ENVIRONMENTAL HAZARDS IN CITIES

STRUCTURE

INTRODUCTION + DEFINITIONS CAUSES OF ENVIRONMENTAL HAZARDS IMPACTS ON SOCIETY AND THE ENVIRONMENT POSSIBLE SOLUTIONS SPECIFIC EXAMPLES CONCLUSION

TYPES OF ENVIRONMENTAL HAZARDS

1. AIR POLLUTION

= harmful substances (PM, NO₂, SO₂)

3. FLOODING RISKS

= likelihood of urban areas being filled by water due to factors like poor drainage, heavy rainfall and urbanization 2. W
= co
that
4. U
= ino
by to

2. WATER POLLUTION= contamination of water bodies that is harmful to living beings

4. URBAN HEAT ISLANDS

increase in temperature causedby the built environment (asphalt, concrete)

CAUSES OF ENVIRONMENTAL HAZARDS

Join at slido.com #1368 812

NATURAL LANDSCAPES

HIGH DENSITY INFRASTRUCTRUE ZONES

- Buildings
- Roads
- Utilities to accommodate the population and demand for resources

PROBLEMS:

c) Pollution

d) Urban water runoff

e) Waste

a) Heavy natural resource use b) Loss of natural ecosystems

INCREASED INDUSTRIALIZATION

URBANIZATION

PROBLEMS: a) Tons of waste b) Resource drain c) Pollution d) Energy consumption e) Landfills

Industrial waste

LOGAL PRACTISES TRANSPORTATION

- Fastest-growing greenhouse gas emitter
- One of the main contributors to the issue of high air pollution in the cities
- Third largest source of CO2 emmisions
- Growing need to construct pavements in cities ---> heating

practises

LOGAL PRACTISES **HEATING PRACTISES**

- Increasing paved surfaces ----> worsening heat islands
- Water runoff carries pollutants into water **bodies, harming water quality**

WASTE MANAGEME poor management is significant source of **GHG emissions**

approximately 3-5 % of total GHG emissions in cities

poor management ----> water contamination through runoff

- Cities = main contributors to climate change
- High concetration of people and activities ----> major consumers of energy and sources of GHG emissions
- more than one-half, up to two thirds of global energy consumption
- Approximately half to 80 % of global GHG emissions

CLIMATE RISKS: • **Rising sea levels** Extreme rainstorms Heatwaves

SOURCES

- <u>https://www.mdpi.com/2073-4441/13/24/3520</u>
- <u>https://www.rff.org/publications/explainers/urban-heat-islands-101/</u>
- <u>https://www.researchgate.net/publication/373358802_Urbanization_and_Its_Impact_on_Environmental_Sustainability_A_Comprehensive_Review/link/64e756730acf2e2b520da91b/download?</u>
 <u>tp=eyJjb250ZXh0ljp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uliwicGFnZSI6InB1YmxpY2F0aW9uln19</u>
- <u>https://greentumble.com/environmental-problems-of-urbanization</u>
- <u>https://sensoneo.com/waste-library/impact-of-industrial-waste/</u>
- https://www.mdpi.com/2673-8392/2/2/78
- <u>https://www.epa.gov/heatislands/using-cool-pavements-reduce-heat-islands</u>
- <u>https://www.c40.org/what-we-do/scaling-up-climate-action/waste-management/</u>
- <u>https://climate.mit.edu/explainers/cities-and-climate-change</u>
- <u>https://www.nationalgeographic.com/environment/article/urban-threats</u>
- <u>https://web.mit.edu/urbanupgrading/urbanenvironment/issues/key-UE-issues.html</u>
- https://www.iberdrola.com/sustainability/water-pollution
- <u>https://www.mzp.cz/en/state_environmental_policy</u>

<u>ds-101/</u> ization and Its Impact on Environmental 2e2b520da91b/download? uliwicGFnZSI6InB1YmxpY2F0aW9uIn19 zation te/

<u>ice-heat-islands</u> vaste-management/

IMPACTS ON SOCIETY AND ENVIRONMENT

- Air pollution
- Noise pollution
- Heat islands

PUBLIC HEALTH

- Factors of residental spaces
- Some more: drinking water, solar
 - radiation, extreme weather

AIR POLLUTION

- Particulate matter (PM), nitrogen dioxide (NO2) and ozone (O3)
- Respiratory and cardiovascular diseases
- European Environment Agency (EEA) reports – improvement

CH₄ emissions are total emissions (as set by the Intergovernmental Panel on Climate Change (IPCC) sectors 1-7) excluding those from land use, land use change and forestry (sector 5).

