
ute to language acquisition, we will rely on the Extraction and Integration Framework (Thiessen et al.,
2013). This framework argues that learners are sensitive to two aspects of statistical structure: con-
ditional statistical information and distributional statistical information. Sensitivity to these two aspects
of the input, in turn, arises from two complementary processes: extraction and integration. Extrac-
tion refers to the process of holding two distinct elements of the input in working memory and binding
them together into a single chunk (Perruchet & Vinter, 1998). Integration refers to the process of com-
bining information across stored chunks to identify central tendencies and prototypical information
(Hintzman, 1984; Thiessen & Pavlik, 2013). Whereas these two processes are complementary and in-
teractive, they are posited to reflect at least partially independent processes. For example, extraction
relies on working memory and is thought to be guided by attention (e.g., Perruchet & Tillmann, 2010;
Thiessen et al., 2013).1 As such, it should be mediated by the frontal brain networks involved in working
memory and attention to a greater extent than integration. In contrast, integration may more be reliant
on hippocampal and cortical structures associated with long-term memory, in line with the Comple-
mentary Learning Systems hypothesis (McClelland, McNaughton, & O’Reilly, 1995).

While we conceptualize extraction and integration as separate processes, it remains to be seen how
separable these two processes are. First, it may well be the case that no single statistical learning task is a
“pure” measure of either extraction or integration; experimental and naturalistic learning tasks may always
invoke both, to greater or lesser degrees. At a minimum, these two processes are highly interactive, as the
units that are extracted from perceptual input are subsequently integrated over to identify consistent pat-
terns in the input. Second, it may be the case that extraction and integration share partially overlapping
mechanisms, or are even distinct surface realizations of the same underlying computations (e.g., Frost,
Armstrong, Siegelman, & Christiansen, 2015; Thiessen & Erickson, 2013b; Thiessen & Pavlik, 2015). For
example, a key process in extraction is binding disparate elements of the input into a discrete represen-
tation. Although this process is dependent on attention and working memory to select the to-be-bound
elements (e.g., Baker, Olson, & Behrmann, 2004), the process of binding may also involve the hippocam-
pus (a structure we have suggested is also involved in integration), given its role in memory formation.
Neurological data are at least partially consistent with this account, as at least some extraction tasks have
been shown to involve hippocampal activation, which is more consistent with long-term memory pro-
cesses (Kim, Lewis-Peacock, Norman, & Turk-Browne, 2014; see also Schapiro, Gregory, Landau, McCloskey,
& Turk-Browne, 2014 for evidence that medial temporal lobe damage including the hippocampus dis-
rupts statistical segmentation, an extraction task; but see Knowlton, Ramus, & Squire, 1992 for evidence
of intact Artificial Grammar Learning in amnesiac patients). Similarly, attentional processes (which we hy-
pothesize to be related to extraction) have been shown to stabilize extracted representations in the
hippocampus (Aly & Turk-Browne, 2015)2.

Despite these uncertainties about the processes underlying statistical learning, the distinction between
the processes of extraction and integration (at least descriptively) is a useful one for at least two reasons.
First, it highlights the fact that language acquisition involves sensitivity to more kinds of statistical
information than simple transitional probabilities. Second, this account gives rise to several novel pre-
dictions, as well as empirically testable (and thus falsifiable) claims about how statistical learning
contributes to language acquisition. For example, research on the role of attention in statistical learn-
ing has yielded inconsistent results. Although it is clear that attention plays a role in at least some
forms of statistical learning (e.g., Baker et al., 2004; Toro, Sinnett, & Soto-Faraco, 2005), the way in

1 Although we use the terms working memory and attention we do not mean to imply that this is necessarily related to vol-
untary or effortful processes rather than exogenous or stimulus-driven processes. In our account, the term working memory
is interchangeable with short-term memory, although we acknowledge that uncertainty exists regarding whether these pro-
cesses represent unitary or separable capacities (e.g., Unsworth & Engle, 2007), or whether they only operate on consciously
represented information (Soto, Mäntylä, & Silvanto, 2011).

2 It should be mentioned that this research has been conducted with adults for largely practical reasons. An important task
for future research will be to explore whether similar support for these proposals will be found with infant populations, given
the developmental nature of the phenomena the Extraction and Integration Framework is intended to explain.
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which attention interacts with or influences statistical learning is unclear. In some tasks, attention
appears to impair statistical learning, whereas in others, attention appears to be helpful (Finn, Lee,
Kraus, & Kam, 2014). A two-process account may help clarify these conflicting results. Because ex-
traction is driven, at least in part, by attention (elements of the input are only bound together when
they are simultaneously held in working memory, which can be altered by attention), tasks that require
extraction may benefit from attention, as it allows learners to bind elements together more quickly
or efficiently. By contrast, integration is a more passive process, in which the central tendency of the
input emerges over assimilation of information across exemplars. We believe that this process of as-
similation occurs automatically, via memory processes related to spreading activation as a function
of similarity. To the extent that two exemplars (i.e., memory traces) are similar, they will activate each
other (e.g., Hintzman, 1984). When two memory traces are similar and activate each other, the in-
formation contained in each is mingled into a representation reflecting the central tendency of both,
similar to theoretical accounts of prototype formation (Bomba & Siqueland, 1983; Posner & Keele, 1968;
Thiessen & Pavlik, 2013). In integration tasks where participants are not required to bind together dis-
parate elements of the input, attention and working memory may be less necessary, suggesting that
these kinds of tasks may be less affected by attentional manipulations. Below, we will flesh out this
framework more thoroughly, with an eye toward explaining how statistical learning contributes to
language acquisition, and highlight novel predictions of this account for language learning.

Conditional statistical learning

The most well-known finding in the statistical learning literature is that infants can readily segment
speech on the basis of its conditional statistical structure (Saffran, Aslin et al., 1996). When exposed
to an artificial language input, infants extract syllables that co-occur reliably and appear not to learn
syllable groupings that occur together less predictably (Aslin et al., 1998). As these experiments dem-
onstrate, infants (and adults) are sensitive to the conditional likelihood that one event will occur, given
information that another event has happened. Traditionally, speech segmentation studies have ma-
nipulated one well known type of conditional probability, namely, transitional probability (Harris, 1954;
Hayes & Clark, 1970; Saffran, Aslin et al., 1996). Transitional probability is defined as the probability
that some event Y will occur given that some other event X has already occurred. It is measured as
the number of times that event XY occurs divided by the overall frequency of X. For example, if XY
occurs 60 times and X occurs 100 times, the transitional probability of X to Y is 0.6. Thus, transition-
al probability incorporates raw frequency of co-occurrence but is more robust than mere co-
occurrence because items can occur together frequently simply because they are both high frequency
items (e.g., the dog; Aslin et al., 1998). Statistical approaches to segmentation gained prominence fol-
lowing a pioneering study by Saffran, Aslin et al. (1996). This study was designed to test whether
8-month-old infants were able to extract words from a brief exposure to fluent speech when the only
viable cue to word boundary was the presence of higher conditional probabilities between syllables
comprising words relative to syllables spanning word boundaries. The authors manipulated condi-
tional probabilities directly using an artificially synthesized stream of words, or tri-syllabic sequences
(e.g., bidaku, padoti). Each syllable within a word predicted the following syllable with 100% reliabil-
ity. Following a 2 minute exposure to this speech stream, infants were tested on their ability to
discriminate words in the language (e.g., bidaku) from part–word foils, which were constructed by
concatenating the end of one word to the beginning of another (e.g., kupado). Infants showed a pref-
erence for part–word foils that indicated that they successfully discriminated these two types of test
items. The authors interpreted this behavior as evidence that conditional probabilities between syl-
lables may support early infant word segmentation, and coined the phrase “statistical learning” to
describe the learning mechanism involved.

Although some computational approaches explicitly calculate transitional probabilities between
conditional elements (e.g., Gambell & Yang, 2004), the Extraction and Integration Framework ac-
counts for sensitivity to conditional probabilities based on features of the human memory system rather
than transitional probability calculations (e.g., Perruchet & Vinter, 1998; Thiessen et al., 2013). To ac-
complish this, the framework invokes PARSER, a computational model developed by Perruchet and
Vinter (1998). PARSER uses three memory-based processes to extract discrete coherent chunks from
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the input: activation, decay, and interference. This model works by taking in an input, which consists
of a string of syllables, and randomly grouping adjacent syllables from that input into a chunk or a
percept. Once a percept is created, it receives a certain amount of activation. Because of decay, this
level of activation decreases over time, but can increase if the percept is re-encountered as the model
proceeds through the input. Spurious groupings (e.g., syllables that span word boundaries) are less
frequent and thus less likely to receive activation. Similarly, spurious groupings will show greater decay
as they will be re-encountered less frequently. Finally, interference will also contribute to increasing
the activation of coherent items relative to spurious groupings. In the model, chunks which share el-
ements (e.g., syllables) compete with each other. Thus, each chunk created by a spurious grouping
across a word boundary will receive interference from two items because both words that form the
chunk will provide competition (Perruchet & Vinter, 1998). As a result, coherent items such as words
will tend to win out over less frequent and less coherent syllable clusters, and will be more likely to
be stored in a lexicon of word forms. In this way, PARSER is able to explain how sensitivity to condi-
tional probabilities rather than mere co-occurrence is achieved. Take as an example the phrase
yellow#ducky. Although PARSER might initially chunk lowdu, repeated presentations of the phrase are
more likely to accurate chunk the two words as yellow and ducky. Because activation for lowdu will
decay over time unless it is chunked again, and because it will receive interference from both of its
constituent words, activation for yellow and ducky will tend to increase whereas activation for lowdu
will tend to decrease. Together, these fundamental memory processes are able to explain infant sen-
sitivity to statistical structure based on conditional probabilities without invoking any explicit
computations of transitional probabilities.

Distributional statistical learning

The Extraction and Integration Framework explains the extraction in terms of a chunking model
such as PARSER to explain the sensitivity to conditional statistics as well as other language-general
cues to word boundary. However, the process of chunking fails to explain other phenomena that result
in adaptation to environmental statistical regularities such as category learning (e.g., Maye et al., 2002).
Thus, integration is required to complement the process of extraction. The process of integration in-
volves combining information across exemplars to form an aggregate representation that captures the
central tendency of those exemplars. This process allows for sensitivity to distributional structure, such
as the distribution of exemplars along a continuum. Distributional statistical learning is our term for
sensitivity to those aspects of the statistical structure of the input that capture the frequency and vari-
ability of exemplars in the input.

As an example, consider the case of an infant learning forming two phonetic categories, /d/ and
(unaspirated) /t/, which differ in voice onset time (VOT). Maye et al. (2002) found that the frequency
and variability of the exemplars to which infants were exposed influenced whether they formed two
categories or a single category that subsumed both /d/ and (unaspirated) /t/. When infants were pre-
sented with a bimodal distribution of sounds that included prototypical exemplars of the two phonemes,
infants were more likely to exhibit evidence of discriminating exemplars of the two categories. In con-
trast, infants who experienced a unimodal distribution that frequently included a sound intermediate
between the two prototypical phoneme exemplars were less likely to show evidence of discrimina-
tion. Distributional statistical learning has been recently instantiated in a computational model called
iMINERVA, using principles of exemplar memory models (Hintzman, 1984; Thiessen & Pavlik, 2013).

In this approach, iMINERVA accounts for various aspects of statistical learning via comparing current
and prior exemplars, and creating an integrated representation that incorporates the central tenden-
cies of these stored exemplars. The exemplars are coded as n-dimensional vectors with positive and
negative feature valences that are linked to the presence or absence of certain characteristics (e.g.,
roundness; where a positive value for roundness would indicate the presence of that feature). The
magnitude of the features indicates the certainty of the presence or absence of the characteristic, such
that larger values indicate greater certainty of the presence of the feature whereas smaller (i.e., neg-
ative) values indicate greater certainty of the absence of the feature. Learning is accomplished using
memory based principles of similarity-based comparison, decay, integration, and abstraction. In in-
tegration, when the similarity of prior experiences (i.e., exemplars) to current information passes a
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certain threshold, a process is initiated in which prior and current exemplars are integrated to form
a new representation. As part of this process, both old and new exemplars are stored along with an
interpretation of the experience. This new representation is formed through an additive process in
which the feature vectors of current and prior exemplars are merged. If the current exemplar and prior
exemplars both have consistent features, the new representation will have more extreme values than
either of them. If the current and prior exemplars have conflicting feature values (i.e., have values that
go in the opposite directions), the new representation will have less extreme values for the features
that it has previously. Depending on a learning rate parameter, the current exemplar can have more
or less influence on the new vector formed during the comparison. Finally, an abstraction parameter
facilitates generalization to novel stimuli, through the transformation of some features to null values
so that they can no longer be used to compute similarity ratings. This process was chosen to simu-
late the finding that experience is often accompanied by a decrease in sensitivity to certain features
of the input (e.g., Werker & Tees, 1984). These four memory-based processes (similarity-based acti-
vation, integration, decay, and abstraction) together simulate distributional learning.

The Extraction and Integration Framework suggests that these exemplar memory structures, when
coupled to chunking models such as PARSER, are sufficient to explain both the discovery of word forms
in speech on the basis of conditional probability information as well as the learning about the central
tendency of exemplars (e.g., Maye et al., 2002), the role of variability in the discovery of nonadjacent
regularities (e.g., Gómez, 2002), and cue-weighting phenomena (e.g., Thiessen & Erickson, 2013a). As
an example, consider how this framework can account for the detection nonadjacent relations. Al-
though nonadjacent relations are more difficult to learn than adjacent regularities, learners are able
to detect them (e.g., Creel, Newport, & Aslin, 2004; Gómez, 2002). In some cases, nonadjacent regu-
larities can only be detected if highlighted by a perceptual or structural cue (e.g., Creel et al., 2004).
For example, Gómez (2002) found that variability in the intervening element is critical to infants’ de-
tection of a nonadjacent variability, such that infants only detected the relationship between a and b
in the sequence a-X-b when X was drawn from a set of 24 possible X elements than when it was drawn
from 12 or 3 X elements. Although chunking models alone such as PARSER cannot account for the learn-
ing of non-adjacent relations because they simply store discrete, unitized representations of adjacent
syllables, iMINERVA solves this problem using an abstraction parameter. Because when infants ex-
perience a-X-b strings with only a few surface instantiations of the X element, the entirety of the string
is stored including details of the X element. In contrast, when the X element is drawn on many dis-
tinct elements, the specific features of various stored X elements cancel out and are abstracted away,
leaving only the nonadjacent relation to be detected between a and b. In this way, iMINERVA ac-
counts for the classic finding that variability in intervening elements allows learners to detect nonadjacent
relation.

Word segmentation: an illustration of extraction and integration working in concert

Extraction of words from the speech stream is crucial for language learning, but this process is dif-
ficult for several key reasons. Word boundaries in speech are neither marked by pauses in the way that
white space separates words in print (Cole & Jakimik, 1980), nor is there one fully reliable cue to in-
dicate where one word ends and the next begins. Instead, word boundaries are marked by a convergence
of imperfect cues. As a result, words in speech run together and adults are only able to compre-
hend speech effortlessly because of the knowledge – of words and of the structure of their native lan-
guage – that they bring to bear on word segmentation. This segmentation problem can be experienced
by any adult learner of a second language, despite the fact that an adult is likely to possess general
knowledge about how languages work, as well as meta-cognitive strategies that help parse an unfa-
miliar language. Parsing speech, then, poses an even greater challenge for infants because they lack
both the knowledge and the explicit strategies that may provide scaffolding for adults and older chil-
dren (e.g., knowing that certain clusters of consonants are unlikely to occur at the beginning of words,
or that a stressed syllable is typically a word onset in English; Cutler, 1996; Cutler & Carter, 1987).
Consistent with this assertion, many studies indicate that word segmentation is challenging for infants
(e.g., Bortfeld, Morgan, Golinkoff, & Rathbun, 2005; Johnson & Jusczyk, 2001; Jusczyk & Aslin, 1995).
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Despite this inherent challenge, a seminal study by Jusczyk and Aslin (1995) revealed that
7.5-month-old infants familiarized with passages of speech were able to recognize words from those
passages, which indicates that the ability to segment speech is present by at least this age. Conse-
quently, when and how infants begin to segment speech from continuous input has generated
considerable research over the past 30 years (e.g., Morgan, 1996; Saffran, Newport, & Aslin, 1996;
Thiessen, Hill, & Saffran, 2005). This research has generated competing theories about the mecha-
nisms and the cues that allow infants to segment speech successfully (e.g., Johnson & Tyler, 2010;
Seidenberg, 1997; Thiessen & Saffran, 2003; Swingley, 2005; Yang, 2004). Many of these approaches
can be characterized as acoustic or phonological theories; that is, they suggest that infants identify
words in the input on the basis of the typical sound structure of words in the native language. In English,
for example, open class words typically begin with a stressed syllable (Cutler & Carter, 1987). Once
infants have learned this regularity, they can use lexical stress as a cue to word segmentation (e.g.,
Johnson & Jusczyk, 2001; Jusczyk, Houston, & Newsome, 1999). However, these kinds of approaches
face a chicken and egg problem. Phonological regularities are useful for learning words, but to iden-
tify most of these phonological regularities, infants must be familiar with enough word forms to discover
the regularities that characterize words in their native language (Thiessen & Saffran, 2003).

