Regression Analysis

Methodology of Conflict and Democracy Studies

December 17

Regression Analysis

A variety of techniques with the same aim

Identification of effects of one or more IVs on DV

- What it allows:
 - Identify effect of each independent variable
 - Control of effects of other independent/control variables
 - Predict values of DV based on specific values of IVs

Which Regression?

- Everything depends on your dependent variable
- Linear (OLS) regression:
 - Scale variable (or long ordinal)
- Logistic regression:
 - Binary variable (0/1) binary logistic regression
 - Nominal (0/1/2/3) multinomial logistic regression
- No limits on independent variables (all types allowed)

Examples

- OLS regression:
 - How do age, gender and education affect income of people?
 - Does attendance on lectures increase % amount of obtained points in your courses?

- Logistic regression:
 - Do men have higher chances to end up in jail than women?
 - Does attendance on lectures increase your chances to pass the course?

OLS Regression - Requirements

- Dependent variable:
 - Exactly one variable
- Independent variable:
 - One or more variables, all types without limits

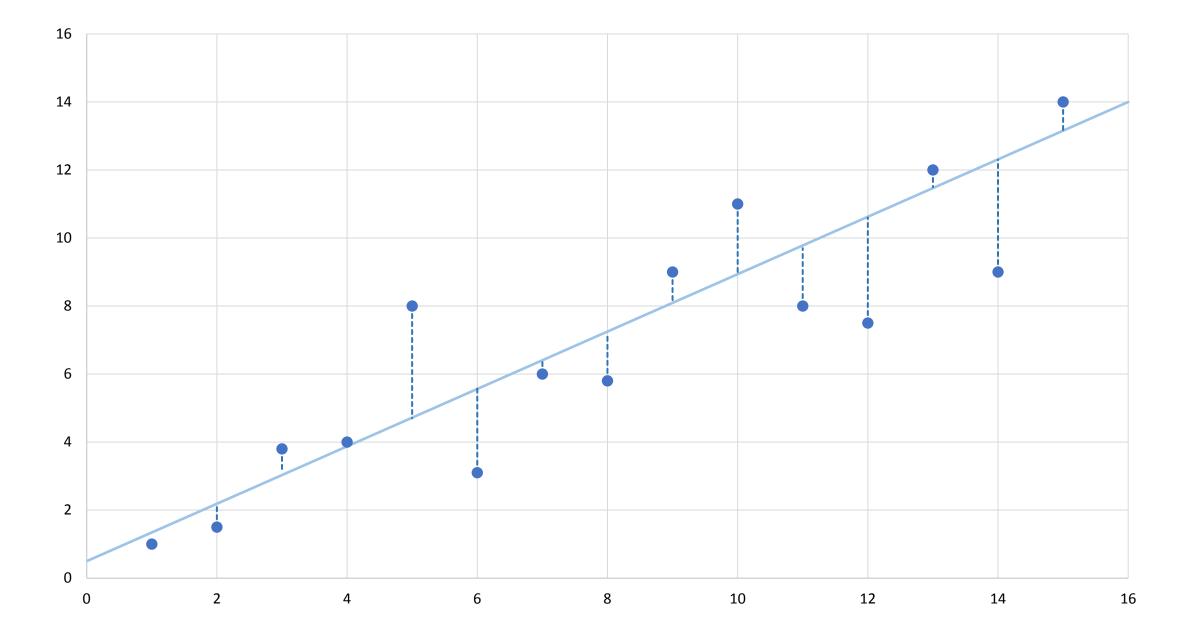
- Some further requirements:
 - Independence of observations
 - No collinearity between independent variables

What is OLS Regression about?

