Introduction to Statistics and SPSS

Methodology of Conflict and Democracy Studies
November 28

Aim of this lecture

- Variables and their categories
- Population and sample
- Hypotheses and null hypotheses
- Statistical significance
- Introduction to SPSS
- How to make your own variables

Logic of Statistics

Deductive logic of research

- What we do:
 - Derive hypotheses from the theory
 - Define variables and operationalize our concepts
 - Collect the data
 - Test the hypotheses using statistical models
 - Provide interpretation and decide whether our hypotheses hold or not

This all requires more than just few cases

Variables

Measurable items that change their values

 Number of cars on highways, maximum daily temperature, local turnout in elections

Independent (predictor) and dependent (outcome) variables

Main tool for testing hypotheses

Levels of Measurement

Completely different categorization of variables than IV and DV

- Categorical:
 - Nominal
 - Ordinal

- Continuous:
 - Interval
 - Ratio

Nominal Variables

Their values cannot be ordered in a logical way

 Names of towns, names of streets, telephone numbers, colors, species of animals, numbers of players

- Binary variables nominal variables with just two values
 - Someone is employed or is not employed
 - Citizen either voted in election or did not vote
 - You either attend this lecture or you do not

Ordinal Variables

 Their values can be ranked in a logical way however we cannot tell the exact differences between the values

• School grades, Olympic medals, military ranks, age groups

 Ordinal variables tell us more than nominal variables (ordering values) but less than interval and ratio variables

Interval and Ratio Variables

• Interval:

- We can order the values and we know the differences
- Equal intervals on a scale represent equal differences
- Temperature in Celsius

• Ratio:

- Same as interval but ratios of values are meaningful
- They contain a true zero
- Distance in kilometers, time in seconds, number of books in a library
- In SPSS interval and ratio variables are under the same label (scale)

Continuous or Discrete?

- Scale (interval, ratio) variables can be either:
 - Continuous
 - Discrete

Depends on whether the values can take any values on a scale

- Success rate in a test (in %)
- Number of kids in families

	Nominal	Ordinal	Scale (interval, ratio)
Can we logically order the values?	No	No	Yes
Do we know differences between the values?	No	Yes	Yes
Continuous or discrete	Discrete	Discrete	Continuous / discrete

Population and Sample

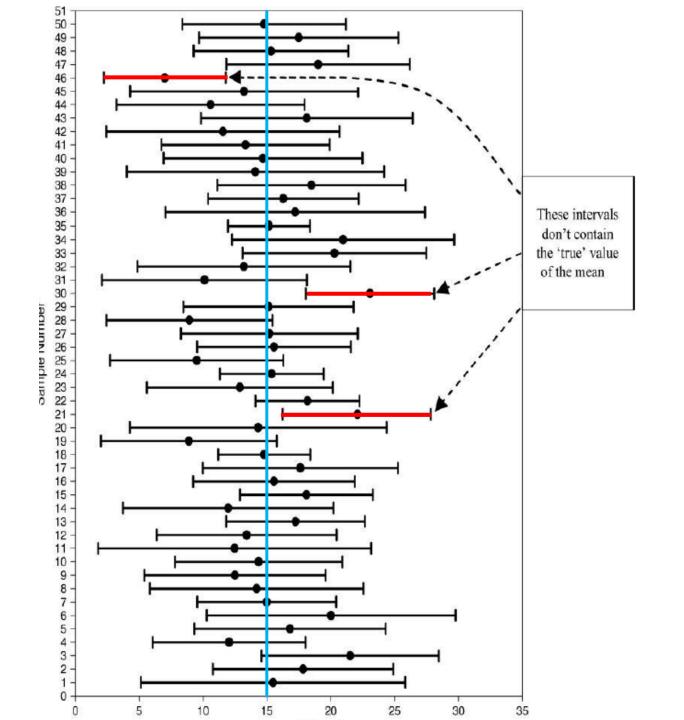
Population:

- Includes all possible subjects of a dataset
- All towns of a country, all university students

• Sample:

- Includes only part of the cases and it is a subset of the population
- Important feature representativeness
- 1,000 people in a survey
- Many ways of selection random and non-random

Population and Sample


- Working with population data:
 - You have data for the whole population
 - Your findings apply to the whole population
- Working with sample data:
 - You have data for the sample only
 - Your aim is to apply the findings to the whole population
- Nobody cares if 53 per cent of 1,000 survey respondents support Brexit but whether 53 per cent of UK population has this opinion

Hypotheses

- Logical conjecture about the nature of relationships between two or more variables expressed in the form of a testable statement (O'Leary 2004)
- "Higher unemployment leads to higher frustration of the society"
- Null hypothesis:
 - Statement about absence of any relationship between independent and dependent variable
 - Every hypothesis has its null hypothesis
- In statistics, all operations test the null hypotheses
- After testing the null hypotheses either hold or they are dismissed (what gives support to our hypotheses)

Statistical Significance

- Working with samples is always connected with some sampling error
- Statistical significance allows to estimate whether the found effects are not only random and so they can apply to the whole population
- Levels of significance: 95 %, 99 %, 99.9 %
- Significance and hypotheses testing:
 - If a result is significant, we reject the null hypothesis and we gain confidence in our own hypothesis
 - If a result is **not significant**, we hold the null hypothesis and we thus we have no support for our own hypothesis

Statistical Significance

 A statistically significant effect does not necessarily mean that it is also important and meaningful

 A finding that a new medicine reduces body temperature of the patient by 0.01 °C (significant at 99.9 %)

 A finding that a new medicine reduces body temperature of the patient by 1 °C (significant at 99.9 %)