Sensitivity to conditional and distributional statistical structure may provide infants with a way
to identify phonological regularities that is not dependent on knowledge of native-language phono-
logical regularities. Proponents of statistical learning approaches to word segmentation hold that statistical
regularities in the sequences of sounds that comprise words play a critical role in infants’ initial word
discovery (e.g., Thiessen & Saffran, 2003). The roots of statistical approaches to infant word segmen-
tation originate in an observation made in the 1950s: within speech corpora, the sound sequences
that occur within words are more likely to occur together than the sound sequences that occur inci-
dentally across word boundaries (Harris, 1955; Hayes & Clark, 1970). A byproduct of this distributional
fact is that statistical clustering of syllables in words can be used to extract word forms (frequent and
statistically coherent clusters of syllables) without requiring any language-specific knowledge of the
phonological regularities that indicate word boundaries (e.g., knowing that a stressed syllable is likely
to mark a word onset in English; Cutler & Carter, 1987). Because statistical clustering does not require
adaptation to the phonological structure of the native language, it is flexible enough to explain both
how segmentation proceeds in languages that lack rhythmic cues to word boundaries, as well as how
infants who have not fully adapted to the structure of their native language initially segment speech.
Thus, proponents of statistical approaches argue that sensitivity to these conditional statistical regu-
larities is what allows infants to extract their earliest set of word forms from fluent speech.

The importance of identifying an early proto-lexicon extends beyond learning to recognize the word
forms themselves. To the extent that these segmented word forms conform to the patterns of an infant’s
native language, familiarity with a few (statistically segmented) word forms can provide an oppor-
tunity to identify language-specific acoustic cues. This process is an example of distributional statistical
learning and involves integrating across stored exemplars (e.g., word forms) to learn something about
their central tendency (e.g., Thiessen & Pavlik, 2013). For example, infants may induce phonological
patterns shared by a set of learned word forms, such as syllable onsets are voiced and syllable offsets
are unvoiced (Saffran & Thiessen, 2003), or that words begin with /t/ (Sahni, Seidenberg, & Saffran,
2010). A corollary of this approach is that statistical regularities serve as one of the earliest cues to
word segmentation and are only later supplanted in relative importance by language-specific acous-
tic cues, which typically do not require multiple repetitions to inform word boundaries (Swingley, 2005;
Thiessen & Erickson, 2013b, 2015; Thiessen & Saffran, 2003).

According to the framework we have described, statistical learning is a powerful mechanism avail-
able to infants acquiring their native language. Sensitivity to statistical syllable co-occurrence probabilities
represents a viable strategy for early infant word discovery. However, word boundaries are also marked
by acoustic cues such as lexical stress and phonotactics. To arrive at the most accurate segmentation
of speech, a successful learner should integrate the information from these multiple imperfect cues.
Thus, accounts of word segmentation must specify how sensitivity to each of these cues arises, and
how infants integrate multiple sources of information online in the segmentation of speech. Al-
though many acoustic accounts of word segmentation phenomena conceptualize sensitivity to acoustic
and statistical cues as arising from fundamentally distinct processes (e.g., Shukla, Nespor, & Mehler,
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2007), the Extraction and Integration Framework views sensitivity to both classes of cues as arising
from the same processes: extraction and integration. Thus, acoustic cues influence segmentation in
the same way as conditional statistics: via culling chunks from speech. Pauses provide units for ex-
traction that do not require pre-bracketing to be stored as a chunk. Similarly, experience with lexical
items changes the types of items that are extracted through the modulation of attention (e.g., storing
enough extracted trochees yields a bias to cull chunks from speech that contain trochaic lexical stress).

Some mechanistic accounts of word segmentation conceptualize sensitivity to conditional statis-
tical structure as arising from distinct mechanisms from those that produce sensitivity to acoustic cues
such as lexical stress and phonotactic rules (e.g., Mersad & Nazzi, 2011). For example, an account put
forth by Shukla et al. (2007) suggested that computations are performed separately on transitional
probability information and prosodic information. It is only at a later stage of processing that the output
of these computations interacts. Specifically, items characterized by high transitional probabilities are
stored as potential word forms. Then, prosodic information is used as a filter to eliminate items that
are unlikely to be words on the basis of their prosodic well-formedness (e.g., a cluster of syllables con-
taining a perceptible pause in the middle). Thus, in this model, learners are proposed to perform two
separate sets of computations in a hierarchical sequence. In contrast, the Extraction and Integration
Framework conceptualizes sensitivity to both classes of cues as arising from the same process. Ac-
cording to a chunking perspective, for an item to be stored as a unified percept its component elements
must be held simultaneously in attention, which fits with research that indicates that secondary tasks
that demand attention disrupt statistical learning (e.g., Toro et al., 2005; but see Musz, Weber, &
Thompson-Schill, 2015) and that attention can modulate the statistical relations that are acquired (e.g.,
Baker et al., 2004). Thus, even if high transitional probabilities between syllables exist, the presence
of an intervening perceptible pause will prevent these elements from being stored in a single chunk.
In this way, a chunking account of word segmentation can account for a variety of language-
universal cues (e.g., conditional probability, utterance edges, perceptible pauses) invoking only a few
simple memory-based processes. These universal cues allow infants to identify a proto-lexicon. This
proto-lexicon allows infants to identify the phonological regularities that characterize word forms (via
the process of integration). In turn, discovering these phonological patterns changes the process of
extraction such that units that are consistent with the pattern are more likely to be segmented.

These language-specific phonological cues eventually supplant statistical structure in impor-
tance, as many of them may be more salient to the infant than conditional probabilities (e.g., lexical
stress; Jusczyk, Cutler, & Redanz, 1993; Jusczyk & Thompson, 1978; Thiessen & Saffran, 2003, 2007).
For example, one study revealed that 8-month-old infants prioritize stress and co-articulatory cues
over statistical information about syllable co-occurrence, when the cues were placed in conflict (Johnson
& Jusczyk, 2001). Similarly, a second study with adult learners found that incongruent phonotactic
cues disrupted the ability to segment based on statistical structure (Finn & Hudson Kam, 2008). Finally,
results from a study that pitted phonotactic cues against stress cues found that for 9-month-old infants,
stress cues were stronger than phonotactic cues (Mattys, Jusczyk, Luce, & Morgan, 1999). Indeed, a
wide variety of experiments have placed statistical cues in conflict with acoustic cues, and most of
these experiments demonstrate that by the age at which infants are able to use these cues, they are
weighted more heavily than information about syllable co-occurrence (e.g., Finn & Hudson Kam, 2008;
Johnson & Seidl, 2009). Note that this does not invalidate the claim that syllable co-occurrence is one
of the earliest cues to word segmentation (e.g., Thiessen & Erickson, 2013a). Instead, we suggest that
these results are consistent with the Extraction and Integration Framework due to the way in which
syllable co-occurrence and acoustic cues interact when processing speech. Once an infant has learned
a phonological pattern that is relevant for word segmentation such as lexical stress, these phonolog-
ical cues can be recruited very quickly in online speech processing (e.g., an infant needs only hear a
syllable once to determine whether it is stressed, thus acquiring information relevant for word seg-
mentation). In contrast, the use of statistical cues to word boundaries may require many repetitions
before the item becomes robustly represented in memory.

Furthermore, research about how cues conflict fails to address an important aspect of real lan-
guage processing: no single cue to word segmentation is perfect, and thus segmentation relies on taking
advantage of multiple congruent cues to segmentation. Critically, to the extent to which infants are
able to take advantage of multiple imperfect sources of information, the available cues can all work
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together to aid infants in the task of segmenting speech. Indeed, several computational models are
consistent with the idea that converging sources of information yield better segmentation performance
(Christiansen, Allen, & Seidenberg, 1998; Mattys, White, & Melhorn, 2005; Perruchet & Tillmann, 2010).
Studies that focus solely on cue conflict, in the interest of identifying a hierarchy of cue strength, fail
to provide a characterization of how sensitivity to these cues develops, and how the use of these cues
interact with each other in typical language situations when multiple cues converge rather than ar-
tificially conflict.

Although little research has explored how infants might integrate multiple cues, there have been
some exceptions to this trend (e.g., Lew-Williams, Pelucchi, & Saffran, 2011; Morgan & Saffran, 1995).
For example, Morgan and Saffran (1995) tested 6- and 9-month-old infants’ abilities to integrate se-
quential and rhythmic information while developing word-like representations. In this study, infants
listened to syllable pairs separated by silence and a noise detection task was used to determine how
cohesive they perceived the syllable pairs to be. The experimenters manipulated whether the sequen-
tial and rhythmic information was correlated or uncorrelated. For example, in the correlated condition,
the syllable ga might always follow the syllable ko, and in addition ga might always have a longer du-
ration than ko. They found that 9-month-olds represented the syllable pairs as a coherent unit only
when both rhythmic and syllable-order information supported such a grouping and not when only
one of the two cues did. In contrast, 6-month-olds showed evidence of representing the syllable pairs
as long as the rhythmic cue supported the grouping, regardless of whether the syllable-order regu-
larity was present. The author interpreted these results as evidence that 9-month-olds are able to
integrate both types of information whereas 6-month-olds are not. To perceive a cluster of syllables
as coherent, 6-month-olds attended solely to the rhythmic cue. Rhythm has been found to be salient
to infants (e.g., at birth infants already show a preference for their native language over languages
from a different rhythmic class; Nazzi, Bertoncini, & Mehler, 1998). Thus, salience might explain why
rhythm contributed more to 6-month-olds’ perception of coherence (e.g., Mehler et al., 1988). By 9
months of age, however, infants have increased abilities to integrate multiple sources of information,
which is likely to aid them in more efficiently and accurately segmentation the fluent speech stream,
which is rich with imperfect cues to word boundaries. Consistent with this finding, Jusczyk et al. (1999)
found that 10.5-month-olds were able to integrate statistical and lexical stress cues to correctly segment
the phrase guiTAR#is into an iamb followed by an unstressed monosyllabic word, whereas 7.5-month-
old infants’ overreliance on lexical stress led them to segment the trochaic non-word TARis from speech.

A recent study tested infants’ ability to integrate statistical cues to word boundary with another
source of information: words presented in isolation (Lew-Williams et al., 2011). According to one es-
timate, 9% of caregiver utterances consist of isolated words (Brent & Siskind, 2001). These isolated
occurrences are unlikely to be sufficient to build the infants’ early lexicon for several reasons. One reason
is that these occurrences, although compelling, are relatively infrequent. Moreover, even words in iso-
lations involve some level of ambiguity, because infants have no way of distinguishing bi- or tri-
syllabic utterances that are words (e.g., tiger; happiness; finishing; Saturday) from utterances that are
composed of multiple mono- and bi-syllabic words (e.g., I love cake; I’m tired; You’re feverish; I’m coming)
without some additional source of knowledge. One possible source of information is statistical co-
occurrence information. Brent and Siskind (2001) found that of the 9% of isolated words in the input,
27% of words appear two or more times in neighboring sentences (e.g., See the doggie there? Doggie!).
Similarly, Onnis, Waterfall, and Edelman (2008) found that 58.6% of sentences in child-directed speech
share lexically redundant information with neighboring sentences.

If infants were to integrate statistical co-occurrence information with pause information, this would
likely prove a viable strategy for the efficient segmentation of speech. According to the Extraction and
Integration Framework, pauses serve as a bracketing aid for the chunking process, because sound com-
binations that are separated by pauses will be less likely to be held in attention to be chunked. In this
way, the framework accounts for integration of pause information with other cues using the same pro-
cesses (i.e., chunking adjacent sound sequences held jointly in attention) rather than using a set of
separate processes. Lew-Williams et al. (2011) investigated the speech segmentation abilities of the
9.5-month-old infants using natural language stimuli. Critically, they increased the difficulty of the
task by shortening the exposure to the nonsense language to prevent infants from successfully segmenting
the speech on the basis of statistical structure alone. In the Fluent Speech Only condition, infants heard
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only fluent speech containing 12 repetitions of each target word. In a Fluent Speech + Isolated Words
condition, infants heard fluent speech containing 6 repetitions of each target word. In addition, they
heard three isolated tokens of each word. Subsequently, they tested infants’ ability to discriminate
between high-probability items and low probability items. They found that infants in the Fluent Speech + Iso-
lated Words condition discriminated high- from low-probability words, whereas infants in the Fluent
Speech Only condition failed to discriminate. Critically, the high- and low-probability items were heard
an equal number of times in isolation. Thus, the superior recognition of high-probability items found
in the Fluent Speech + Isolated Words condition must have reflected an integration of the two sources
of information. Items segmented statistically, then, can be integrated with words in isolation. By the
model of word segmentation advanced here (Thiessen et al., 2013), words in isolation can be con-
ceptualized as chunks stored in memory after they were presented bracketed by perceptible pauses.

Thus, a growing body of evidence suggests that sometime after the first half of the first year of
life, infants begin to be able to integrate multiple sources of information in the context of word seg-
mentation. This ability allows infants to benefit from multiple imperfect sources of information to
converge upon accurate parsings of speech. Here, we have described this process in terms of extract-
ing discrete and coherent chunks from the input and integrating across those chunks to learn phonological
patterns that drive later segmentation (e.g., Giroux & Rey, 2009; Thiessen & Erickson, 2013b; Thiessen
et al., 2013). According to chunking accounts of word segmentation, some global acoustic cues will
also emerge early and influence what units are extracted, as a result of the nature of human memory
and information processing. In particular, attention will be the driving factor, which is consistent with
evidence that statistical learning cannot proceed in the absence of attention (Baker et al., 2004; Toro
et al., 2005). Thus, because clusters of sounds must be held simultaneously in attention to be grouped,
sounds which cross a phrasal boundary or contain a perceptible pause will not be grouped (see Baker
et al., 2004 for evidence of this principle in the context of visual statistical learning). In contrast, infants
will not be able to integrate other language-specific acoustic cues (e.g., phonotactics) with other in-
formation until they have acquired that regularity via an analysis of the central tendency of stored
word forms. Once acquired, language-specific knowledge of prosodic patterns can serve to bias at-
tention, such that units that are consistent with that knowledge tend to be extracted (e.g., learners
will be more likely to extract sound clusters that obey phonotactic rules than clusters that violate those
rules).

Beyond word segmentation

Since the discovery of statistical segmentation, many studies have replicated infant segmentation
on the basis of statistical structure (e.g., Johnson & Jusczyk, 2001). Other studies have extended these
findings to other participant groups: adults (e.g., Saffran, Newport et al., 1996), children (Saffran, Newport,
Aslin, Tunick, & Barrueco, 1997), and neonates (Bulf, Johnson, & Valenza, 2011; Teinonen, Fellman,
Näätänen, Alku, & Huotilainen, 2009). Thus, statistical learning is intact very early in infancy; this is
critical to predictions made by statistical learning accounts, which argue that sensitivity to the sta-
tistics of the input bootstraps the acquisition of language-specific regularities. Furthermore, the
representations formed from statistical learning are long lasting, further supporting predictions that
learning of statistical patterns could support long-term learning tasks such as language acquisition
(Arciuli & Simpson, 2012a; Kim, Seitz, Feenstra, & Shams, 2009). Perhaps most importantly, as we have
argued above, statistical learning applies to more kinds of statistical structure than simply the se-
quential co-occurrence probabilities between syllables, and can be observed with both other kinds of
linguistic regularities and many other kinds of structured non-linguistic input (e.g., Conway & Christiansen,
2005; Fiser & Aslin, 2001) and over many kinds of structured input (e.g., Baldwin, Andersson, Saffran,
& Meyer, 2008; Creel et al., 2004; Fiser & Aslin, 2001; Kirkham, Slemmer, & Johnson, 2002).

The flexibility and generality of statistical learning suggests that it may be useful for other aspects
of language learning beyond word segmentation. One goal of the Extraction and Integration account
is to extend statistical learning accounts of language acquisition beyond word segmentation, in a unified
framework. As an example, consider demonstrations that statistical learning applies not only to the
acquisition of adjacent regularities (e.g., one syllable predicted the syllable directly following) but also
to the learning of nonadjacent regularities – regularities that exist over an intervening element (e.g.,
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Newport & Aslin, 2004; Thompson & Newport, 2007). The acquisition of syntactic structure also relies
on sensitivity to long-distance dependencies (e.g., the keys to the cabinet are on the table). Sensitiv-
ity to nonadjacent statistical regularities has been proposed as a mechanism underlying syntactic
development (e.g., Gomez & Gerken, 1999; Newport & Aslin, 2004). Both adult and infant learners are
able to acquire regularities at the level of word order (Kaschak & Saffran, 2006; Saffran, 2001b; Saffran
& Wilson, 2003). From our perspective, syntax acquisition based on nonadjacent regularities arises
from the same fundamental processes as the discovery of words and phonological patterns from ad-
jacent statistical regularities: extraction and integration. One primary difference between discovering
words and syntax according to this account is that high variability is needed in the elements that in-
tervene between nonadjacent dependencies (e.g., Gómez, 2002). As a result, integration is recruited
in the discovery of syntactic relations to a greater extent than in the discovery of words (Thiessen &
Pavlik, 2013).