 Basically, it is about searching for ideal lines that best describe the relationship between independent and dependent variable

• The best line is the one that is the least inaccurate of all possible lines

 Accuracy measured using sum of squares of vertical differences between predicted and observed data



R square

- Provides information about the overall fit of the model
- How well our model (= our IVs) explains the dependent variable
- Comparison of improvement of regression line compared to mean
- Ranges from 0 to 1 (zero to hundred per cent)
- Show how much of the variance of dependent variable we are able to explain using our set of independent variables
- Use Adjusted R square to control for inflation of number of IVs

The Outcomes of OLS Regression

- OLS regression estimates:
 - Intercept
 - Effects of each independent variable

•
$$y = b_0 + b_1 * x + b_2 * y + b_3 * z + ...$$

- y stands for predicted value of dependent variable
- b_o stands for intercept
- b_1 , b_2 , b_3 etc. stand for slopes of independent variables x, y, z etc.

Example

- Is turnout in local elections affected by town population?
- Hypothesis: Turnout decreases as population increases
- Null hypotheses: There is no relation between population size and turnout
- Dependent variable:
 - Turnout turnout in % (scale)
- Independent variable:
 - Population_th town population in thousands of people (scale)

How to Perform the OLS Regression

Analyze > Regression > Linear

- Select the variables:
 - Turnout into 'Dependent'
 - Population_th in the section for independent variables

Model Summary Model R Adjusted R Square Std. Error of the Estimate 1 ,265a ,070 ,070 12,58928

a. Predictors: (Constant), Population_1000

ANOVA ^a	
--------------------	--

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	35006,761	1	35006,761	220,877	,000b
	Residual	462315,124	2917	158,490		
	Total	497321,885	2918			

a. Dependent Variable: Turnout

b. Predictors: (Constant), Population_1000

Model Summary:

• Our model explains 7 per cent (0,07 * 100) of variance of dependent variable

• ANOVA:

 Our model is a significant improvement in predicting the dependent variable and our results can be applied to the population

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	60,800	,244		248,812	,000
	Population_th	-,591	,040	-,265	-14,862	,000

- Intercept (Constant):
 - Predicted value of dependent variable if all independent variables = 0
 - In a (non-existing) town with zero population the turnout in local election is predicted as 60.8 per cent

•
$$y = b_0 + b_1 x$$

• $y = 60.8 + b_1 x$

Coefficients	ì
--------------	---

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	60,800	,244		248,812	,000
	Population_th	-,591	,040	-,265	-14,862	,000

- Shows how the value of DV changes if the value of an IV increases by one unit
- Population_th is measured in thousands of people (one unit = 1,000 people)
- Interpretation for each thousand people living in a town the turnout drops by 0.591 percentage points
- This effect is significant at 99.9 % and so it can be applied to population (we reject the null hypothesis about absence of relationship between IV and DV)

•
$$y = b_0 + b_1^*x$$

• $y = 60.8 + (-0.591)^*x$

•
$$y = 60.8 - 0.591 *x$$

Predictions Based on Results

•
$$y = b_0 + b_1 * x$$

Turnout = 60.8 + 0.591*Population_th

	Population	Population in thousands	Formula	Predicted turnout
Town 1	500	0.5	60.8 - 0.591*0.5 = 60.8 - 0.296	60.5
Town 2	1,000	1	60.8 - 0.591*1 = 60.8 - 0.591	60.2
Town 3	5,000	5	60.8 - 0.591*5 = 60.8 - 2.955	57.8
Town 4	10,000	10	60.8 - 0.591*10 = 60.8 - 5.91	54.9
Town 5	25,000	25	60.8 - 0.591*25 = 60.8 - 14.775	46,0

Example 2

• Is turnout in local elections affected by town population, the local financial situation and whether there is a true competition?