Sources: EEA (2020e, 2020f); Eurostat (2020b)

Table 10.1 Premature deaths attributable to PM _{2.5} , NO ₂ and O ₃ exposure in 41 European countries and the EU-28, 2018							
		PM			NO	0	
Country	Population (1 000)	Annual mean (*)	Premature deaths (°)	Annual mean (*)	Premature deaths (°)	SOMO35 (*)	Premature deaths (°)
Austria	8 822	13.6	6 100	17.7	790	6 731	420
Belgium	11 399	12.7	7 400	20.4	1 200	4 298	350
Bulgaria	7 050	21	12 500	19.0	1 100	3 765	320
Croatia	4 105	18	5 100	13.8	90	6 342	250
Cyprus	1 216	14.5	620	23.5	210	6 844	40
Czechia	10 610	18.3	10 900	15.5	300	6 946	580
Denmark	5 781	10.5	3 100	9.8	10	3 866	150
Estonia	1 319	7	610	7.1	< 1	2 793	30
Finland	5 513	5.9	1 700	8.6	< 1	2 351	90
France	64 456	10.6	33 100	15.9	5 900	5 274	2 300
Germany	82 792	12.3	63 100	19.1	9 200	5 674	4 000
Greece	10 741	18.3	11 800	21.0	3 000	7 157	650
Hungary	9 778	18.3	13 100	17.0	850	5 892	590
Ireland	4 830	7.8	1 300	11.0	50	2 556	60
Italy	60 484	15.5	52 300	20.1	10 400	6 490	3 000
Latvia	1 934	12.1	1 800	11.9	70	2 732	60
Lithuania	2 809	12.8	2 700	12.3	10	3 096	90
Luxembourg	602	10	210	20.2	40	4 604	10
Malta	476	12.5	230	10.4	< 1	5 498	10
Netherlands	17 181	12	9 900	20.4	1 600	3 620	410
Poland	37 977	21.7	46 300	15.6	1 900	5 095	1 500
Portugal	9 794	8.4	4 900	15.4	750	4 672	370
Romania	19 531	17.6	25 000	19.3	3 500	3 683	730
Slovakia	5 443	18.2	4 900	14.8	40	6 129	230
Slovenia	2 067	15.8	1 700	14.5	50	6 494	100
Spain	44 452	10.2	23 000	19.4	6 800	5 841	1 800
Sweden	10 120	6.1	3 100	8.7	< 1	3 465	240
United Kingdom	66 274	10	32 900	18.9	6 000	2 307	1 000
Albania	2 870	21.6	5 000	14.7	100	5 601	180
Andorra	75	8.5	30	18.1	< 1	6 593	< 1
Bosnia and Herzegovina	3 503	26.4	5 100	13.9	90	5 218	150
Iceland	348	4.7	60	10.4	< 1	1 999	< 1
Kosovo	1 799	28.2	4 000	17.0	90	3 922	80
Liechtenstein	38	8.6	20	16.5	< 1	7 045	<1
Monaco	38	12.6	20	25.0	10	7 686	< 1
Montenegro	622	20.5	640	15.0	10	5 630	30
North Macedonia	2 075	30.7	3 000	19.0	130	3 533	50
Norway	5 296	6.4	1 400	10.0	40	3 128	90
San Marino	34	13.3	30	14.4	<1	6 700	< 1
Serbia	7 001	26.3	14 600	17.3	430	3 500	280
Switzerland	8 484	9.8	3 500	17.6	270	7 214	350
EU-28 total	507 558	13.2	379 000	17.8	54 000	4 970	19 400
All countries total	539 742	13.5	417 000	17.6	55 000	4 962	20 600

(*) The annual mean (in μg/m³) and the SOMO35 (in μg/m³-days), expressed as population-weighted concentration, is obtained according Notes: to the methodology described by ETC/ATNI (2020d) and references therein and not only from monitoring stations.