This perspective contrasts with traditional linguistic approaches to the distinction between syntax and
the lexicon (e.g., Pinker, 1998; Pinker & Ullman, 2002). Instead, this perspective shares much in common
with connectionist and usage-based approaches (e.g., Elman, 1998; Goldberg, 2003; Tomasello, 2000;
Tomasello, 2003) and argues that language is composed of statistics at many different levels. Learners adapt
to statistics at these levels as a function of the same underlying processes that are involved in word seg-
mentation. According to this approach, phrase-level regularities are discovered in much the same way as
phonological regularities are discovered from the extraction of words. Learners extract multi-word chunks
(e.g., they’re buying it, they’re getting it, they’re hiding it), and then integrate across those stored chunks
to discover a phrase level regularity (e.g., they’re VERBING it). Rather than composing syntactic construc-
tions based on stored rules, initial schemata are lexically specific; groups of words are clustered into groups
based on phonological and semantic similarity. The strength of a particular cluster of words is a function
of both the size (i.e., the number of words in the cluster) and similarity between the cluster and new lexical
item to be assimilated into the lexical schema. Eventually, when enough items have been assimilated into
these lexical frames, they appear abstract and rule-like.

Existing empirical evidence is consistent with statistical learning or usage-based approaches to
syntax learning. Usage-based accounts predict that initial frames should be lexically specific
and should only gradually begin to appear abstract. This is consistent with evidence that although
2-year-olds will only reproduce ungrammatical word orders in 34% of their utterances with a
familiar verb, they are willing to produce ungrammatical word orders in as much as 69% of their
utterances with novel verbs, which suggests their knowledge of grammatical structure is grounded
in specific lexical items (Abbot-Smith, Lieven, & Tomasello, 2001). Also relevant is a study that
reported that children demonstrate familiarity effects for more frequent multi-word phrases, even
when overall item frequency is equated (Bannard & Matthews, 2008). These findings, along with
anecdotal reports that infants often undersegment utterances, treating high frequency multi-word
phrases as single units (e.g., more milk, what’s this; Brown, 1973; Reich, 1986), fit with a story in
which infants and young children are storing and integrating across multi-word chunks to acquire
phrasal structure. Finally, Onnis and Thiessen (2013) reported that native-language phrase level
regularities influence both English- and Korean-speaking learners’ word segmentation, a finding
which might suggest that the same processes are involved in discovering regularities at both word
and phrasal levels.

Two other extensions of the Extraction and Integration account to language acquisition phenom-
ena beyond word segmentation are worth noting. One possible extension of the Extraction and Integration
Framework is to provide an explanation of findings from the cross-situational word learning para-
digm, in which labels are paired with multiple referents and learners can only appropriately map a
label to its referent by tracking the co-occurrence probabilities over time (e.g., Yurovsky, Yu, & Smith,
2012; Yu & Smith, 2007). Early in learning, children do not know how words and referents pair to-
gether, and extract word–object chunks at random (or as guided by social attention; e.g., Pereira, Smith,
& Yu, 2014). Many of these associations will be spurious. These extracted chunks interact with long-
term memory representations stored in the cortex – a process we expect to be hippocampally mediated
(e.g., McClelland et al., 1995) – such that statistically coherent chunks are strengthened by the process
of integration. Over time, word–object representations that are stable, abstract enough to be gener-
alized (because features associated with specific instances are likely to be lost from the overall
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representation; Thiessen & Pavlik, 2013), and statistically coherent such that they represent pairings
between words and objects that are likely to co-occur.

Another extension of the Extraction and Integration account concerns phoneme learning. At birth,
infants discriminate beyond many phonetic distinctions that are not phonemic in their native lan-
guage; by the end of the first year of life, they primarily distinguish between contrasts that are phonemic
(i.e., meaningful) in their native language (Werker & Tees, 1984). One possible explanation for this
developmental phenomenon is that infants are sensitive to the statistical distribution of phonetic ex-
emplars in the input (e.g., Maye et al., 2002). The phonemic categories of the native language shape
the distribution of phonetic exemplars in the input because speakers are less likely to produce pho-
netic tokens that are ambiguous (that is, tokens that fall between two phonemic categories), and more
likely to produce tokens that are good exemplars of the phonemic distinctions in the language, es-
pecially in infant-directed speech (Werker et al., 2007). This leads to a peaked distribution in which
tokens near the prototypical center of a phonemic category outnumber tokens farther away from the
center (i.e., ambiguous tokens). If these exemplars were extracted from the input and stored, subse-
quent integration over these tokens will yield representations of phonetic tokens in which prototypical
clusters of phonemes are more strongly represented than ambiguous tokens (Thiessen & Pavlik, 2013).
As such, the processes of extraction and integration may help infants identify the phonemic categories
of their native language. In turn, these emerging phonemic representations may constrain subsequent
extraction, leading infants to be better suited to learning words in their native language (cf. Emberson,
Liu, & Zevin, 2013).

Comparison to other models of statistical learning

In the section that follows, the Extraction and Integration will be compared to other models of sta-
tistical learning. Although a comprehensive review of models of statistical learning is outside the scope
of this review, the Extraction and Integration Framework will be compared to a selection of models
with the goal of highlighting some of the similarities and differences between the framework and other
accounts. The clearest difference between the Extraction and Integration Framework and other ac-
counts is that the majority of other models attempt to explain only sensitivity to conditional structure
(but see Adriaans & Kager, 2010 for an exception that also explains sensitivity phonotactic patterns
through a generalization parameter that shares some similarities with the process of integration, al-
though it accomplishes this generalization using very different processes based on optimality theory;
e.g., Prince & Smolensky, 1997). In contrast, the Extraction and Integration Framework explains sen-
sitivity to condition structure via the process of extraction, and sensitivity to distributional properties
via the process of integration. However, given that these two processes can be modeled using two
separate computational models, I will focus my comparisons on the Extraction and Integration Frame-
works’ explanation of sensitivity to conditional structure (based on extraction) to other accounts of
conditional statistical learning.

Boundary-finding vs. clustering models

Most computational models of sensitivity to conditional information can be classified as either boundary-
finding or clustering models. The Extraction and Integration Framework invokes a chunking mechanism
to explain the learning of conditional relations, which can be characterized as a clustering model. Clus-
tering models assume that learners are extracting and storing discrete representations. This is accomplished
via storing clusters of statistically related elements (e.g., elements with strong conditional relations) in a
lexicon of potential word forms (see Orbán, Fiser, Aslin, & Lengyel, 2008 for an example of a clustering
model intended to explain visual conditional statistical learning). Clustering models vary in the mecha-
nisms they invoke to explain the storage of units (e.g., chunking; Perruchet & Vinter, 1998; Bayesian hypothesis
testing; Frank, Goldwater, Griffiths, & Tenenbaum, 2010), but they share the assumption that discrete rep-
resentations are extracted and stored. Thus, they explain the discrimination showed by learners of words
from artificial languages from foils with lower conditional probabilities by the fact that the words but not
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statistically incoherent foils are posited to be stored in a lexicon. One advantage of this assumption is that
it provides a natural fit to the concept of learning word forms.

In contrast, boundary-finding models operate by searching for regions in the input where the
conditional relations between nearby elements are low. Boundaries are inserted at these points of
low probability transitions. As an example, some simple recurrent networks are trained to predict
elements in a sequence of input (e.g., speech sounds) on the basis of the previous element
(e.g., Cairns, Shillcock, Chater, & Levy, 1997; Christiansen et al., 1998; Elman, 1990). When the
predictability of an upcoming element is lower than some preset threshold, or when an error
signal is high because the predictability in a certain area is poor, a word boundary is inserted. This
strategy contrasts from clustering models in that rather than storing units, they represent the
patterns of statistical relations between elements in an input. That is, although boundary-finding
models vary in the kind of statistical information they use to posit boundaries (e.g., Bayesian statis-
tics; mutual information; e.g., see Frank et al., 2010; Swingley, 2005 for more information), what
they share is the assumption that the process of learning is fundamentally about discovering where
the input is predictable and where it is not, which is then used to insert a boundary, rather than
forming discrete representations. For example, the StaGe model accounts for sensitivity to condition-
al probabilities via a boundary-finding strategy that relies on observed and expected probabilities
(Adriaans & Kager, 2010). Many boundary finding models have been instantiated in connectionist
networks (e.g., Simple Recurrent Networks; Christiansen et al., 1998), although connectionist models
of conditional sensitivity are not necessarily boundary-finding models. Rather, some connectionist
models of conditional sensitivity are better characterized as clustering models because they invoke
processes that result in discrete units (e.g., Boucher & Dienes, 2003; French, Addyman, & Mareschal,
2011).

Clustering models are able to explain the finding that learners respond differentially to units and
subcomponents of units (e.g., knowing the word helicopter makes it difficult for learners to recognize
the subcomponent heli; Giroux & Rey, 2009), because as learners become more familiar with a unit,
the subcomponents embedded in that unit are removed from the lexicon. This is accomplished by com-
petition between the stored units, although different models achieve this competition using different
processes (e.g., Frank et al., 2010; Orbán et al., 2008; Perruchet & Vinter, 1998). In contrast, boundary-
finding models do not invoke processes that result in competition between units and their embedded
components, and are consequently unable to account for the finding that learners become worse at
identifying embedded components of units as they become familiar with the whole unit. That is, because
embedded units have equally high conditional relations as the whole unit, they predict that learners
should be equally good at identifying the embedded unit.

An important consideration relates to the kinds of computations that models of statistical learn-
ing perform to account for learning of statistical structure. Some models explicitly compute transitional
probabilities (e.g., Gambell & Yang, 2004; Mersad & Nazzi, 2011), based on the typical assumption
that learners compute transitional probabilities between elements (Saffran, Aslin et al., 1996). In
contrast, other models do not explicitly compute transitional probabilities, despite the fact that they
invoke processes that lead to the appearance of sensitivity to transitional probability (e.g., Perruchet
& Vinter, 1998; Servan-Schreiber & Anderson, 1990). For example, PARSER can learn structure that
can be characterized by transitional probabilities between elements, despite the fact that it merely
stores frequently appearing sequences as chunks. An advantage of the latter kind of approach is that
it shows greater psychological plausibility approaches that explicitly calculate transitional probabili-
ties. Transitional probability approaches are also particularly vulnerable to concerns regarding the
units of computation. This is because if learners calculate transitional probabilities between ele-
ments, it becomes necessary to specify between which elements learners calculate transitional
probabilities (e.g., phonemes or syllables). Although some researchers have argued that syllables are
likely to be the unit for computation (e.g., Bertoncini & Mehler, 1981), based on studies that report
that infants find syllables to be more salient than phonemes (e.g., Bijeljac-Babic, Bertoncini, &
Mehler, 1993), other approaches have argued that neither phonemes nor syllables are psychological-
ly real (e.g., Goldinger & Azuma, 2003). Chunking approaches are less vulnerable to this concern
because a chunk can be described as a sequence of syllables or phonemes or an acoustic episode of
some duration.
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Computational architectures

Computational models of statistical learning can be implemented in a variety of architectures, such
as Bayesian, connectionist, or symbolic/hybrid symbolic models. The architecture in which models of
statistical learning are implemented is independent of the clustering/boundary finding distinction. For
example, although many boundary-finding models are implemented in connectionist architectures,
connectionist models can also implement clustering processes (e.g., French et al., 2011).

Although architectures are largely independent of the strategy that is used to achieve sensitivity
to statistical structure, different architectures are often differentially suited to addressing different kinds
of questions. For example, an advantage of connectionist architectures is that they possess a certain
amount of biological plausibility, given that learning involves patterns of activity among many low-
level interconnected units that exhibit some similarity to neurons. Connectionist architectures can be
thought of as describing an algorithmic level of learning according to Marr’s levels, in which the actual
processes involved in learning are specified (Marr & Poggio, 1979). In contrast, other models may de-
scribe learning at a computational level, in which the goal is not to describe the specific algorithms
used but rather the functions that those algorithms should attempt to explain. For example, norma-
tive descriptive statistical models do just this. Shortlist B is a Bayesian model of recognition of continuous
speech that can be described as a model at the computational level rather than at the algorithmic level
(Norris & McQueen, 2008). Similarly, the DR model described by Brent and Cartwright (1996) achieves
segmentation based on evaluating probabilities in a batch process that relies on having memorized a
large segment of input (note that this is not a necessary feature of Bayesian models; rather, some Bayes-
ian models may be characterized as process models, and implement constraints that may be akin to
memory limitations (e.g., INCDROP; Cartwright & Brent, 1997; Frank et al., 2010).

Chunking models are a type of clustering model that have generally been implemented in sym-
bolic or symbolic/hybrid frameworks (e.g., PARSER; Perruchet & Vinter, 1998; Competitive Chunker;
Servan-Schreiber & Anderson, 1990). However, although Servan-Schreiber and Anderson’s (1990) Com-
petitive Chunker model was originally formulated as a symbolic model, it has also been implemented
in a connectionist network (Boucher & Dienes, 2003). Although chunking processes can be simulated
using non-symbolic processes, a common feature to all chunking models is that they are necessarily
clustering models rather than boundary-finding models, given that they result in the storage of dis-
crete representations. Historically, chunking models have been more commonly applied to the adult
Artificial Grammar Learning literature (e.g., Reber, 1967), whereas perspectives that argue for statis-
tical computations between elements have been prominent in the infant statistical learning literature
(e.g., Saffran & Wilson, 2003; Perruchet & Pacton, 2006). The Extraction and Integration Framework
constitutes a departure from this traditional distinction, given that it originated from an infant sta-
tistical learning perspective, but it invokes chunking processes to explain sensitivity to statistical
structure.

Breadth of phenomena

A final distinction between the Extraction and Integration Framework and other models of statis-
tical learning lies in the breadth of phenomena that they attempt to explain. Whereas the previous
sections have been largely concerned with differentiating between the processes and architectures
of various models of conditional statistical learning, the Extraction and Integration Framework is unique
in that it attempts to account for the learning of many statistical regularities beyond conditional struc-
ture. One exception to this is the StaGe model, which does include a generalization parameter that
allows incorporating information such as phonotactics into the learning processes (Adriaans & Kager,
2010, although it achieves this using explicitly linguistic processes rather than the domain-general
process invoked by the Extraction and Integration Framework). Whereas almost all of the models de-
scribed previously have been applied exclusively to conditional probability learning, the Extraction
and Integration Framework attempts to describe category learning (e.g., learning phonemes based on
the frequency and variability of a set of exemplars; Maye et al., 2002) as well as the learning of cue-
based statistics (e.g., learning to segment based on stress; Thiessen & Erickson, 2013a; Thiessen & Saffran,
2007). Thus, the greatest advantage of the Extraction and Integration Framework may not lie in the
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particular algorithms that it favors as a description of the processes involved in the acquisition of
statistical structure, but rather the idea that statistics other than conditional probability exist and must
be explained.

In addition, although models of statistical learning may have generally focused exclusively on the
learning of conditional relations, the processes relevant for the acquisition of distributional statistical
structure have been studied in the context of the category learning literature. Other models of cate-
gory learning may be equally good at explaining distributional statistical learning. For example, the
Extraction and Integration Framework favors iMINERVA, an exemplar memory model that shares some
similarity with prototype models insofar as it generates aggregate representations that are interpre-
tations of sets of exemplars or experiences. However, although exemplars are preferred because they
make an immediate point of contact with the idea of storing word forms, this preference does not
represent a strong theoretical commitment; iMINERVA might be implemented as a model that stores
aggregrate representations rather than specific exemplars. Potentially relevant is the research from
the probabilistic category learning literature, which has largely focused on learning with explicit feed-
back that taps into the basal ganglia systems (e.g., Maddox & Ashby, 2004). It is unclear whether the
neural systems recruited in these paradigms are distinct from those recruited in statistical learning
tasks, in which no feedback is given. However, although no explicit feedback is given in traditional
statistical learning tasks, the Serial Reaction Time Task (Nissen & Bullemer, 1987) may be conceptu-
alized as involving a source of incidental feedback given that the participants show a decrease in the
amount of time and the number of errors in pressing the keys as they learn the pattern. Research in-
dicates that the basal ganglia are recruited in some tasks that involve incidental rather than explicit
sources of feedback (Lim, Holt, & Fiez, 2013). In addition, some neuroimaging studies have reported
that basal ganglia activation is seen during some statistical learning tasks (Karuza et al., 2013; McNealy,
Mazziotta, & Dapretto, 2006). It remains to be seen whether and how these learning systems are related
to the learning involved in statistical learning paradigms in which the learner receives no explicit feedback.