- Dependent variable:
 - Turnout turnout in % (scale)

- Independent variables:
 - Population_th town population in thousands of people (scale)
 - Fin_Index indicator of financial situation in town (0-6; 0 = worst, 6 = best) (scale)
 - Competition 1 for at least two competitors or 0 for only one competitor (binary)

How to Perform the OLS Regression

Analyze > Regression > Linear

- Select the variables:
 - Turnout into 'Dependent'
 - Population_th in the section for independent variables

- Because we have more than one IV:
 - Statistics > Collinearity Diagnostics

Model SummaryModelR SquareAdjusted R SquareStd. Error of the Estimate1,675a,456,4559,62055

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	225580,308	3	75193,436	812,419	,000 ^b
	Residual	269150,062	2908	92,555		
	Total	494730,370	2911			

- a. Dependent Variable: Turnout
- b. Predictors: (Constant), Competition, Fin_Index, Population_th

- Our model explains 45.5 per cent of variance of dependent variable
- Substantial improvement compared to model that included only one independent variable
- Our model is a significant improvement in predicting the dependent variable and our results can be applied to the population

a. Predictors: (Constant), Competition, Fin_Index, Population_th

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	55,569	1,912		29,069	,000		
	Population_th	-,770	,031	-,347	-25,077	,000	,980	1,020
	Fin_Index	-1,382	,361	-,053	-3,831	,000	,994	1,006
	Competition	17,995	,397	,625	45,308	,000	,984	1,016

- Intercept (Constant):
 - Predicted value of dependent variable if all independent variables = 0
 - In a (non-existing) town with zero population, financial index of 0 and with no competition the turnout in local election is predicted as 55.569 per cent

•
$$y = b_0 + b_1 x + b_2 y + b_3 z$$

•
$$y = 55.569 + b_1 * x + b_2 * y + b_3 * z$$

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	55,569	1,912		29,069	,000		
	Population_th	-,770	,031	-,347	-25,077	,000	,980	1,020
	Fin_Index	-1,382	,361	-,053	-3,831	,000	,994	1,006
	Competition	17,995	,397	,625	45,308	,000	,984	1,016

- Shows how the value of DV changes if the value of an IV increases by one unit
- Population_th is measured in thousands of people
- Interpretation for each thousand people living in a town the turnout drops by 0.77 percentage points
- This effect is significant at 99.9 % and so it can be applied to population (we reject the null hypothesis about absence of relationship between IV and DV)

•
$$y = b_0 + b_1^*x + b_2^*y + b_3^*z$$

•
$$y = b_0 + b_1^*x + b_2^*y + b_3^*z$$

• $y = 55.569 - 0.77^*x + b_2^*y + b_3^*z$

_				а
	~~			
-0	effi	CIE	ents	•

		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	55,569	1,912		29,069	,000		
	Population_th	-,770	,031	-,347	-25,077	,000	,980	1,020
	Fin_Index	-1,382	,361	-,053	-3,831	,000	,994	1,006
	Competition	17,995	,397	,625	45,308	,000	,984	1,016

- Shows how the value of DV changes if the value of an IV increases by one unit
- Fin_Index is measured on a scale from 0 to 6
- Interpretation for each increase on the financial scale by one the turnout drops by 1.382 percentage points
- This effect is significant at 99.9 % and so it can be applied to population (we reject the null hypothesis about absence of relationship between IV and DV)

•
$$y = b_0 + b_1 * x + b_2 * y + b_3 * z$$

•
$$y = 55.569 - 0.77*x - 1.382*y + b_3*z$$

_					а
~	~ 65	~ :	~	-	
-0	effi	C	u	m.	5

		Unstandardized Coefficients		Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	55,569	1,912		29,069	,000		
	Population_th	-,770	,031	-,347	-25,077	,000	,980	1,020
	Fin_Index	-1,382	,361	-,053	-3,831	,000	,994	1,006
	Competition	17,995	,397	,625	45,308	,000	,984	1,016

- Shows how the value of DV changes if the value of an IV increases by one unit
- **Competition** is a binary variable (0 = no competition; 1 = at least two candidates)
- Interpretation if there is a competition, the turnout in town increases by 17.995 percentage points
- This effect is significant at 99.9 % and so it can be applied to population (we reject the null hypothesis about absence of relationship between IV and DV)