(*) Total and EU-28 premature deaths are rounded to the nearest thousand (except for O₂, nearest hundred). The national totals are rounded to the nearest hundred or ten.

AIR POLLUTION: PREMATURE DEATHS

Table 2.1

Inside urban areas Roa Rail Air Ind Outside urban areas Roa Rail Air

Notes:

Figure 2.1

90 m 80 m 70 m 60 m 50 m 40 m 30 m 20 m 10 m 0 m

NOISE EXPOSURE

Population exposure to environmental noise, based on areas covered by strategic noise maps in 2017, EEA-33 (Turkey not included)

	Number of p to L _{den} ≥ 55	eople exposed dB (million)	Number of people exposed to L _{night} ≥ 50 dB (million)		
	Reported	Estimated	Reported	Estimated	
ad	50.6	81.7	33.8	57.5	
	7.9	10.7	6.0	8.1	
	2.2	3.1	0.6	0.9	
ustry	0.3	0.8	0.2	0.4	
ad	21.8	31.1	14.2	21.1	
	10.4	10.9	8.7	9.0	
	0.8	1.1	0.4	0.4	

Based on data submitted up until 1 January 2019 for the 2017 END submission of strategic noise mapping. Reported data refer to data submitted by countries and estimated data refer to data gap-filled because of incomplete reporting.

NOISE IMPACTS

- Children reading impairment
- Adults annoyed by noise, sleep disturbance
- About 48 000 new cases of ischaemic heart disease
- About 12 000 premature deaths

Table 3.5 Estimated number of people suffering from various health outcomes due to environmental noise in 2017, EEA-33 (Turkey not included)

		High annoyance	High sleep disturbance	lschaemic heart disease	Premature mortality (ª)	Cognitive impairment in children
Inside urban areas	Road	12 525 000	3 242 400	29 500	7 600	
	Rail	1 694 700	795 500	3 100	800	
	Air	848 300	168 500	700	200	9 500
	Industry	87 200	23 400	200	50	
Outside urban areas	Road	4 625 500	1 201 000	10 900	2 500	
	Rail	1 802 400	962 900	3 400	900	
	Air	285 400	82 900	200	50	2 900
	Total (^b)	21 868 500	6 476 600	48 000	12 100	12 400

Notes: (*) Refers to mortality due to ischaemic heart disease.

(b) There may be double counting for annoyance and sleep disturbance because of the combined effects of multiple sources. It is estimated to be no more than 13 % for annoyance and 16 % for sleep disturbance. Double counting for ischaemic heart disease and mortality is estimated to be negligible (ETC/ACM, 2018)

FACTORS OF RESIDENTIAL SPACES

Rezidental air contaminations

- Factors
- Sick building syndrome

Lightening (artificial)

- Biological factors hypothalamus, melatonin
- Intensity, color, type

Radon

- - gas group

Noise and vibrations

 = heaviest naturally occurring chemical element in the noble

• Vibration sources located in buildings can be divided into three groups

HEAT ISLANDS

- - children
- Seniors
- Workers
- Drivers...

• Families with young

HEAT ISLANDS

Serious health consequences of heat include:

- Heatstroke caused by overheating of the body
- Sunburn caused by direct sunlight
- Overheating causing dehydration, heat exhaustion and fainting
- Breathing difficulties, heat cramps
- Circulatory and cerebral accidents such as heat exhaustion or heat collapse

ENVIRONMENTAL DEGRADATION

- Air pollution
- Noise pollution
- Heat islands
- Outcomes

on ution ds

AIR POLLUTION

- Ozone
- Eutrophication
- Acidification
- Nitrogen oxides and sulphur dioxide
- Toxic metals

Source: ETC/ATNI (2020d).