Evaluating models of statistical learning and their predictions

There are many models of statistical learning, and these models achieve sensitivity to statistical
structure using a wide variety of processes (e.g., Perruchet & Vinter, 1998; Frank et al., 2010; French
et al., 2011). The processes that these models invoke may be useful in deriving criteria to compare
the benefits and drawbacks of various models. One such criterion is psychological plausibility, based
on what is known about the cognitive architecture in which these models ultimately must operate.
One advantage of a chunking model such as PARSER (Perruchet & Vinter, 1998) is that it can explain
sensitivity to conditional structure without explicitly calculating transitional probabilities as some models
do (Mersad & Nazzi, 2011). PARSER simply pulls out chunks from the input and can learn the struc-
ture of input that can be described using transitional probabilities without the model ever learning
anything about transitional probabilities. This also constitutes an advantage relative to Bayesian per-
spectives that use hypothesis testing processes, because even with memory constraints imposed,
hypothesis testing is somewhat implausible as an explanation of infant behavior even if it may provide
a reasonable approximation of adult performance. Another advantage of chunking approaches such
as PARSER is that they have the advantage of making contact with the idea of word forms by positing
the formation of a discrete representation, whereas boundary finding approaches search for bound-
aries, which appears less compatible with the idea of learning words at least on a surface level. Finally,
chunking models such as PARSER provide a better fit to the data reported by Giroux and Rey (2009)
than boundary-finding models (e.g., an SRN model; Elman, 1990), which demonstrated that as learn-
ers become more familiar with chunks, they become less familiar with the sublexical components (e.g.,
becoming less familiar with eleph as elephant is better learned; see also Slone & Johnson, 2015, and
Orbán et al., 2008 for evidence of the same principle in visual statistical learning). Thus, the prin-
ciples that different models use to achieve sensitivity to statistical structure may be more informative
with respect to which model provides the best fit to human performance than predictions regarding
connections between learning of statistical relations and acquisition of real language.

Some models of statistical learning make different predictions from each other by virtue of the dif-
ferent processes they invoke to account for the learning of statistical structure. Specifically, models
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differ in the extent to which they predict that statistical learning should be related to or independent
of the aspects of domain general cognition. For example, because StaGe generalizes by invoking prin-
ciples from optimality theory, it uses explicitly linguistic processes (Adriaans & Kager, 2010;
Prince & Smolensky, 1997). For models that use explicitly linguistic processes, Thiessen has argued
that generalization in language should follow different patterns than generalization with nonlinguistic
stimuli (Thiessen, 2011; Thiessen et al., 2013). Contrary to this prediction, Thiessen has argued
that linguistic generalization at least in some forms occurs because of domain-general processes of
similarity rather than domain-specific constraints (Thiessen, 2011). In addition to making argu-
ments about domain-generality, PARSER and the Extraction and Integration Framework both posit
that sensitivity to conditional structure arises from general attention and working memory pro-
cesses. This stands in stark contrast to perspectives that argue that statistical learning is independent
of the processes such as attention and working memory (e.g., traditional implicit learning perspec-
tives; e.g., Hayes & Broadbent, 1988). For example, Ullman’s Declarative–Procedural Model makes a
clear distinction between lexical and syntactic processes (e.g., Ullman, 2004). Ullman (2004, 2005)
has argued that whereas facts are learned via declarative and working memory systems, the proce-
dural memory system underlies the learning of statistical structure, which is independent of declarative
and working memory processes and structures (e.g., Lum, Conti-Ramsden, Page, & Ullman, 2012). Sim-
ilarly, although TRACX is a connectionist model that bears more resemblance to chunking models such
as PARSER than many of the other connectionist models that implement boundary-finding strate-
gies, it also predicts the independence of statistical learning from working memory (French et al., 2011;
French & Cottrell, 2014).

Summary

Numerous models have been proposed to explain the process underlying statistical learning (e.g.,
Christiansen et al., 1998; Shukla et al., 2007). The goal of this section was to provide a description of
the Extraction and Integration Framework and discuss commonalities with and differences from other
models of statistical learning, both with respect to the processes that they invoke and the kinds of
predictions that they make. Whereas many models of statistical learning are sensitive only to condi-
tional information (e.g., Cairns et al., 1997; Christiansen et al., 1998) and may frequently explicitly
calculate transitional probabilities (e.g., Adriaans & Kager, 2010; Shukla et al., 2007), the main con-
tribution of the Extraction and Integration Framework is the suggestion that statistical learning consists
of two major processes that together explain how learners acquire many aspects of statistical struc-
ture. Extraction fundamentally involves a chunking process in which frequently occurring sequences
are likely to be chunked into discrete units. Integration involves similarity-weighted aggregation over
stored chunks to induce some aspect of central tendency. Critically, this learning then biases the ex-
traction parameter, such that learning influences the kind of chunks that are likely to be subsequently
extracted. One main advantage of this conceptualization of statistical learning is that it can explain
more than just sensitivity to conditional probabilities.

Here, we have described a mechanistic account of statistical learning and provided an explana-
tion of how sensitivity to statistical cues might be integrated with other cues in the context of language
acquisition. In addition, we have provided a brief discussion of how this model compares to other models
of statistical learning, which have largely attempted to explain sensitivity to conditional probabili-
ties. The theoretical account that we have described goes beyond the conceptions of statistical learning
as a transitional probability calculator. Instead, statistical learning is characterized as a mechanism
responsible for the learning of a much broader class of phenomena. We suggest that this mechanism
is, in fact, an important driver of early language acquisition. However, making such a claim requires
more than a simple demonstration and definition of a learning mechanism. Additionally, it requires
evidence that statistical learning is linked to “real” language acquisition. Throughout the rest of this
review, we will attempt to provide such evidence. We will begin by addressing one of the most pow-
erful possible objections to our theoretical stance: namely, that the kinds of stimuli used in laboratory
demonstrations of statistical learning are too artificial and too distant from real linguistic input to be
informative with respect to the process of language acquisition.
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Laboratory studies of statistical word segmentation

Given that laboratory studies of statistical word segmentation suggest that statistical learning is a
rapid domain-general learning mechanism, researchers have speculated about the role this mecha-
nism might play in the acquisition of natural languages (e.g., Mirman, Graf Estes, & Magnuson, 2010;
Newport & Aslin, 2000). With respect to word segmentation, although there are numerous studies
that demonstrate infant sensitivity to statistical cues to word boundaries (e.g., Graf Estes, Evans, Alibali,
& Saffran, 2007; Graf Estes, Evans, & Else-Quest, 2007; Saffran, Aslin et al., 1996), they have necessar-
ily involved an extremely simplified input because stimuli must contain no other cues to word identity
to isolate the effect of statistical structure on word segmentation. In contrast, naturally produced speech
contains many such cues, which must be removed to observe the effect of any particular cue on seg-
mentation; many of the early studies of word segmentation did just this. As a result, some researchers
have speculated that learning that is commonly found in laboratory settings with stripped down ar-
tificial stimuli is unlikely to be related to processes involved in the acquisition of natural languages:
although the studies may themselves be soundly designed, the learning involved is intimately tied
to experimental input. According to this view, the learning process observed in these studies is in-
sufficiently robust to scale up to the complexity found in natural languages (e.g., Johnson & Seidl, 2009;
Johnson & Tyler, 2010).

Ecological limitations of early studies of statistical learning

Early experimental studies of statistical learning were limited in their ecological validity, which
has generated concerns that performance on statistical learning tasks does not relate to real lan-
guage processes (e.g., Endress & Mehler, 2009; Johnson & Tyler, 2010). In this section, we will focus
on the statistical word segmentation literature for two reasons. First, investigations of statistical learn-
ing began in the context of word segmentation and thus most of the early work on statistical learning
is focused on word segmentation. Second, the statistical word segmentation paradigm is perhaps the
most artificial of the experimental paradigms exploring statistical learning (given the necessary dis-
similarity between the vast amounts of word segmentation experience children have in natural language
compared to laboratory settings), such that many of the ecological validity criticisms apply uniquely
or particularly to word segmentation. These limitations in ecological validity can be conceptualized
as falling into two broad categories with respect to the stimuli they used: (1) the stimuli are insuffi-
ciently complex and (2) the stimuli are unnatural. To some degree these issues overlap in the context
of natural language, where the extent to which an item is complex and naturalistic is fundamentally
intertwined; however, these constructs are logically separable and represent distinct concerns about
the scalability of findings. To address concerns regarding the ecological validity of statistical learn-
ing, both the complexity and the naturalism of the stimuli used in these studies must be addressed.
Although the nature of the statistical learning segmentation paradigm is such that certain limita-
tions in ecological validity are difficult if not impossible to overcome, remarkable strides have been
made with recent studies to use materials that more closely resemble the infant’s real language input
(e.g., Pelucchi, Hay, & Saffran, 2009; Saffran & Wilson, 2003; Thiessen et al., 2005).

Complexity
Artificial language stimuli used in early studies of statistical segmentation were simplified rela-

tive to real language with respect to (1) the acoustic properties of items used (e.g., whether the utterances
followed natural pitch contours) and (2) the distribution of the words in the experimental input (e.g.,
the particular order of the words in the miniature language). As will be discussed, increasing the com-
plexity of the acoustic properties of the words themselves within the typical statistical learning paradigm
is a relatively feasible task. In contrast, the simplified nature of the distribution of words in the ex-
perimental input will likely prove to be a greater challenge. Alternative and likely indirect approaches
(e.g., correlational methods) may be necessary to address concerns regarding the complexity of the
distribution of words.

Early statistical learning experiments used speech stimuli whose acoustic properties were simpli-
fied in key ways. Natural speech contains multiple informative cues, both language-general and

82 L.C. Erickson, E.D. Thiessen / Developmental Review 37 (2015) 66–108



language-specific. Rhythmic and stress cues, phonotactic regularities, and pauses at word boundar-
ies may all contribute to the identification of word boundaries. Consequently, these regularities were
removed from early speech stimuli, the better to demonstrate that infants could segment fluent speech
solely on the basis of probabilistic information about syllable co-occurrence. In addition to lacking
regularities that may be useful to word boundaries, such speech stimuli also lacked sources of acous-
tic variability that are present in natural language but that do not inform word identities. Specifically,
individual tokens, or productions of words, exhibit dramatic acoustic variability. This variability differs
depending on many features (e.g., speaker gender and identity). For example, tokens of words in speech
vary based on co-articulation; phonemes differ depending on the acoustic realization in which they
are produced: a /d/ actually sounds acoustically distinct depending on which phoneme precedes and
follows it.

Both types of acoustic variation – that which informs word boundaries and that which adds un-
informative (with respect to word boundaries) complexity – are present in real language, and their
absence in statistical learning experiments raises questions about how the learning in the laboratory
maps onto learning in naturalistic settings, albeit in different ways. One type of variability (i.e., that
based on indexical characteristics or variability in particular productions of word forms) may simply
make the learning process more difficult by requiring that learners recognize word forms in the face
of acoustic variability. The other kind of variability, involving additional cues to word boundary, may
actually simplify the learning process. However, the inclusion of this informative variability in labo-
ratory stimuli frequently produces results that are agnostic about the relative contributions of particular
cues. The earliest studies of statistical learning sought to isolate effects of statistical structure, which
meant removing these many potential sources of information. To this end, these studies eschewed
natural speech stimuli in favor of synthesized speech stimuli, which were constructed in such a way
to remove all extraneous cues. What resulted was a mini-language design that – because it stripped
away all other possible cues – allowed researchers to make causal claims about the role of conditional
statistics in the segmentation of speech. However, this removal of cues meant that the acoustic prop-
erties of the words themselves were simplistic relative to the acoustic richness of words found in natural
input. Note that (as we will discuss further in the next section, “naturalism”) subsequent studies have
rectified this shortcoming by using more complex acoustic input (e.g., Thiessen et al., 2005).

The frequency and the distribution of the lexical items – like the acoustic properties of the speech
itself – have also been simplified in traditional studies of statistical word segmentation. In these studies,
conditional probabilities must be manipulated to conclude that statistical structure has a causal role
in speech segmenting. Thus, artificial languages are created where conditional probabilities of syl-
lables are structured to create high-probability items (i.e., words; syllables that co-occurred regularly)
and low-probability items (e.g., part–word foils; syllables that co-occurred only incidentally between
two words). Because practical time limitations preclude exposure phases that are inordinately long
when testing infants, statistical regularities in experimental language input must be compressed into
mini-languages, else experiments would persist for hours or days. The length of the exposure varies
depending on the age group of the participants. Whereas with adults and children, exposure lengths
can be 15 minutes or longer (e.g., Saffran et al., 1997), with infants, the length of exposure is neces-
sarily brief (typically 1–2 minutes; Saffran, Aslin et al., 1996; Thiessen et al., 2005) due to their limited
attentional capacities (e.g., McCall & Kagan, 1970).

Despite this brevity, evidence of learning has been demonstrated in young infants after only 2 minutes
of exposure to mini-languages (e.g., Saffran, Aslin et al., 1996). The consequences of this time con-
straint on the design is twofold: the input is a highly concentrated presentation of only a few words,
and the conditional predictability of syllables that comprise words is perfect because no words are
permitted to share component syllables. This is typically achieved through the presentation of 4–6
words (groups of statistically coherent di- or tri-syllables) with the constraint that no word can repeat
in immediate succession. In this exposure, the transitional probability between two syllables in a word
is 1.0, and the transitional probability between two syllables that span a word boundary is 0.33 or
less (e.g., in a language with four words, if bidaku and golabu are words, the transitional probability
between bi and da is 1.0, whereas the transitional probability between ku and go is 0.33). Such ide-
alized conditional probabilities contrast with real language input, in which infants experience utterances
containing many distinct words, with fewer repetitions close in temporal proximity. Similarly, because
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real words contain overlap in the particular syllables they comprise, the conditional probabilities that
inform word boundaries are necessarily noisier. However, the presence of this noise is likely miti-
gated by the fact that the amount of speech that infants hear in real language input is vastly greater
than what they hear in simplified artificial languages used in the laboratory.

The presence of noise in the statistical regularities found in real language can be used to derive
predictions about the rate of vocabulary development. For example, because the difference in the level
of statistical coherence between words and non-words is less sharply marked in real languages than
in artificial languages, infants should make some errors. They should fail to recognize some words
with low statistical coherence and should treat some non-words with high statistical coherence (e.g.,
phrases like good morning) as though they are real words. Evidence suggests this is the case at least
for young infants learning French (Ngon et al., 2013). Similarly, the noisy statistical structure of real
languages means that word learning should exhibit a relatively protracted learning trajectory (e.g.,
Yurovsky, Fricker, Yu, & Smith, 2013). In other words, the noise in the input necessitates that infants
must hear many utterances before the higher probabilities between syllables that compose words become
evident.3 Once infants have identified a set of words, the presence of these recognized forms in the
input, and any learned phonological regularities, will simplify the learning problem and make learn-
ing proceed more rapidly.

Computational models may provide insight into this issue. A computational model of vocabulary
development that relied on sensitivity to statistical regularities in label-referent mappings success-
fully simulated key features of naturalistic vocabulary growth trajectories; although the model was
endowed with the capacity to detect statistical regularities immediately (i.e., from birth), it did not
begin to learn words until relatively late, and the rate of learning increased over time (Yu, 2008). This
learning trajectory accords with empirical evidence that suggests that vocabulary development begins
slowly and accelerates during the second year of life (Bates, Bretherton, & Snyder, 1988; Gopnik &
Meltzoff, 1987; Lifter & Bloom, 1989). Evidence such as the computational model described in Yu (2008)
indirectly buttresses the claim that the learning from such statistical mechanisms can scale up to the
complexity of natural language, by demonstrating that models instantiating statistical word-
learning algorithms show a similar trajectory to real vocabulary development curves.

Concordant with such a claim is evidence from corpus analyses (e.g., Gervain & Guevara, 2012;
Perruchet & Vinter, 1998; Swingley, 2005). The application of segmentation algorithms using statis-
tical co-occurrence information to real language corpora demonstrates that the use of this type of
computational strategy by learners is feasible; segmentation algorithms sensitive to statistical struc-
ture yield successful segmentations of speech. Despite this support for the plausibility of statistical
mechanisms in accounts of children’s vocabulary development trajectories, few laboratory studies have
tested directly whether learners can cope with noisier statistics that more closely approximate fea-
tures of real language input. A notable exception to this is a study that investigated segmentation with
noisier statistics, which found that adults were still able to demonstrate evidence of segmentation
(Frank et al., 2010). However, as this study only tested adults, an important task for future studies will
be to investigate whether infants are able to discover words when the statistics of the input are im-
perfect. This question may require a longitudinal design to ensure that the exposure is long enough
for infants to acquire the statistical structure among the noise.