•
$$y = b_0 + b_1 * x + b_2 * y + b_3 * z$$

•
$$y = 55.569 - 0.77*x - 1.382*y + 17.995*z$$

Unstandardized B Coefficient

- Scale v. Binary Variables
- Same definition for scale and binary variables:
 - Shows how the value of DV changes if the value of an IV increases by one unit

BUT

- Binary (dummy) variables have only two values 0 and 1
 - Unlike scale variables, there is only one possible increase by one unit
 - The estimated effect is thus completely exhausted by this one increase

Coefficients

		Unstandardized Coefficients		Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	55,569	1,912		29,069	,000		
	Population_th	-,770	,031	-,347	-25,077	,000	,980	1,020
	Fin_Index	-1,382	,361	-,053	-3,831	,000	,994	1,006
	Competition	17,995	,397	,625	45,308	,000	,984	1,016

a. Dependent Variable: Turnout

Competition:

- 0 no competition (only one candidate)
- 1 competition (at least two candidates)
- Shift from 0 to 1 means that towns with competition are predicted to have a nearly 18 percentage points higher turnout than towns without competition

Population_th:

- Shift of population from 1 thousand to 2 thousand leads to drop of turnout by 0.77 percentage points
- Shift of population from 1 thousand to 5 thousand leads to drop of turnout by 3.08 percentage points (4 times decrease of 0.77)
- Shift of population from 5 thousand to 12 thousand leads to drop of turnout by 5.39 percentage points (7 times decrease of 0.77)

Standardized Beta Coefficient

Provide information about importance of independent variables

• Measured in standard deviation units \rightarrow allow to easily compare the IVs

 Higher distance from zero (both positive and negative) indicates higher importance of the independent variables

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	55,569	1,912		29,069	,000		
	Population_th	-,770	,031	-,347	-25,077	,000	,980	1,020
	Fin_Index	-1,382	,361	-,053	-3,831	,000	,994	1,006
	Competition	17,995	,397	,625	45,308	,000	,984	1,016

 Results show that Competition is the most important predictor of all three independent variables

Population_th is less important and Fin_Index is the least important

Predictions Based on Results

- $y = b_0 + b_1 * x + b_2 * y + b_3 * z$
- Turnout = 55.569 0.77*Population_th 1.382*Fin_Index + 17.995*Competition

	Population	Fin_Index	Competition	Formula	Predicted turnout
Town 1	1,000	3	0	55.569 - 0.77*1 - 1.382*3 + 17.995*0	50.7
Town 2	1,000	3	1	55.569 - 0.77*1 - 1.382*3 + 17.995*1	68.6
Town 3	5,000	3	0	55.569 - 0.77*5 - 1.382*3 + 17.995*0	47.6
Town 4	10,000	6	1	55.569 - 0.77*10 - 1.382*6 + 17.995*1	57.6
Town 5	25,000	6	0	55.569 - 0.77*25 - 1.382*6 + 17.995*0	28.0

Control of Assumptions

- Outliers cases with extreme values
- Collinearity association between independent variables

- How to do that:
 - Analyze > Regression > Linear
 - Statistics > Collinearity diagnostics + casewise diagnostics

Collinearity

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	55,569	1,912		29,069	,000		
	Population_th	-,770	,031	-,347	-25,077	,000	,980	1,020
	Fin_Index	-1,382	,361	-,053	-3,831	,000	,994	1,006
	Competition	17,995	,397	,625	45,308	,000	,984	1,016

a. Dependent Variable: Turnout

- VIF above 5 (10) or Tolerance below 0.2 (0.1) constitutes a problem
- Solution more models or dropping one of the variables

Outliers

- The data should contain up to:
 - 5 % of cases with residual above 2 (below -2)
 - 1 % of cases with residual above 2.5 (below -2.5)

• If we find outliers we can rerun the model without these cases and compare whether the results change