Figure 5.1 Mechanisms involved in the impact of anthropogenic noise on wildlife

Note: Masking effect: when the noise is close, it reduces an individual's ability to hear the sounds of others.

Source: Adapted from Francis and Barber (2013).

NOISE Pollution

NOISE Pollution

• Quietness suitability index

- Underwater noise
- Quiet areas

Notes: AIS based vessel density dataset used as a proxy for continuous anthropogenic noise. The index is based on the Log transformed monthly average shipping density per 10 × 10 km grid. It is calculated with the number of hours per month that ships spent in each kilometre square.

Table 5.1 noise Bird Terrestrial Mar Rep Inve Marine Fish Mar

Inve

Physiologica
Behavioural
Impact on fi
Consequence

Sources: Adapted from Francis and Barber (2013) and Shannon et al. (2016).

Sources: EMODnet (2019) and ETC/ICM (2019).

Effects on terrestrial and marine wildlife due to general background, transport and industrial

ls		Changes in singing and communication behaviour
		Changes in spatial distributions and movements
		Reduced breeding
		Effects on physiological development
		Increased stress levels
		Reduced reproductive success
		Decline in species diversity
		Changes in distribution and abundance.
		Changes in community species
mmals		Changes in vocal and communication behaviour
		Reduced foraging
		Increased stress levels
		Reduced reproductive success
tiles and amphibians		Changes in vocal and communication behaviour
		Difficulties in locating mates
ertebrates		Changes in mate attraction behaviour
1		Changes in spatial distributions and movements
		Changes in territorial and social behaviour
		Reduction in detection of communication signals
		Increased stress hormones
		Temporary hearing loss and damage to ears
		Reduction in local abundance and catch rate
mmals		Changes in vocal and communication behaviour
		Changes in time spent feeding and milling
		Loss of communication space
		Changes in spatial distributions and movements
		Increased stress hormones
		Shift in hearing thresholds
ertebrates		Increase in larvae settlement
		Disruption of foraging and anti-predator behaviour
		Damage to sensory systems
		Development delay and body modifications
al response		

l response

itness

ces for population and communities

HEAT ISLANDS

- Dryness
 - Not retaining enough water
 - Evaporation of water
- Bad air circulation
- Surroundings

Pavement and concrete in cities absorb energy from the sun and then radiate that energy out, heating the air in cities more than in the surrounding countryside. Urban trees provide shade, preventing pavement and concrete from heating up, and also cool the air by transpiring water. Trees can cool neighborhoods by up to 4 degrees Fahrenheit.

Heat Island Effect

OUTCOMES

Loss of natural habitats and degradation

- Temperature stress
- Vegetation changes

Altered Behaviour and Phenology

Spread of invasive species

 Migration (change of climate, resource stress)

- wildlife

 - Food stress

 Migration patterns • Reproductive Cycles

Limited resources for

• Water stress

ECONOMIC COSTS

- Direct economic costs
 - Disaster recovery
- Productivity losses
 - Productivity of workers
 - Disruptions to supply chain
- Rising energy and resource costs
 - Higher energy demand
 - Water management costs
- Costs to urban businesses and markets
 - Property devaluation
 - Insurance
 - Tourism losses
- Indirect economic costs
 - Public health expenses
 - Migration and housing needs

SOURCES

https://www.eea.europa.eu/cs/articles/zdravi-a-zivotni-prostredi-vcetne https://www.eea.europa.eu/publications/environmental-noise-in-europe https://www.eea.europa.eu/cs/highlights/vyrazne-zlepseni-kvality-ovzdusi-v https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report https://hyg.lf1.cuni.cz/file/5606/manual-souhrn-2.pdf https://www.lifetreecheck.eu/cs/Library/Livable-and-Resilient-City https://www.sciencedirect.com/science/article/pii/S187734351000148X https://link.springer.com/article/10.1007/s40572-021-00313-9 https://socialstudieshelp.com/economic-impact-of-natural-disasters-risk-resiliencestrategies/

POSSIBLE SOLUTIONS

PARTICIPATIVE ACTIVITY 1

- A VISION FOR SUSTAINABLE CITIES OF THE FUTURE What do you think a sustainable city of the future should looks like?
- What should it contains?
- What would make you feel good there?