Complexity in the form of noisy statistics, as described above, almost certainly poses a challenge
to word segmentation based on statistical structure. This is consistent with the general assumption
(often implicit) that greater complexity is harmful to infant learning. For example, more complex stimuli
require longer amounts of processing time for infants to encode than less complex stimuli, which sug-
gests that complex items may be more difficult to process than simple item (Hunter, Ames, & Koopman,
1983). One aspect of speech directed at infants and young children is that it tends to be simplified
and redundant in its structure relative to speech directed at older children and adults (Snow, 1972).
Similarly, Newport’s (1990) less-is-more theory of language development posits that infants are ac-
tually more successful at language acquisition than adults because their limited cognitive capacity forces

3 Factors in addition to the noise in the input, such as fine turning native language phonemic categories, also likely contrib-
ute to the protracted developmental trajectory of vocabulary development (e.g., Kuhl, 2004; Werker & Tees, 1984).
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them to process a truncated portion of their language input, which allows them to analyze better their
language in its smallest component structures rather than memorizing larger, misleading chunks of
input (e.g., Singleton & Newport, 2004). There is also evidence that the level of complexity of a visual
stimulus can drive infant interest, with stimuli at either extreme (too simple or too complex) elicit-
ing less interest from infants, a phenomenon that has been termed the goldilocks effect (Kidd, Piantadosi,
& Aslin, 2012). These results and theories suggest that in some cases, too much complexity can be
harmful to infant interest and learning.

The assumption that complexity is always harmful to learning may be erroneous, however. One
issue is that complexity is in some ways a vacuous term; there are many different ways that some-
thing can be complex (e.g., number of items in a system, intricacies in spatial and temporal ordering
between items), and it is frequently difficult to develop a principled way to define the term a priori.
For example, any stimulus that proves to be difficult to learn can be described as complex in a post-
hoc manner without any added explanatory value. To discuss complexity, then, we must establish a
consistent and measurable operationalization. One possible instantiation of complexity is an in-
crease in the amount of information (e.g., Shannon, 2001). Such an increase in information – such as
in the case of the acoustic properties of real versus artificial speech – may not always be problematic
for learning (e.g., Thiessen et al., 2005). For example, research indicates that adults may have a bias
toward learning about inter-correlated features over single features. Specifically, Stadler (1992) found
that sequences with higher levels of statistical structure were learned better than sequences with lower
levels of statistical structure. Similarly, Billman (1989) reported that adults showed facilitation for rule
learning in an implicit artificial language learning task when additional rules were correlated with
the rules to be learned. Similar principles may be involved in infant learning. For example, young chil-
dren can use distributional cues to learn grammatical gender categories but only when redundant cues
signal category structure (Gerken, Wilson, & Lewis, 2005). Research on infant discovery of nonadja-
cent conditional relations between elements (e.g., a-X-b, where a predicts b and X is a variable element)
demonstrates that greater variability in intervening elements (and thus greater complexity) actually
helps infants to learn the nonadjacent regularity (Gómez, 2002). In particular, greater complexity may
be helpful in situations where multiple sources of information converge (e.g., several imperfect acous-
tic and statistical cues all point to the same coherent units, or words, in speech).

Several studies of infant learning and complexity provide insight into this issue. One study tested
whether infants exhibited better learning when the input contained multiple related regularities, or
whether learning was superior when the input was simplified (Thiessen & Saffran, 2009). The authors
found that increased complexity actually helped infants between 6.5 and 8 months of age, who learned
melodies and lyrics more easily when they were presented in combination than when either was pre-
sentation in isolation. These results indicate that infants – like adults – sometimes benefit from greater
complexity while learning about conditional relations between elements. These results parallel the
findings of another study that found that for 6-month-old infants, visual speech cues enhanced phoneme
discrimination, despite providing an additional source of information to be processed (Teinonen, Aslin,
Alku, & Csibra, 2008). Also relevant is a study in which 12-month-olds were able to succeed on a sta-
tistical learning task in which the artificial language was characterized by multiple levels of regularities
(Saffran & Wilson, 2003). Despite this added complexity, infants were able to segment multi-word ut-
terances on the basis of statistical structure and subsequently discover word-order level regularities.
Together, these studies question the assumption that increased complexity always impairs infant learn-
ing, and they suggest that the increased complexity of natural language may not pose an intractable
challenge to infants’ discovery of word forms via statistical cues. In particular, some aspects of the
complexity that characterizes real language may actually facilitate word segmentation to the extent
that multiple sources of information converge with each other and infants are able to take advantage
of that convergence.

Similar principles regarding complexity can be seen in infant learning of form-based category ab-
straction (e.g., Gómez & Lakusta, 2004). In these paradigms, infants are familiarized with strings that
conform to auditory structures that conform to the form aX and bY (e.g., b elements were paired with
Y but not X). Typically, a and b elements consist of two distinct one syllable strings (e.g., the a element
might consist of the words alt and ush). X and Y elements are drawn from larger pools (e.g., 6 dis-
tinct elements) and are distinguished by a phonological characteristic (number of syllables; e.g., X:
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coomo; kicey; Y: deech; tam). Then, infants are tested on their ability to distinguish between novel strings
that conform to the learned pattern and strings that violate the pattern (e.g., the a element is paired
with either a one- or two-syllable novel word). By 12 months, when phonological cues (i.e., syllable
length) are correlated with the distributional properties (i.e., the pattern of association between a and
X and b and Y elements), infants can generalize these patterns to novel X and Y elements, discriminating
legal from illegal strings after a brief (3 minute) training (e.g., Gómez & Lakusta, 2004; Lany & Gómez,
2008). In contrast, when phonological and distributional cues are uncorrelated (i.e., X and Y ele-
ments cannot be distinguished by syllable length), infants are unable to learn form-based categories.
This paradigm was further extended Lany and Saffran (2010), who also first familiarized 22-month-
old infants with strings in which phonological and statistical cues were either correlated or uncorrelated.
Subsequently, infants in both conditions were trained on identical pairings between words and picture
referents from two categories (animals or vehicles; e.g., ong loga was paired with an image of a meerkat).
Only infants who had initially heard strings in which statistical and phonological cues were corre-
lated were able to learn the associations between specific pairings, or show generalization to novel
pairings. As this discussion indicates, complexity need not always hinder learning. The relation between
complexity and learning outcomes appears to hinge on how the additional information in the input
maps onto the underlying statistical structure. That said, it is important to acknowledge that much
of the complexity inherent in language is likely to create challenges for infants who are acquiring lan-
guage. More research is necessary, particularly with infants rather than adults (e.g., Frank et al., 2010,
Vouloumanos, 2008; Vouloumanos & Werker, 2009) that explains infant acquisition of weaker or noisier
statistical patterns.

Naturalism
A second feature of the early studies of statistical learning that contributed to their low ecological

validity was the unnaturalness of the stimuli they used. As previously mentioned, this feature is in-
tertwined with complexity insofar as language stimuli that are natural necessarily contain many sources
of information in addition to the conditional relations between elements (e.g., real speech carries emo-
tional information, words tend to co-occur with referents, and utterances contain both word- and phrase-
level regularities). However, in this case, the concern is not about whether the learning mechanisms
can scale up to greater complexity but rather that because the stimuli are highly artificial, infants do
not approach the laboratory task in the same way that they approach the task of parsing real speech.
Specifically, it may be that infants can succeed in these laboratory tasks, but they are not engaging in
the same learning mechanisms that are at work in the discovery of real words because they do not
process the artificial stimuli in the same way as real language. Although this sort of criticism is less
common than concerns about the scalability of conclusions from artificial stimuli, both represent threats
to ecological validity.

Several features of the traditional studies of statistical word segmentation contribute to their highly
artificial nature. One such feature lies in the frequency and distribution of the words, which is problem-
atic for the naturalism of the paradigm as well as the complexity, because natural input experienced by
infants does not typically contain the amount of repetition as artificial language (although IDS does contain
a level of repetition and redundancy that surpasses that of adult directed speech; Fernald, 2000). Perhaps
the most critical difference between natural language and the artificial language stimuli used in statisti-
cal learning studies is the sheer amount of acoustic variation that is present in real language. This acoustic
variation comes in many different forms. For example, coarticulation means that each phoneme in natural
language differs slightly as a function of the phonemes that precede and follow it. In artificial language
stimuli, this source of variability is not always included. A second source lies in the identity of the partic-
ular syllables that make up the utterances heard in both contexts (e.g., the syllable da appears in only one
word in artificial language stimuli whereas in real language input da is a component syllable of multiple
different words). Similarly, although word length varies in real language, the words used in stimuli have
historically tended to be uniformly di- or tri-syllabic. Finally, whereas words in English are typically pro-
duced with lexical stress, most studies have used words that place equal stress on each syllable (but see
Pelucchi et al., 2009; Thiessen & Erickson, 2013a; Thiessen & Saffran, 2003 for exceptions). Moreover, these
words lacked indexical variation such as emotional valence, multi-talker variability, and the idiosyncratic
variation that characterizes distinct tokens of produced over different time points. In addition, in contrast
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to the real language learning where words tend to co-occur temporally with referents, in these laborato-
ry studies infants would typically hear speech without the opportunity to associate words with visual objects
or events (but see Thiessen, 2010).

More recent research has made great strides in addressing these kinds of limitations, by design-
ing experiments with increased ecological validity. These studies have done so by using stimuli for
statistical segmentation paradigms that are simultaneously more complex and naturalistic (e.g., Hay,
Pelucchi, Graf Estes, & Saffran, 2011; Pelucchi et al., 2009; Sahni et al., 2010). The artificial languages
constructed for these studies better approximated the infant’s real language input in several ways.
Critical to the question of the specific role in statistical learning in word segmentation, these studies
have involved modifications that increase the naturalism of the experimental input without intro-
ducing additional cues to word boundaries. One such modification is the use of speech produced by
a human speaker rather than a speech synthesizer. As a result, the stimuli used in these studies contain
many features of real speech. For example, in real speech words vary acoustically, depending on which
words they precede and follow, because words cannot be produced by speakers without co-
articulation. Similarly, these studies used stimuli that contained multiple tokens of particular words,
meaning items exhibited slight acoustic variation. These and other modifications resulted in an in-
crease in ecological validity.

Thiessen et al. (2005), one of the first studies to demonstrate infant segmentation with more complex
and naturalistic stimuli, used a nonsense language that was more similar to the infant’s real speech
input in several ways. Whereas most studies of segmentation have used words of uniform length, typ-
ically two or three syllables (e.g., Thiessen & Saffran, 2003), Thiessen et al. (2005) used a language that
varied the number of syllables in a word; the input contained both bi- and tri-syllabic nonsense words.
In addition, although the only cue to word boundaries was the statistical structure of the speech, a
speaker produced the words naturally in sentences. Because there were 12 distinct sentences, this meant
that infants heard 12 distinct tokens of each word during the exposure phase. This contrasts with pre-
vious studies, in which each repetition of a particular word was created by splicing together acoustically
identical instances of the word (e.g., Saffran, Aslin et al., 1996). Another by-product of using a lan-
guage produced in sentences was that the input contained the characteristic intonation contours of
real language. In one condition, the language was produced using the prosodic characteristics of infant-
directed speech (IDS), which involves a characteristic exaggeration in pitch contour and elevation in
pitch fundamental frequency. Performance in this condition was compared to a condition with a lan-
guage produced with standard adult-directed speech (ADS). Infants who were exposed to the language
produced in ADS did not show evidence of segmentation at test. Although the authors attributed this
failure to segment to the brief exposure phase (in this study, infants heard each word only 12 or 24
times whereas the original studies used languages with 45 repetitions of each word), another possi-
bility is that the failure to segment is the result of the use of a language that contained words of varying
lengths, or a combination of the two factors. This possible explanation for their results accords with
other studies that suggest infants have difficulty segmenting languages with varying word lengths,
even with more word repetitions (Johnson & Tyler, 2010; Lew-Williams & Saffran, 2012), although with
enough exposure it is possible that this difficulty may be overcome. However, in contrast to infants
who listened to ADS, infants who heard the language produced in IDS discriminated words from lower-
probability foils, indicating that they were able to segment the language. Thiessen et al. (2005) speculated
that this IDS advantage for segmentation may lie in its capacity to hold attention (e.g., Werker, Pegg,
& McLeod, 1994). Regardless of the specific mechanism, together these findings suggest that al-
though increasing the variability of word lengths increases the difficulty of the segmentation task,
this challenge can be mitigated by other features of the real input. In this case, IDS facilitated statis-
tical word segmentation. IDS is pervasive cross-linguistically, and it has been argued to be a universal
feature of communication with infants (e.g., Grieser & Kuhl, 1988). This modification of speech may
play a critical role in the facilitation of word segmentation in the real world, where the input by nature
contains noisy statistics.

Like Thiessen et al. (2005), other recent laboratory studies have used stimuli produced with IDS,
as well as additional features contained in natural language that have furthered the trend of increas-
ing ecological validity (e.g., Pelucchi et al., 2009). Pelucchi et al. (2009) tested the ability of the 8-month-
old English-exposed infants to segment real language: the input comprised grammatically correct and
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semantically meaningful Italian sentences produced by a native speaker. This study contained many
of the naturalistic features of the study by Thiessen et al. (2005), such as natural sentences produced
in IDS with its characteristic intonation contours. These sentences included variable individual word
tokens as well as words of variable length. Moreover, these real Italian sentences were produced using
the typical rhythmic patterns of Italian. Italian shares the trochaic (strong–weak) lexical stress pattern
of English, but the languages differ in many other dimensions such as phonotactics, allophonics, and
other rhythmic aspects. This meant that the input was likely quite novel to the infants. Following a
brief familiarization, infants were tested on their ability to discriminate high-probability items from
low-probability items. At test, infants showed a significant preference to listen longer to high-
probability items. Critically, both types of items were produced with trochaic stress. This meant that
infants’ preference could not be driven by an a priori preference for items with trochaic stress and
were attributable to their successful segmentation of the speech stream.

Together, these studies take important first steps in increasing the ecological validity of laborato-
ry studies of statistical learning. They demonstrate that in many cases the increased complexity that
characterizes real language does not pose an insurmountable obstacle to infant statistical word seg-
mentation. Moreover, in some cases, this complexity is actually beneficial to learning, such as in the
case of a regular audiovisual association between words and referents (e.g., Thiessen, 2010). Critical-
ly, the types of heightened complexity that tend to either enhance learning are those that also increase
the naturalism of the stimuli, which strengthens the argument that laboratory studies of statistical
learning tap into the same processes that are at work. As noted previously (Saffran & Thiessen, 2003),
such a pattern is unlikely to have occurred by chance. Instead, because languages are only able to survive
when they contain the sorts of complexity that infants are able to learn, the link between complex-
ity and naturalism likely evolved over our evolutionary history.

Summary

Studies of statistical word segmentation have made great strides in increasing their ecological va-
lidity since the pioneering studies of the 1990s. Despite the challenges inherent to the heightened
complexity of the stimuli used in these studies, infants have been able to exhibit successful segmen-
tation on the basis of statistical structure. However, practical issues in the design of the experimental
paradigm preclude certain types of manipulations that might further bolster statistical accounts of
word segmentation. For example, introducing the amount of noise that is present in the real world
into conditional probabilities would necessitate the creation of experiments that persist for months
or years. Practical considerations limit the feasibility of such studies, but support for statistical learn-
ing accounts of language acquisition can also be garnered from exploring additional predictions made
by such theoretical accounts. One such account is the Extraction and Integration Framework (Thiessen
et al., 2013), which is a potential mechanistic account of the processes by which statistical learning
allows infants to discover word forms and adapt to the structure of their language.

In the next section, we will use this account to derive and explore testable predictions in the context
of potential links between variation in performance tasks of statistical learning and variation in real
language outcomes. For example, one key prediction made by statistical bootstrapping accounts of
word segmentation is that reliance on statistical cues to word boundaries – which do not depend on
language-specific properties – will precede reliance on language-specific acoustic cues (e.g., Thiessen
& Erickson, 2013a). This is exactly what research has demonstrated: when statistical cues and stress
cues are placed in conflict, English-exposed 7-month-olds segment on the basis of transitional prob-
abilities and ignore stress cues. In contrast, 9-month-olds ignore transitional probabilities and segment
units that conform to the predominant stress pattern of English (Johnson & Jusczyk, 2001; Thiessen
& Saffran, 2003; see Thiessen & Erickson, 2013b for a replication of segmentation based on statistical
cues with 5-month-olds). These findings support the predictions made by statistical bootstrapping
accounts, whereby early sensitivity to statistics is what allows infants to acquire language-specific
knowledge of acoustic regularities (see also Sahni et al., 2010 for evidence that 9-month-olds can use
syllable co-occurrence to discover a novel prosodic cue). However, accounts of word segmentation
that emphasize an early reliance on acoustic cues to word boundaries provide a poorer fit to these
findings. With regard to natural language acquisition, these results suggest that early learning should
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be slow, if infants are relying initially on statistical cues. Unlike laboratory studies, real language con-
tains a rich array of cues to word boundaries. As infants identify more of these cues, word segmentation
should become more rapid and efficient. This trajectory is consistent with empirical reports of early
vocabulary development (Bates et al., 1988; Gopnik & Meltzoff, 1987; Lifter & Bloom, 1989).

Predictions of a statistical learning account of language acquisition

Since the advent of statistical learning research on infants, researchers have suggested a link between
statistical learning and language development (e.g., Graf Estes, Evans, Alibali et al., 2007; Graf Estes,
Evans, & Else-Quest, 2007; Romberg & Saffran, 2010; Saffran, Aslin et al., 1996; Thiessen & Saffran, 2003).
One of the advantages of a theoretical framework like the Extraction and Integration account is that
it yields testable predictions that make it possible to assess the validity of the supposed link between
statistical learning and language outcomes. For example, this account holds that statistical learning
is a mechanism that plays an important role in infants’ discovery of words in fluent speech, as well
as adapting to the predominant prosodic and phonological patterns of the native language. Such an
account predicts that if statistical learning abilities are relevant to real language acquisition, individ-
ual differences in these abilities should be linked to real language outcomes, such that individuals who
perform better on tasks of statistical learning should also achieve superior language learning and pro-
cessing outcomes. Evaluating a link between individual differences in language outcome and learning
ability is fundamental to any enterprise that claims a central role for statistical learning in language
development. A second set of predictions relates to statistical learning abilities in clinical popula-
tions with impaired or atypical language development. Namely, if the Extraction and Integration account
suggests that the processes of extraction and integration are critical for language development, we
might predict that (1) these processes should be intact in typically developing populations with good
language outcomes, and (2) one or both of these processes might be functioning atypically in popu-
lations with impaired or atypical language development. In the following sections, we will examine
these predictions.

Statistical learning and building a lexicon

A key prediction of a statistical learning account of language acquisition is that the product of sta-
tistical learning – the representations that emerge as a function of learning – should be ready for
incorporation into the developing linguistic system. With respect to word segmentation, this predic-
tion can be formulated simply: the representations formed over statistical segmentation tasks should
be word-like in nature. Critics of statistical learning approaches have argued that statistical learning
involves calculations of transitional probabilities and does not involve the storage of frequent and co-
herent word-like units (e.g., Endress & Mehler, 2009). One approach to addressing this question has
been to test the extent to which the output of statistical learning (i.e., words) shares features of real
words (e.g., Erickson, Thiessen, & Graf Estes, 2014; Graf Estes, Evans, Alibali et al., 2007; Graf Estes,
Evans, & Else-Quest, 2007; Mirman, Magnuson, Graf Estes, & Dixon, 2008; Saffran, 2001a). A variety
of models of statistical learning suggest that this should be the case because they argue that statis-
tical learning gives rise to chunks, or unitary representations of frequent and statistically coherent
clusters of sounds, rather than merely producing computations which do not result in word-like items
stored in memory (e.g., Perruchet & Vinter, 1998). These chunks compete with each other, so that fre-
quent and statistically coherent items will tend to be more robustly represented than items that are
less frequent and less statistically coherent. Consider the chunk tyba, formed from the end of the word
pretty and the beginning of the word baby. Because this chunk is only likely to occur in the context of
these two lexical items, it always receives competition from both items and its representation is pushed
down relative to real world items, which necessarily compete with fewer items. Therefore, when infants
segment speech on the basis of its statistical structure, statistical learning accounts predict that they
should create word-like representations rather than merely high-probability sequences of sounds without
relevance to their native language (e.g., Hay et al., 2011; Saffran, 2001a). That is to say, the output of
statistical learning should be an integrated perceptual unit that is stored in memory. This unit would
be highly familiar and available for subsequent processing or mapping to referents, and might con-
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trast with a case where high probability transitions between sounds are familiar, but have not been
stored in memory as a unitary chunk.

Research that used a diverse set of methodologies supports the prediction that word forms dis-
covered via statistical cues exhibit word-like properties (Graf Estes, Evans, Alibali et al., 2007; Graf
Estes, Evans, & Else-Quest, 2007; Hay et al., 2011; Saffran, 2001a). In one such study, Saffran (2001a)
tested whether preferences for statistical nonsense words parsed from fluent speech (e.g., tibudo) dif-
fered as a function of the lexical context. These nonsense words were either embedded into a highly
familiar English sentence frame (i.e., “I like my [tibudo]”) or a nonsense sentence frame matched on
several dimensions (i.e., “Zy fike ny [tibudo]”). Eight-month-old infants listened longer to items that
were words in the language, but this preference held only when the words were presented in the context
of a real English sentence. Listening times for infants who were exposed to these words in the context
of nonsense word frames were equivalent, which suggested that infants were treating these items as
potential English words. An account in which the output of statistical learning is merely a high-
probability sequence of sounds does not make different predictions for particular sentential frames.
Thus, the finding that infants only treated statistical words and foils differently when they occurred
in meaningful linguistic contexts is unanticipated by such an account. One caveat is that an alterna-
tive explanation to these results is possible, namely, that differences in familiarity of the sentential
frames may have driven the results. However, other studies that have asked whether the output of
statistical learning is word-like using different methodologies provide indirect support for the idea
that infants were treating these items as potential English words.

For example, Erickson et al. (2014) familiarized 8-month-old infants with an artificial language and
subsequently gave them an object categorization task in which category exemplars were paired with
linguistic associates. They found that the status of the linguistic associate with respect to the artifi-
cial language influenced whether infants were successful in categorizing. In particular, statistical words
(items containing high probability syllable transitions) were found to facilitate object categorization
relative to statistically incoherent foils (items containing one low probability syllable transitions). In
the categorization literature, linguistic associates have been linked to superior categorization perfor-
mance relative to nonlinguistic associates (e.g., Balaban & Waxman, 1997; Ferry, Hespos, & Waxman,
2010). Thus, statistically coherent items share properties of real words. Perhaps most compellingly,
Graf Estes and colleagues (Graf Estes, Evans, Alibali et al., 2007; Graf Estes, Evans, & Else-Quest, 2007)
used a word learning paradigm to investigate whether the process of statistically segmenting words
from fluent speech is related to that of mapping meanings to labels. They found that 17-month-old
infants were able to map labels to objects when those labels are composed of novel syllable se-
quences with high-internal probabilities. In contrast, infants did not learn the mapping when the labels
comprised familiar sequences with low internal probabilities. This indicates that the process of seg-
menting words from fluent speech is intimately linked to word learning, which is also a critical
component of early language acquisition. Taken together, these studies suggest that infants treat high
probability items – or statistical words – and thus the output of statistical learning, as possible English
words rather than merely sound sequences with high internal probabilities. This strengthens the ar-
gument that statistical learning experiments tap into the mechanisms that play a role in real language
acquisition, rather than merely indexing some artificial laboratory phenomenon with little relevance
to developing a lexicon.

Individual differences

A related prediction is that if statistical word segmentation is important for language acquisition,
it should be related to the differences in real language outcomes. There is evidence to suggest that
large individual differences in language learning abilities exist, particularly when learning takes place
in adulthood (e.g., Dörnyei, 2005; Johnson & Newport, 1989). Recently, a group of researchers have
suggested that individual variation in language learning abilities may be linked to stable genetic
differences (e.g., Wong, Morgan-Short, Ettlinger, & Zheng, 2012). For example, functional human poly-
morphisms that result in differing levels of prefrontal dopamine activity are linked to individual
differences in cognitive processes such as procedural learning, working memory, and attention (e.g.,
Papaleo, Erickson, Liu, Chen, & Weinberger, 2012; Wong et al., 2012). The same kinds of individual
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differences may also influence statistical learning, and, through statistical learning, language out-
comes. For example, dopamine is known to influence the function of the basal ganglia, hippocampus,
and prefrontal cortex, three regions that are likely to play a role in at least some aspects of statistical
learning (e.g., Karuza et al., 2013; McNealy et al., 2006; for reviews for the dopaminergic system, see
Seamans & Yang, 2004; Shohamy & Adcock, 2010). To the extent that these regions are implicated in
statistical learning, and influenced by individual differences in dopaminergic functions, a logical con-
clusion is that individual differences in language acquisition linked to differences in dopamine may
be driven, in part, by individual differences in statistical learning. Given the number of neural learn-
ing systems that may play a role in language learning (e.g., striatal regions; Karuza et al., 2013; Lim,
Fiez, & Holt, 2014; Tricomi, Delgado, McCandliss, McClelland, & Fiez, 2006), this kind of individual vari-
ation may have a wide variety of underlying causes, and potentially different effects on statistical learning
processes and outcomes. An investigation of stable genetic differences and language proficiency will
likely prove valuable to our understanding of individual variability in language learning abilities.

Whereas much of the research on variability in language outcomes has focused on adults,
this variability may be present in infancy. Indeed, a statistical learning account of individual differ-
ences predicts that at least a portion of this variability is rooted in individual differences in using
statistical information to break into language. Infants who have trouble segmenting words from
fluent speech may not have many word forms stored in memory to associate with real world
referents, and thus may have smaller vocabularies than infants who are adept at segmenting speech.
In addition, these infants may show additional disadvantages such as slower comprehension in
online sentence processing. In contrast, infants who are skilled at extracting word forms from
speech may have greater prospects to learn about the meaning and other aspects of these extracted
word forms (e.g., Graf Estes, 2015). This argument is related to an argument made by Fernald and
Marchman (2012), namely that individual differences in processing speed in infancy constitutes
meaningful variability that shows continuity over time, and is related to real language outcomes
such as vocabulary size and growth trajectories. Using longitudinal methods, they demonstrated
that speed and accuracy in early understanding of language predicts cognitive and language out-
comes at 8 years of age (Fernald, Perfors, & Marchman, 2006; Marchman & Fernald, 2008; see also
Tsao, Liu, & Kuhl, 2004 for evidence that speech perception in infancy is related to language devel-
opment in the second year of life). Longitudinal data linking statistical word segmentation abilities
in infancy to later language proficiency outcomes are important to determine the role that statistical
learning plays in the acquisition of natural languages and would strengthen statistical accounts of
word discovery such as the Extraction and Integration Framework (e.g., Arciuli & Torkildsen, 2012;
Thiessen et al., 2013).

Relatively few studies have investigated the possibility of a link between word segmentation and
later language development. One exception is an experiment by Newman, Ratner, Jusczyk, Jusczyk,
and Dow (2006) that tested infants between 7.5 and 12 months of age on their ability to recognize
words from passages across a change in speaker’s gender and their ability to use phonotactic cues to
segment. They investigated whether these skills were related to their expressive vocabulary size at 2
years (Newman et al., 2006). They found that children who had larger vocabularies at 2 years had gen-
erally outperformed their peers on the segmentation tasks in the second half of their 1st year of life.
In a subsequent analysis, they found that although segmenters and nonsegmenters differed in their
later vocabulary size, they did not differ in general cognitive abilities as measured by the Kaufman
Brief Intelligence test (K-BIT; Kaufman, 1990). This finding is problematic for the potential alterna-
tive explanation that children who were simply smarter or possessed faster processing speed were
better equipped to learn words. Instead, this finding is consistent with the idea that it was their su-
perior segmentation skills that led to their larger vocabularies, with two caveats. First, while it is
important to establish that links between segmentation and later language acquisition are not en-
tirely mediated by general cognitive abilities, this should not be taken as evidence that there is no
relation between statistical learning and general cognitive abilities. Several theoretical accounts of sta-
tistical learning (including our own) posit just such a relationship. Second, these experiments looked
at segmentation as a general construct, rather than specifically examining sensitivity to statistical struc-
ture. As such, it is premature to conclude the existence of a link between statistical learning abilities
and language outcome, although these results are consistent with such a link. The relationship between
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early word segmentation and later vocabulary size established by Newman et al. (2006) has been since
replicated by a recent prospective longitudinal study that examined the association between seg-
mentation abilities at 7.5 months and vocabulary size at 2 years (Singh, Reznick, & Xuehua, 2012). In
this study, infants were familiarized with words in isolation and subsequently tested on their ability
to recognize those words in fluent speech. They found that segmentation performance was related
to productive vocabulary size at 2 years of age. In addition, both vocabulary size and segmentation
performance were related to general cognitive skills, as measured by the Bayley Scales of Infant De-
velopment (2nd ed.; BSID-II; Bayley, 1993).

Both Newman et al. (2006) and Singh et al. (2012) assessed a link between word segmentation
and subsequent vocabulary size, without specifically assessing statistical learning abilities. We suggest
that this correlation is due, at least in part, to the fact that infants who are better at segmenting are
likely to be better statistical learners. However, an alternative possibility is that infants who are
better at segmenting succeed for reasons that are unrelated to statistical learning. As such, it is
important to directly investigate the link between statistical learning abilities and subsequent lan-
guage outcomes. A growing number of studies have looked at the direct links between individual
differences in a variety of statistical learning tasks and language proficiency. Evans, Saffran, and
Robe-Torres (2009) tested the statistical word segmentation abilities of elementary school-aged
children (between 6- and 14-years-olds). The authors found that statistical word segmentation was
positively correlated with both receptive and expressive vocabulary. Similarly, another study found
that adult implicit learning performance as measured by the Serial Reaction Time Task was corre-
lated with the performance on two foreign language examinations (Kaufman et al., 2010). Another
relevant study explored infants learning of form-based categories when statistical cues (i.e., distri-
butional and phonological cues about label identity) were probabilistically predictive of semantic
category membership (i.e., whether the label tended to be paired with animals or vehicles; Lany,
2014). Only the infants in the study with higher levels of grammatical development were able to use
the statistical cues to support learning mappings between the labels and semantic categories, which
is consistent with the idea that infants’ sensitivity to relations between forms and meanings sup-
ports both learning of words and grammar. Finally, Misyak and Christiansen (2012) found that
performance on tasks of auditory Artificial Grammar Learning – both of adjacent and nonadjacent
regularities – was correlated with online sentence comprehension using a self-paced reading para-
digm above, and beyond the contributions of factors such as working and short-term memory,
vocabulary, reading experience, motivation, and fluid intelligence. Moreover, performance on the
task of adjacent and nonadjacent statistical learning predicted processing of sentences characterized
by short- and long-distance dependencies, respectively.

Together, these studies provide support for the idea that statistical learning and word segmenta-
tion performance are critically related to later vocabulary size, a real language outcome that is
important for both communication and literacy (e.g., Anderson & Freebody, 1981). This correlation is
consistent with the hypothesis that statistical learning plays a critical role in word segmentation. If
statistical learning plays a fundamental role in word segmentation, then it follows that such a
mechanism is important to developing a lexicon. Furthermore, the finding that statistical learning of
nonadjacent relations predicted online processing of long-distance dependencies in sentences pro-
vides support for the idea that statistical learning is also important for syntax acquisition (e.g.,
Gomez & Gerken, 1999; Thompson & Newport, 2007). Critically, in several studies that collected
measures of general intelligence and other cognitive factors, statistical learning and segmentation
were found to explain variance in real language outcomes even after controlling for those factors
(Misyak & Christiansen, 2012; Newman et al., 2006; see also Conway, Bauernschmidt, Huang, &
Pisoni, 2010; Kaufman et al., 2010). If the predictive power of statistical learning abilities in account-
ing for variance in real language outcomes could be entirely accounted for by consideration of
intelligence and other cognitive factors, this would be damaging to any account that posits a central
role for statistical learning abilities in ultimate language attainment. That said, we do not mean to
imply that statistical learning is likely to be completely independent of such factors. On the contrary,
the relations between statistical learning and general cognitive abilities are likely to exist, although
they may be complex and multi-faceted. For example, vocabulary knowledge constitutes an impor-
tant part of intelligence testing. Similarly, if statistical segmentation involves the extraction of
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chunks from the input, it may be related to the storage aspects of working memory.4 In turn,
working memory is related to fluid intelligence, although the aspects of working memory that have
to do with executive attention and manipulation of information rather than storage are likely to be
more strongly related to fluid intelligence (Engle, Tuholski, Laughlin, & Conway, 1999). Although
much work must still be done to specify how statistical learning fits into the range of human
cognitive abilities, because it is a logical possibility that general cognitive abilities could mediate
effects of statistical learning ability on language outcomes entirely, approaches that rule out intelli-
gence as an alternative causal pathway are potentially informative. That said, existing research
suggests that fluid intelligence and statistical learning as indexed by a variety of implicit learning
paradigms are either unrelated or only weakly related (e.g., Kaufman et al., 2010; McGeorge, Crawford,
& Kelly, 1997; Misyak & Christiansen, 2012; Reber, Walkenfeld, & Hernstadt, 1991; but see Brooks,
Kempe, & Sionov, 2006).