PARTICIPATIVE ACTIVITY 2

1. choose one example of a possible solution 2. find a discussion partner and lightly present your chosen example to each other 3. take it back and find another one to introduce to the other partner again

EXAMPLES IN CR

The surface urban heat islands in the city of Brno

- May 24, 2001, mean air temperature, 17.6 °C; minimum, 8.4 °C; maximum, 23.3 °C
- June 15, 2006, mean air temperature, 20.6 °C; minimum, 10.6 °C; maximum, 25.9 °C

flowchart summarizing basic steps of LST derivation from infrared imagery

- residential 20%
- industrial 14%
- arable land, grasslands
 34%
- forests 29%
- parks and water bodies 1%

Spatial variability of LST values within the Brno region; LST derived from Landsat thermal imagery acquired on June 24, 2006

Fig. 3

Spatial distribution of LST in the center of Brno. *Black lines* mark surround with LST higher than the mean + 2 SD. *Individual numbers* indicate the positions of selected "hot spots" with character of land cover as presented on the accompanying aerial photographs

Box plots of LST values for individual land cover classes

Intensity of surface UHI in Brno region defined as the difference between urban and rural areas for two analyzed scenes

CONCLUSIONS

- Surface UHI intensity reaches 4.2 °C for 2001 and 6.7 °C for 2006
- Arable land exhibits high variability, with very high maximum surface temperatures comparable to those of industrial areas, especially for the 2006 image (fields with low percentages of vegetation cover)
- Positive feedback loop
- Vegetation cover explains the majority of LST-variability

Realisation of flood protection measures for the city of Prague

- Reaction to 1997 and 2002 (Q500) floods <u>LINK</u>
- Damage of 1 billion euro/24 billion czk

Grey measures (engineering infrastructure):

- Fixed barriers (levees, dykes, earth mounds, solid concrete walls) constructed along the Vltava River. For instance, closure at Čertovka (Old Town), which is a steel sliding door, 23.5 m length, 4.9 meters height, and weighting 45 tonnes
- Mobile barriers (workers regularly trained, yearly testing)
- Other measures, as closures, pumping systems and safety valves in the canalisation network along the Vltava River

before measures
 57.5 km2 was
 threatened by
 floods

 52.5 km2 became protected

Green and blue measures:

- revitalization of smaller streams in the city
- slow down the runoff and reduce the man-made modifications of riverbeds
- enhancing landscape permeability
- part of the Prague Climate Change Adaptation Strategy (2020)
- The estimated total cost amounts to 145.94 Million EUR (2013)
- Total net avoided damage costs are (in Million EUR) between 168 (Q20) and 2,003 (Q500)
- Grey (80 year lifespan), green indefinite
- Proved themselves during 2013 floods

Limiting factors:

- property rights
- protection of cultural and historical heritage, which led to for example using different materials for the measures in the city center (stone over stainless steel, visual side also important)
- conflicting views

Responsibility?

- Ministry of Agriculture and Ministry of Environment for green measures
- Stakeholders for city adaptation measures: Prague City Hall, Vltava River Basin (company), affected Prague districts, political representatives, the Czech Hydrometeorological Institute + other companies

Transportation in Brno BRNO IS A CITY EASY TO LIVE IN (EVEN WITHOUT À CAR)

MODAL SPLIT BETWEEN SUSTAINABLE MODES OF TRANSPORT (PUBLIC TRANSPORTATION, CYCLING AND PEDESTRIAN TRAFFIC)

STRATEGIC OBJECTIVES

Õ

- Increase the share of public transport, cycling and pedestrian traffic in the modal split
- Increase the integration of sustainable modes of transport (share of multimodal routes) and accelerate public transportation (travel speed on reference journeys taken by public transportation higher by 15% in 2030)
- Increase the number of households not in possession of a car (by 20% by the year 2050)