Another approach to understanding the contributions of individual differences in statistical learn-
ing ability to language outcomes is to assess learning of non-linguistic stimuli. This is important because
it is possible that success in linguistic statistical learning tasks is caused by strong language skills (e.g.,
more precise representations), rather than better statistical learning skills leading to better language
learning outcomes. Correlations between visual statistical learning and individuals differences in lan-
guage ability suggest that if there are stable individual differences in the ability to detect environmental
statistical regularities, these differences are unlikely to be specific to prior experience with linguistic
or auditory information (e.g., Arciuli & Simpson, 2012a, 2012b; Frost, Siegelman, Narkiss, & Afek, 2013).
Arciuli & Simpson (2012a, 2012b) tested adults and elementary school-aged children using a visual
analog of the typical auditory statistical learning paradigm. They reported that performance was sig-
nificantly related to reading ability, independently of age and grade. Reading ability is underpinned
by vocabulary knowledge among other factors (e.g., working memory; e.g., Cain, Oakhill, & Bryant,
2004) and has been suggested to reflect an ability to detect statistical regularities (e.g., Arciuli, Monaghan,
& Seva, 2010; Plaut, McClelland, Seidenberg, & Patterson, 1996). Visual statistical learning has simi-
larly been linked to adult second language acquisition (Frost et al., 2013). Frost et al. (2013) found
that native English speakers who were better able to learn conditional relations between shapes were
generally better at picking up Hebrew word morphology. A pretest indicated that the sensitivity to
statistical structure of the shapes was not related to measures of generalized intelligence and working
memory. In a similar vein, performance on a task of visual sequence learning was found to predict
grammatical knowledge in hearing-impaired children (Conway, Pisoni, Anaya, Karpicke, & Henning,
2011). Kidd (2012) reported that implicit visual sequence learning but not explicit word pair learn-
ing predicted performance on a syntactic priming task. Finally, Shafto, Conway, Field, and Houston
(2012) recently reported a positive correlation between visual statistical learning and receptive vo-
cabulary in 8.5-month-olds. The correlation did not reach significance at a measurement five months
later, although it was in the predicted direction. Thus, individual differences in statistical learning abil-
ities within the visual modality are predictive of real language outcomes.

The studies described all relied on correlational methods, which cannot rule out the possibility that
third variables are responsible for these effects, or indicate the directional of causality. Thus, caution
must be observed in interpretation. However, the aggregate findings of these studies are consistent
with the possibility that there exists a domain-general capacity to absorb statistical regularities in the
input that uniquely accounts for variance in language outcomes. The existence of such a capacity fits
with domain-general approaches that claim that language has phylogenetic and ontogenetic roots in
basic perceptual and cognitive mechanisms rather than specialized learning mechanisms (e.g., Bates
& MacWhinney, 1982; Tomasello, 2003), and it is consistent with an account in which infants higher
in this ability show advantages at both the segmentation of speech and the acquisition of syntax. These
putative advantages may result in a variety of superior language outcomes, such as larger vocabular-
ies and superior acquisition and processing of syntactic structure (e.g., Kidd, 2012; Evans et al., 2009).

4 Controversy exists regarding the distinction between working and short-term memory (e.g., Engle et al., 1999). Here, we
use the term working memory as an umbrella term and distinguish between different aspects of working memory by refer-
ring to storage vs. executive attention.
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However, much remains unknown about such a domain-general statistical learning capacity, par-
ticularly with respect to how it is related to other domain general cognitive abilities, many of which
are at least moderately related to each other (e.g., executive functions and intelligence; Duncan, Emslie,
Williams, Johnson, & Freer, 1996; Friedman et al., 2006). Indeed, there are theoretical reasons to believe
that a general statistical learning ability should be related to other domain general cognitive skills.
For example, the Extraction and Integration Framework suggests that the process of extraction should
be related to attention and working memory, and the process of integration should be related to en-
coding specificity and prototype abstraction. Also uncertain is the extent to which different measures
of statistical and implicit learning (e.g., the Serial Reaction Time task; Nissen & Bullemer, 1987; the
Artificial Grammar Learning paradigm; Reber, 1967, 1969, 1989) are interrelated. Few studies have
investigated the question of how multiple measures of statistical learning are related to each other
and to other cognitive abilities (but see Gebauer & Mackintosh, 2007; Kaufman et al., 2010; Misyak &
Christiansen, 2012). For example, although research indicates that attention is necessary for statisti-
cal learning (e.g., Baker et al., 2004; Toro et al., 2005), to our knowledge no study has investigated
whether individual differences in statistical learning are related to individual differences in attention.

Relation to clinical phenotypes

Beyond studies that reveal the presence of significant correlations between statistical learning per-
formance and real language outcomes in typically developing populations, studies of clinical populations
may provide further insight into the prediction that statistical learning is related to building a lexicon
and other language processes. Although the etiology of clinical disorders is typically complex and multi-
faceted, a potential avenue of inquiry is to determine whether clinical populations that display linguistic
deficits or delays show disrupted statistical learning abilities. The mere presence of deficits in such
populations cannot conclusively demonstrate that these linguistic difficulties stem from problems with
statistical learning and not more global cognitive processing deficits; however, the existence of such
deficits would align with an account in which some aspects of language difficulties may be related to
disrupted statistical learning abilities. Further, if these populations show completely intact and typical
statistical learning abilities in the face of language difficulties, it might suggest that other cognitive
and perceptual abilities are more important to typical language functioning than statistical learning.
Critically, we do not mean to imply that all cases of atypical language development can be explained
by deficits in statistical learning. For example, the failure to acquire spoken language by children who
are profoundly deaf is certainly not attributable to impaired statistical learning. However, there may
be some cases of atypical language outcomes in which statistical learning does not function normal-
ly. In this section, we will examine the statistical learning abilities of selected clinical phenotypes
characterized by atypical language development.

Specific manifestations of language impairments in different clinical populations might be pro-
duced by distinct patterns of disruptions to the machinery responsible for sensitivity to statistical
structure. For example, the process of extracting frequent and statistically coherent clusters might be
disrupted, such that word forms are never extracted, and thus never stored in memory. Another pos-
sible pattern of deficits might involve intact extraction and storing of word forms, but difficulty with
other aspects of the learning process. For example, individuals might exhibit difficulties associating
those stored word forms to individual items or categories of items in the world. Alternatively (or ad-
ditionally), learners might experience problems with the process of integrating across the word forms
to discover language-specific phonological patterns, which in turn might reduce efficiency of the later
extraction of appropriate units from speech. Learners might also experience difficulties discovering
the units over which to integrate. Alternatively, an infant might show relatively normal performance
on these aspects of word learning, yet show difficulty integrating multiple sources of information when
they point to different speech parsings. Finally, a disruption in statistical learning may also lead to
deficits in producing and comprehending syntax among individuals from clinical populations. To the
extent that the ability to acquire nonadjacent statistical regularities as measured by Artificial Grammar
Learning experiments (e.g., Gómez, 2002; Reber, 1967, 1969, 1989) is related to the acquisition and
processing of syntax, populations that exhibit difficulties in processing syntax may also be impaired
at acquiring nonadjacent statistical regularities in laboratory studies.
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Here, we explore the prediction that statistical learning may function atypically in a clinical pop-
ulation characterized by deficits in language: children with specific language impairment. As noted
previously, the etiology and manifestation of these disorders is undoubtedly multifaceted, the result
of pleiotropy and gene by gene interactions. Thus, we do not mean to imply that a deficit in statisti-
cal learning abilities is the primary causal factor in the etiology of developmental language disorders.
Instead, we mean to use an examination of these clinical populations as a mean of examining the link
between statistical learning and language. If, as we claim, statistical learning plays an important role
in language development, at least some of the populations that have difficulties with language should
show deficits in statistical learning.

Specific language impairment
Specific language impairment (SLI) is a disorder that affects between 3% and 10% of children (Tomblin

et al., 1997). Children with SLI exhibit pervasive speech and language deficits such as delayed vocab-
ulary and syntax acquisition (e.g., Lum & Bleses, 2012; Rice, Tomblin, Hoffman, Richman, & Marquis,
2004; van Der Lely & Battell, 2003). Although the name SLI implies linguistic specificity and consid-
erable research has focused on deficits in phonological processing and verbal short-term memory abilities
(e.g., Gathercole & Baddeley, 1990; Graf Estes, Evans, & Else-Quest, 2007), growing evidence casts doubt
on the linguistic specificity of the disorder (e.g., Evans et al., 2009). Unlike disorders such as Wil-
liams syndrome or Down syndrome, which possess a clear etiology, SLI exhibits great heterogeneity
(e.g., Leonard, 1998). This heterogeneity in manifestation and severity of impairments results from
the fact that SLI is diagnosed when a child’s oral language lags behind other areas of development
for reasons that cannot be ascertained, such as when a child exhibits normal hearing, normal non-
verbal intelligence test scores, and a lack of neurological damage (Leonard, 1998). As a result, caution
must be observed with drawing conclusions about the nature and etiology of SLI; however, one al-
ternative to the linguistic specificity hypothesis is that there is a general perceptual or cognitive locus
to the disorder (e.g., Ullman & Pierpont, 2005).

This hypothesis is supported by studies that indicate that many individual with SLI possess at least
one nonlinguistic deficit, such as impairments in motor functions and rapid temporal processing (e.g.,
Alcock, Passingham, Watkins, & Vargha-Khadem, 2000; Botting & Conti-Ramsden, 2001; Dewey & Wall,
1997; Evans et al., 2009; Fazio, 1996; Gathercole & Baddeley, 1990; Johnston & Ramstad, 1983;
Montgomery, 1993; Noterdaeme, Mildenberger, Minow, & Amorosa, 2002; Tallal & Piercy, 1973; Tallal
et al., 1996; Vargha-Khadem, Watkins, Alcock, Fletcher, & Passingham, 1995; for a review, see Bishop,
1992). In particular, many of the impairments involve complex sequences of movement, such as oromotor
movements, or moving pegs (e.g., Alcock et al., 2000; Bishop, 2002). Schwartz and Regan (1996) found
a strong correlation between auditory language comprehension and performance on fine motor tasks,
which may suggest that these procedural learning deficits are tightly linked to the language difficul-
ties. Implicit learning and statistical learning are believed to be closely related learning mechanisms,
if they are not the same mechanism (e.g., Perruchet & Pacton, 2006).5 If procedural learning deficits
are in fact a core component of SLI, it will remain to be seen whether such deficits are a causal factor
in the manifestation of the disorder, or merely a superficial by-product of atypicalities in phonolog-
ical or perceptual processing. Regardless of the etiology, statistical learning accounts predict that
individuals with SLI, who have atypical language outcomes, will also exhibit atypicalities in extrac-
tion, in integration, or in both statistical learning processes. In addition, the Extraction and Integration
Framework differs from other accounts insofar as it predicts that if atypicalities in extraction exist,
they should be causally related to deficits in working memory. In contrast, other accounts have argued
that if working deficits in SLI exist, they should be considered peripheral rather than core deficits (Lum
et al., 2012).

Several studies indicate that extraction, or sensitivity to conditional statistical structure, is im-
paired in SLI (e.g., Lum, Gelgic, & Conti-Ramsden, 2010; Tomblin, Mainela-Arnold, & Zhang, 2007), which

5 Other perspectives regard different implicit learning tasks as engaging distinct learning mechanisms (e.g., Gebauer & Mackintosh,
2007) although these issues are complicated by the possibility that task reliability may play a role in obscuring inter-relations
between implicit learning tasks (e.g., Salthouse, McGuthry, & Hambrick, 1999).
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may be related to both the small vocabularies found in SLI and difficulties individuals with SLI expe-
rience acquiring syntactic patterns. Evans et al. (2009) tested the ability of elementary school-aged
children with SLI to segment speech on the basis of statistical structure. Whereas typically develop-
ing children matched on age and nonverbal IQ exhibited above chance performance and a positive
correlation with vocabulary size after 21 minutes of exposure to the language, children with SLI re-
quired a much longer exposure to the language to show above-chance performance and the positive
correlation between ability and vocabulary size demonstrated by the typically developing children
using a shorter exposure phase. Moreover, when the input consisted of tones characterized by the same
statistical structure as the speech, children with SLI failed to show evidence of learning even after 42
minutes of exposure, despite the fact that typically developing children showed above chance per-
formance. These results indicate that statistical learning abilities are atypical in this clinical population,
and this impairment is not limited to linguistic materials. Children with SLI may be impaired at the
process of statistical learning whereby frequent and statistically coherent units are culled from speech.

If the ability to benefit from the presence of statistical structure is causally linked to vocabulary
acquisition, this disruption in the ability to extract frequent and coherent units from speech may play
a role in the language deficits displayed by children with SLI. Specifically, if the segmentation of speech
on the basis of statistical structure requires more time for infants who will later be diagnosed with
SLI, they might demonstrate a considerably delayed trajectory in the discovery of word forms from
speech. In turn, having relatively few word forms stored in memory means that there will be fewer
word forms to associate with real world referents. Additionally, the Extraction and Integration account
suggests that to the extent word–object association is facilitated by statistical learning (extracting and
binding word–object pairings), then children who have difficulty with the process of extraction may
also be impaired in associating lexical forms with referents. Evidence is mixed with regard to this latter
prediction, perhaps due to heterogeneity in the population of children diagnosed with SLI (e.g., Lum
et al., 2010). Regardless, our account predicts that difficulty with extraction may prevent children with
SLI from developing typically-sized vocabularies, which can subsequently lead to further language-
related deficits (e.g., Bailey & Snowling, 2002). In contrast to traditional accounts of SLI invoking language-
specific impairments, our perspective suggests that difficulties with lexical acquisition in SLI arise, at
least in part, from a more general deficit in statistical learning abilities (e.g., Evans et al., 2009; Hsu,
Tomblin, & Christiansen, 2014).

Another hallmark of SLI, in addition to lexical deficits (e.g., Gray, 2005), is impaired acquisition of
syntax (e.g., Bailey & Snowling, 2002; Gopnik & Crago, 1991; Hansson & Nettelbladt, 1995; Rothweiler
& Clahsen, 1993). Syntax involves the acquisition of nonadjacent regularities in addition to adjacent
regularities and has thus been posited to be related to the statistical learning of nonadjacent regu-
larities (e.g., Gomez & Gerken, 1999). This proposal is consistent with several studies that have found
links between sensitivity to statistical structure in Artificial Grammar Learning and procedural learn-
ing tasks and acquisition and processing of syntactic structure in typically developing individuals (e.g.,
Kidd, 2012; Misyak & Christiansen, 2012; Lum et al., 2014). According to the Extraction and Integra-
tion Framework, both extraction and integration may underlie the learning of nonadjacent regularities
and consequently syntax. Thus, pervasive difficulties in learning the statistical structure of input through
extraction as well as integration may be related to the syntactic deficits found in SLI. Additionally, the
Extraction and Integration Framework predicts that differential impairment to extraction and inte-
gration should lead to somewhat different outcomes: whereas vocabulary acquisition is more dependent
on the process of extraction, we suggest that the acquisition of syntax is relatively more dependent
on the process of integration.

Although a comprehensive assessment of different patterns of statistical learning difficulties in chil-
dren with SLI is not yet available, some evidence exists that is consistent with this prediction. Tomblin
et al. (2007) tested the implicit learning abilities of both typically developing adolescents and ado-
lescents with SLI using the Serial Reaction Time Task, which consists of long sequences and thus may
involve the detection of both adjacent and nonadjacent regularities. Although both groups improved
over time, indicating sensitivity to the sequences, the rate of learning was slower for adolescents with
SLI. Moreover, this difference in learning rate was found when language impairment was defined in
terms of grammatical impairments, but not when language impairment was defined in terms of vo-
cabulary group differences. This may account for some of the individual variability in the manifestation
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of SLI, as many individuals with SLI are likely to show slightly different constellations of impair-
ments as a result of the way individuals who experience language difficulties are grouped. Lum et al.
(2010) also found that children with SLI were impaired relative to typically developing peers on the
Serial Reaction Time Task. In addition, they found that children with SLI showed impairments on a
task of explicit learning. Specifically, children with SLI experienced difficulty with a paired associate
task, but only when the elements to be associated were verbal rather than visual. The authors inter-
preted these findings as evidence that although some children with SLI have difficulties with declarative
memory, others have intact declarative memory, at least in the context of auditory information (e.g.,
Leonard et al., 1982; Whitehurst, Novak, & Zorn, 1972). In contrast, the implicit learning of se-
quences may be impaired in a greater percentage of individuals with SLI. This dissociation between
lexical/declarative and procedural abilities may provide a partial explanation of why some children
with SLI eventually appear to catch up with their peers, if these children are able to compensate for
poor implicit learning with an overreliance on lexical memory and the application of explicit rules to
memorize complex grammatical forms (e.g., Gopnik & Crago, 1991; Ullman & Gopnik, 1999).