ROAD COMMUNICATION NETWORK OF THE CITY AND **QUALITY OF PUBLIC SPACES**

STRATEGIC OBJECTIVES

- · Not to increase the capacity of the road communication network for individual motor car traffic in the central part inside the city after completion of the construction of the protective transport system (maintaining of the total number of parking places in the broader centre of the city on the level of the actual need)
- Increase accessibility and attractiveness of sustainable modes of transport in the city and its hinterland (for example suburban railways), (the share of suburban railways on reference journeys will grow by 20% by the year 2030 to the detriment of individual motor car traffic)
- Increase the number and quality of public spaces (increase in the percentage of inhabitants of the city satisfied with public spaces by 30% by the year 2030)

In 2050, Brno ranks first in the chart rating the guality of life in cities. 480 thousand satisfied citizens live in there; they are not forced to leave the city for clean air even on their days off. Brno is a city where it is easy to live without a car. It is a city of short trips with interconnected and consistent modes of transport. Mobility is the main political issue as a foundation stone of the guality of life in the city, and for 35 years already, the city residents have been actively involved in the topic of urban mobility with creative suggestions. Being a senior or handicapped in Brno does not mean any limitation of travel habits. In the long term, the city has

ORGANISATION AND CONTROL FOR TRANSPORT

STRATEGIC OBJECTIVES

been making the transport system more efficient in a conceptual and coordinated manner. The ease, possibility and speed of travel are the main objectives of transport planning. At the same time, the city is capable, on the basis of a broad data basis, to respond flexibly in the area of mobility to trends not only in transport but also in demography, economy and migration of population.

OF TRAFFIC AND OF THE DEMAND

 Combine traffic and spatial planning. implement principles of integrated traffic planning including strengthening of the importance of telematic systems

 Implement comprehensive planning of the transport of employees and visitors to big enterprises and institutions, including projects generating traffic (for example plans of mobility for shopping centres, compulsory corporate plans of mobility for organisations with more than 100 employees by the year 2020, and with more than 50 employees by the

 Implementing education, training, raising awareness in the area of urban mobility and

PROTECTION OF INHABITANTS AGAINST NEGATIVE IMPACTS OF TRAFFIC, HIGH ENERGY CONSUMPTION OF TRAFFIC

STRATEGIC OBJECTIVES

- Reduce the number of traffic accidents (fulfil) national objectives, for example reduction of the number of victims of traffic accidents to one half compared to the year 2015 by the year 2025)
- Reduce the number of inhabitants suffering from above-the-limit noise from traffic (by the year 2025, less than 5% of the population of the city should suffer from above-limit noise from traffic)
- Reduce emissions of greenhouse gases and reduce the energy consumption of transport per passenger (a fourfold reduction in greenhouse gas emissions by the year 2050 compared to the year 2010, or: 1 tonne equivalent of CO₂ per person per year by the year 2050); decrease in total energy consumption in transport per passenger by 20% by the year 2050)
- Ensure reliability of the transport system in case of emergency situations
- Minimise the negative impacts of city logistics

Cars and motor vehicles

The number of passenger cars in Brno is constantly increasing. The decrease in 2013 was due to the introduction of a new vehicle register, which led to an administrative decrease (change and refinement of the methodology). In the following years, however, the number of passenger cars slowly increased. This increase has been particularly noticeable in recent years, as Brno's roads have reached the limits of their capacity.

Victims

Source: KORDIS JMK, a.s.

Sources

DATA.BRNO, 2024. Doprava [online] [vid. 2024-11-20]. Dostupné z: https://data.brno.cz/pages/bvc-doprava

DOBROVOLNÝ, Petr, 2013. The surface urban heat island in the city of Brno (Czech Republic) derived from land surface temperatures and selected reasons for its spatial variability. Theoretical and Applied Climatology [online]. 112(1), 89–98. ISSN 1434-4483. Dostupné z: doi:10.1007/s00704-012-0717-8

LORENCOVÁ KRKOŠKA, Eliška a Jaromír KAČER, 2023. Realisation of flood protection measures for the city of Prague [online] [vid. 2024-11-20]. Dostupné z: https://climate-adapt.eea.europa.eu/en/metadata/case-studies/realisation-of-floodprotection-measures-for-the-city-of-prague