Much remains unknown regarding the nature of SLI as a result of both the diagnostic criteria and
the uncertainty as to which phenotypic characteristics reflect causes and which reflect relatively more
superficial by-products of other impairments. In spite of the uncertainty surrounding the etiology of
SLI, the few studies that exist are consistent with the prediction that individuals with SLI will show
impairments on tasks of statistical learning (e.g., Evans et al., 2009; Hsu, Tomblin, & Christiansen, 2014;
Tomblin et al., 2007). Moreover, the Extraction and Integration Framework makes novel predictions
with regard to the etiology of SLI that may prompt future investigation. Prior accounts of the link between
implicit learning and SLI have suggest that the heterogeneity in outcomes is due to the fact that some
children with SLI show “true” procedural learning deficits (i.e, procedural but not declarative impair-
ment), while others show “peripheral” deficits unrelated to statistical learning (Lum et al., 2012). In
contrast, our framework conceptualizes this heterogeneity in terms of differential impairments to the
two underlying processes necessary for statistical learning, extraction and integration. This leads to
testable predictions regarding the patterns of impairments in individuals with SLI. For example, ac-
cording to the Extraction and Integration Framework, a subset of individuals with SLI may show deficits
in the detection of conditional regularities (e.g., statistical segmentation) that are coupled to atypicalities
in working memory and attention. In contrast, other perspectives would predict that even if working
memory and attentional deficits are found in individuals with SLI, they should not constitute a core
aspect of the impairment (Lum et al., 2012). Another subset of individuals with SLI may show im-
pairments in a variety of tasks that rely on integration, or inducing central tendency from a group of
exemplars (e.g., Artificial Grammar Learning). Different combinations of impairments in these pro-
cesses may contribute to the heterogeneity in the manifestation of SLI. More studies are needed to
fully characterize the nature of impairments in statistical learning, and to test whether only sensi-
tivity to conditional regularities is impaired or whether integrating over exemplars to form prototypes
also shows deficits. In addition, such investigations should consider the role of modality. Whereas the
Extraction and Integration Framework proposes that statistical learning tasks may be best grouped
according to their relative reliance on the processes of extraction and integration, other perspectives
emphasize the importance of modality in grouping tasks (e.g., Conway & Christiansen, 2006). Conse-
quently, future research should test which of these organizations has more explanatory power in the
context of SLI.

Summary
Together, these studies are consistent with the possibility that deficits in conditional and distri-

butional statistical learning may exist in clinical populations characterized by language deficits or delays.
An important caveat is that the etiology of clinical disorders is complex and multi-faceted. Thus, al-
though deficits in statistical learning may be a causal factor in the language impairments displayed
by certain clinical populations, this is not the only viable possibility. For example, statistical learning
deficits may be one of the multiple causal factors, or the result of a lower level perceptual or phono-
logical deficit. That said, the results from the reviewed studies are largely consistent with a story in
which difficulties in adaptation to the statistical structure of the environment play an important role
in the segmentation of speech to acquire a lexicon, the acquisition of syntactic structure, and inte-
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grating across stored exemplars to induce knowledge of language-specific phonological patterns. Rather
than being restricted to linguistic materials, these impairments can be seen in nonlinguistic domains
as well and likely contribute to the poor language outcomes associated with these clinical pheno-
types. Regardless of whether statistical learning turns out to be a central causal factor or a relatively
more peripheral indicator of other causes, the reviewed studies support the prediction made by sta-
tistical accounts of language acquisition such the Extraction and Integration Framework that populations
with atypical language outcomes will show atypical statistical learning.

Conclusion

The evidence outlined so far – research on statistical learning using more ecologically valid
stimuli as well as correlations between individual variability and real language outcomes – supports
the claim that statistical learning is related to the acquisition of language in naturalistic settings.
With respect to statistical word segmentation, support for the predictions made by statistical boot-
strapping accounts of word segmentation lies in studies that employ increased ecological validity of
the stimuli via heightened complexity and naturalism (e.g., Hay et al., 2011; Pelucchi et al., 2009;
Thiessen et al., 2005). These studies suggest that, in many cases, the complexity of natural language
may not pose an intractable obstacle for statistical learning. They suggest that this mechanism is
sufficiently powerful to play a fundamental role in developing a lexicon. This lexicon then allows
infants to adapt further to the phonological patterns of their native language (i.e., patterns that
require an understanding of how that phonological pattern is correlated with word position, as in
the case of lexical stress or phonotactics) via distributional statistical learning, which then increases
the speed and accuracy of subsequent utterance segmentations. For example, knowing that stressed
syllables tend to initiate words in English allows a listener to correctly segment an utterance after a
single hearing (e.g., Cutler & Carter, 1987). English-speaking infants and adults are more accurate at
segmenting a speech stream with iambic stress following training with lists of isolated iambic words
(e.g., Thiessen & Erickson, 2013a; Thiessen & Saffran, 2003). Familiarity with words themselves also
aids segmentation, as illustrated by the finding that infants can segment words that follow familiar
words (e.g., mommy; Bortfeld et al., 2005). Similarly, statistical learning may provide an opportunity
to acquire phrase level regularities by extracting and storing multi-word chunks (e.g., Saffran, 2001b;
Saffran & Wilson, 2003). Integrating over the chunks provides an opportunity to identify consistent
syntactic frames (e.g., I’m VERBing it).

Further support for relevance of statistical learning to real language acquisition comes from studies
that correlate performance on tasks of conditional statistical learning with performance on mean-
ingful measures of real language outcomes such as vocabulary size, reading comprehension, and syntax
acquisition (Arciuli & Simpson, 2012a; Evans et al., 2009; Kidd et al., 2012). Although correlational
methods cannot rule out the possibility that general cognitive abilities are at the core of all of these
tasks, in cases where measures of general cognitive abilities or intelligence are reported, statistical
learning and segmentation abilities explain a unique portion of the variance. Thus statistical learn-
ing is likely to be important for language acquisition even beyond word segmentation, the focus of
the earliest studies of this flexible domain-general mechanism (e.g., Saffran, Aslin et al., 1996). More
research is necessary to characterize the nature of potentially causal links between statistical learn-
ing and later language outcomes. For example, longitudinal research demonstrating links between early
statistical learning abilities and later vocabulary outcomes would be of value. Moreover, research on
clinical populations with language difficulties or delays shows that statistical learning and word seg-
mentation abilities are impaired relative to those possessed by typically developing populations (e.g.,
Evans et al., 2009). If statistical learning does indeed play a critical role in the discovery of words and
the acquisition of syntactic and phonological regularities, disruptions to particular aspects of statis-
tical learning mechanisms may be a causal factor in some of the language delays and deficits present
in these populations. Data from clinical populations have the potential to help us develop a better un-
derstanding of the process of statistical learning, by virtue of presenting an opportunity to examine
how patterns of impairments in specific disorders map on to disruptions in different aspects of the
statistical learning process.
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Comparison to other accounts

The Extraction and Integration Framework is not the first attempt to explain how statistical
learning contributes to language acquisition. It does, however, differ from prior accounts on several
dimensions. First and foremost, it attempts to unify discussion of statistical learning of sequential
elements (e.g., syllables in an utterance) with discussion of learning of distributional patterns (e.g.,
prototypically arrangement of phonemes in phonotactic learning). This is in contrast to many
models of word segmentation that suggest that tracking of sequential probabilities arises from a
completely different set of processes than learning of phonological regularities such as predominant
lexical stress, phonology, or phonotactics. For example, in the StaGE model (Adriaans & Kager, 2010),
learners identify words via calculation of transitional probabilities and then deduce phonological
and phonotactic constraints via a hierarchical ranking of constraints similar to that of Optimality
Theory (Tesar & Smolensky, 2000). Similarly, Mersad and Nazzi (2011) proposed that learners
use a hierarchical ranking of phonological cues to parse the speech stream, relying on sequential
statistics only in cases where these cues are uninformative. In addition to invoking very different
kinds of learning mechanisms and representations than the Extraction and Integration Framework,
both of these accounts explain segmentation in terms of a hierarchy of cues, such that higher-
ranking cues should always outrank lower-ranking cues. By contrast, our account proposes that
phonological cues exert an influence on segmentation as a function of guiding attention on the basis
of the similarity between the current input and (representations of) prior input. From this perspec-
tive, the “ranking” of cues may change in a fluid way as a function of changes in the distributions to
which children are exposed, or the similarity on a variety of features between the current input and
prior input.

Another difference between our account, and prior theoretical accounts of statistical learning, is
in the nature of the learning mechanisms we invoke. One aspect of this difference is in terms of the
kinds of computational principles that are thought to give rise to sensitivity to statistical structure in
the input. Many prior models of statistical learning have suggested some form of explicit computa-
tion of, or sensitivity to, transitional probabilities (e.g., Adriaans & Kager, 2010; Frank et al., 2010). By
contrast, from our perspective, learners may appear to be sensitive to transitional probabilities because
they are storing chunks of the input, which – due to basic memory processes such as interference –
are biased toward statistically coherent chunks over the course of exposure to the input (e.g., Perruchet
& Vinter, 1998). This difference leads these different classes of models to be sensitive to different kinds
of manipulations of the input. For example, consider a hypothetical artificial language in which A is
followed by B 50% of the time, and by C 50% of the time. By contrast, consider a hypothetical grammar
in which A is followed by B 50% of the time, and also be elements C, D, E, F, and G, each of which occurs
10% of the time. From the perspective of computing transitional probabilities, the relation between A
and B is identical across both languages, and so learning of the A–B relationship should proceed equiva-
lently. From an extraction perspective, however, the A–B relationship has a much stronger competitor
in the first language than in the second language, so the identical 50% transitional probability should
be learned differently across the two languages.

A final notable dimension of difference between our account and others is in the mechanistic, bi-
ological processes that learners use (as opposed to the formal description of the computations) to achieve
sensitivity to statistical structure. We have discussed several such processes over the course of de-
scribing our framework, including activation, interference, and decay. However, other process claims
are possible. For example, our framework suggests that statistical learning shares deep commonali-
ties with implicit learning, as it invokes chunking as an explanation for sensitivity to conditional statistical
structure (Perruchet & Vinter, 1998). Chunking has frequently been invoked as an explanatory con-
struct in a wide variety of implicit learning tasks, from Artificial Grammar Learning to Serial Reaction
Time tasks (e.g., Koch & Hoffmann, 2000; Reber, 1969). The claim that statistical learning and implic-
it learning share underlying processes (and may even be different labels for the same process) is not
a universally acknowledged one; for example, it is in opposition to accounts of statistical learning that
rely on computation of transitional probabilities (e.g., Adriaans & Kager, 2010). As such, the relationship
between statistical and implicit learning is still debatable and an important topic for future research
(e.g., Conway & Christiansen, 2006; Hamrick & Rebuschat, 2012; Perruchet & Pacton, 2006).
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Even among “implicit-style” accounts of statistical learning, the Extraction and Integration Frame-
work differs from other accounts in its claims about the processes underlying learning. One such
difference is that our framework suggests a unified set of processes operating across domains. Many
other implicit learning accounts – and statistical learning accounts – have suggested that different pro-
cesses underlie learning in different modalities (e.g., Conway & Christiansen, 2006). An alternative
“division of labor” approach to implicit learning is Ullman’s suggestion that arbitrary associations (of
the form necessary to acquire word forms and meaning) are accomplished by different processes than
the learning of procedural tasks (e.g., Ullman, 2004, 2005; Ullman & Pierpont, 2005). Similarly, many
accounts of language acquisition that depend on implicit learning draw a sharp distinction between
procedural and declarative knowledge (e.g., Ullman, 2001). By contrast, our approach suggests that
explicit knowledge emerges from implicit learning processes: for example, the knowledge that the
word dog means “4-legged animal that barks,” arises from repeated exposure to pairings of lexical
form and object, and integration across those exposures that allows for a more abstract interpreta-
tion to emerge.

Consistent with these differences in claims about the process of learning, our perspective differs
from other accounts in terms of the neurological underpinning of statistical learning. We have high-
lighted two systems: a prefrontally-mediated attentional system necessary for extraction and a
hippocampally- and cortically-mediated system necessary for integration. Other accounts, particu-
larly implicit learning accounts and traditional multiple memory systems accounts (e.g., Squire, 1987,
1992; Ullman, 2004), have argued that the hippocampus is unnecessary for implicit learning and have
instead focused on the role of the basal ganglia, and particularly the striatum, in tasks related to both
extraction and integration (e.g., Lieberman, Chang, Chiao, Bookheimer, & Knowlton, 2004; Ullman, 2006).
Indeed, many studies have demonstrated basal ganglia recruitment in implicit learning tasks (e.g.,
Lieberman et al., 2004; Ullman, 2006). However, some have questioned the traditional division of labor
between explicit and implicit memory systems on the grounds that clean distinctions often break down
(e.g., Shohamy & Turk-Browne, 2013). Moreover, evidence from patient data is mixed regarding the
necessity of these particular brain regions for various implicit learning tasks (e.g., Knowlton et al., 1992;
Knowlton, Mangels, & Squire, 1996; Schapiro et al., 2014; Smith, Siegert, McDowall, & Abernethy, 2001),
and fMRI studies frequently report both basal ganglia and medial temporal lobe activation for both
declarative and procedural tasks. (e.g., Degonda et al., 2005; see also Frank, Loughry, & O’Reilly, 2001;
McNab & Klingberg, 2008 for suggestions that the basal ganglia are engaged in working memory, a
process we hypothesize to be related to extraction). Thus, much uncertainty remains regarding the
neural systems underlying the various tasks that have been termed statistical learning. It is also en-
tirely possible that these tasks do not recruit the same mechanisms (e.g., notably, as mentioned previously
the Serial Reaction Time Task differs from statistical word segmentation and Artificial Grammar Learn-
ing tasks insofar as it uses a motor response which may provide participants with a source of implicit
feedback, which is known to influence learning; e.g., Lim et al., 2014). Further work will be needed
to disentangle the computational and neural mechanisms that support performance in these tasks.

Future directions

The literature reviewed here highlights the nuanced and multi-faceted nature of the broad variety
of phenomena that have been termed “statistical learning” following early studies of word segmen-
tation. According to the Extraction and Integration Framework, statistical learning refers to adaptation
to statistical regularities in the environment that relies on two main processes and their interac-
tions: extraction and integration. Underlying these processes are general properties of the human
cognitive architecture such as attention, as well as working memory and long term memory. This frame-
work makes novel testable predictions about how individual variability in statistical learning ability
might cluster according to whether the tasks tap into extraction or integration, or a combination of
the two processes. As we have discussed above, this account yields predictions at several levels of anal-
ysis – behavioral, computational, and biological – that differ from other accounts of the role of statistical
learning in language acquisition, and from more traditional accounts of linguistic learning emphasizing
the role of symbolic computations (e.g., Pinker, 1998; Pinker & Ullman, 2002). As such, an important
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avenue for future research is to test these predictions and use them to refine (or disconfirm) the
framework.

In conclusion, statistical learning is a powerful mechanism that infants can use to adapt to various
aspects of the statistical structure of their native language. Going beyond traditional conceptualiza-
tions of statistical learning as a transitional probability calculator, we argue that statistical learning
is fundamentally two complementary processes: the extraction of coherent units and integration across
those units to induce further structure (e.g., segmenting trochaic units from speech and integrating
across those stored units to learn the correlation between lexical stress and word position). After struc-
ture has been induced, it can bias attention to support further learning (e.g., segmenting additional
trochaic units from speech). This conceptualization of statistical learning is able to account for a wide
range of phenomena than typically explained (e.g., Goldwater, Griffiths, & Johnson, 2009; Perruchet
& Vinter, 1998; but for notable exceptions, see Adriaans & Kager, 2010; Thiessen & Erickson, 2013b;
Thiessen et al., 2013). This perspective leads to a set of predictions in computational, behavioral, and
clinical domains that stem from the conceptualization of sensitivity to statistical regularities in dif-
ferent domains as the same underlying processes rooted in features of human perception and memory.

Although the evidence considered here supports the importance of statistical learning in lan-
guage acquisition phenomena, many questions remain unanswered. The field would benefit from
comprehensive longitudinal investigations of how capacities for statistical learning in infancy are related
to language proficiency over the course of subsequent years. Similarly, there is a need for research
programs that test the limits of statistical learning in situations where the statistics more closely ap-
proximate the noise found in real language. Relatedly, research on the integration of statistical cues
with other cues to word boundaries (i.e., acoustic regularities) must move beyond investigations of
the relative strength of particular cues into research programs that describe how multiple sources of
information are integrated to yield segmented word forms. In addition to behavioral research,
neuroimaging, computational modeling and corpus analyses have the potential to inform our under-
standing of language acquisition, through the precise specification of the underlying processes. Despite
the clear gaps in our knowledge, and the many questions yet to be addressed, the use of statistical
learning to provide a unified account of many disparate phenomena shows promise in enhancing our
understanding of language development.
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